Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review

Author(s): Mohammad Bagherniya, Thomas P. Johnston and Amirhossein Sahebkar*

Volume 28 , Issue 7 , 2021

Published on: 27 April, 2020

Page: [1363 - 1406] Pages: 44

DOI: 10.2174/0929867327666200427092114

Price: $65

Abstract

Cardiovascular Disease (CVD) is the most important and the number one cause of mortality in both developing and industrialized nations. The co-morbidities associated with CVD are observed from infancy to old age. Apolipoprotein B100 (Apo B) is the primary apolipoprotein and structural protein of all major atherogenic particles derived from the liver including Very-Low- Density Lipoproteins (VLDL), Intermediate-density Lipoprotein (IDL), and Low-density Lipoprotein (LDL) particles. It has been suggested that measurement of the Apo B concentration is a superior and more reliable index for the prediction of CVD risk than is the measurement of LDL-C. Nutraceuticals and medicinal plants have attracted significant attention as it pertains to the treatment of non-communicable diseases, particularly CVD, diabetes mellitus, hypertension, and Nonalcoholic Fatty Liver Disease (NAFLD). The effect of nutraceuticals and herbal products on CVD, as well as some of its risk factors such as dyslipidemia, have been investigated previously. However, to the best of our knowledge, the effect of these natural products, including herbal supplements and functional foods (e.g. fruits and vegetables as either dry materials, or their extracts) on Apo B has not yet been investigated. Therefore, the primary objective of this paper was to review the effect of bioactive natural compounds on plasma Apo B concentrations. It is concluded that, in general, medicinal plants and nutraceuticals can be used as complementary medicine to reduce plasma Apo B levels in a safe, accessible, and inexpensive manner in an attempt to prevent and treat CVD.

Keywords: Cardiovascular disease (CVD), phytochemicals, lipoprotein, dyslipidemia, apolipoprotein B, cholesterol.

[1]
Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res, 2016, 113(Pt A), 600-609.
[2]
Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids, 2015, 2015971453
[http://dx.doi.org/10.1155/2015/971453] [PMID: 25949827]
[3]
Etemadifar, M.; Maghzi, A-H. Sharp increase in the incidence and prevalence of multiple sclerosis in Isfahan, Iran. Mult. Scler., 2011, 17(8), 1022-1027.
[http://dx.doi.org/10.1177/1352458511401460] [PMID: 21459809]
[4]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11(1), 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[5]
Bairaktari, E.; Elisaf, M.; Tzallas, C.; Karabina, S.A.; Tselepis, A.D.; Siamopoulos, K.C.; Tsolas, O. Evaluation of five methods for determining low-density lipoprotein cholesterol (LDL-C) in hemodialysis patients (1). Clin. Biochem., 2001, 34(8), 593-602.
[http://dx.doi.org/10.1016/S0009-9120(01)00274-0] [PMID: 11849617]
[6]
Howard, B.V.; Robbins, D.C.; Sievers, M.L.; Lee, E.T.; Rhoades, D.; Devereux, R.B.; Cowan, L.D.; Gray, R.S.; Welty, T.K.; Go, O.T.; Howard, W.J. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: the strong heart study. Arterioscler. Thromb. Vasc. Biol., 2000, 20(3), 830-835.
[http://dx.doi.org/10.1161/01.ATV.20.3.830] [PMID: 10712410]
[7]
Hermans, M.P.; Ahn, S.A.; Rousseau, M.F. Log(TG)/HDL-C is related to both residual cardiometabolic risk and β-cell function loss in type 2 diabetes males. Cardiovasc. Diabetol., 2010, 9, 88.
[http://dx.doi.org/10.1186/1475-2840-9-88] [PMID: 21156040]
[8]
Li, C.; Ford, E.S.; Tsai, J.; Zhao, G.; Balluz, L.S.; Gidding, S.S. Serum non-high-density lipoprotein cholesterol concentration and risk of death from cardiovascular diseases among U.S. adults with diagnosed diabetes: the third national health and nutrition examination survey linked mortality study. Cardiovasc. Diabetol., 2011, 10, 46.
[http://dx.doi.org/10.1186/1475-2840-10-46] [PMID: 21605423]
[9]
Rosenson, R.S.; Otvos, J.D.; Hsia, J. Effects of rosuvastatin and atorvastatin on LDL and HDL particle concentrations in patients with metabolic syndrome: a randomized, double-blind, controlled study. Diabetes Care, 2009, 32(6), 1087-1091.
[http://dx.doi.org/10.2337/dc08-1681] [PMID: 19265025]
[10]
Rizzo, M.; Berneis, K. Should we measure routinely the LDL peak particle size? Int. J. Cardiol., 2006, 107(2), 166-170.
[http://dx.doi.org/10.1016/j.ijcard.2005.02.035] [PMID: 16412793]
[11]
Davidson, M.H. Apolipoprotein measurements: is more widespread use clinically indicated? Clin. Cardiol., 2009, 32(9), 482-486.
[http://dx.doi.org/10.1002/clc.20559] [PMID: 19743499]
[12]
Cho, D-S.; Woo, S.; Kim, S.; Byrne, C.D.; Kong, J-H.; Sung, K-C. Estimation of plasma apolipoprotein B concentration using routinely measured lipid biochemical tests in apparently healthy Asian adults. Cardiovasc. Diabetol., 2012, 11(1), 55.
[http://dx.doi.org/10.1186/1475-2840-11-55] [PMID: 22607125]
[13]
Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The role of lipids and lipoproteins in atherosclerosis. In: Endotext; Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C.; Feingold, K.R.; Anawalt, B.; Boyce, A.; Chrousos, G.; de Herder, W.W.; Dungan, K.; Grossman, K.; Hershman, J.M.; Hofland, H.J.; Kaltsas, G.; Koch, C.; Kopp, P.; Korbonits, M.; McLachlan, R.; Morley, J.E.; New, M.; Purnell, J.; Singer, F.; Stratakis, C.A.; Trence, D.L.; Wilson, D.P., Eds.; South Dartmouth, 2019.
[PMID: 26844337]
[14]
Rutledge, A.C.; Su, Q.; Adeli, K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly. Biochem. Cell Biol., 2010, 88(2), 251-267.
[http://dx.doi.org/10.1139/o09-168]] [PMID: 20453928]
[15]
Shelness, G.S.; Ledford, A.S. Evolution and mechanism of apolipoprotein B-containing lipoprotein assembly. Curr. Opin. Lipidol., 2005, 16(3), 325-332.
[http://dx.doi.org/10.1097/01.mol.0000169353.12772.eb] [PMID: 15891394]
[16]
Fisher, E.; Lake, E.; McLeod, R.S. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J. Biomed. Res., 2014, 28(3), 178-193.
[http://dx.doi.org/10.7555/jbr.28.20140019] [PMID: 25013401]
[17]
Hermans, M.P.; Sacks, F.M.; Ahn, S.A.; Rousseau, M.F. Non-HDL-cholesterol as valid surrogate to apolipoprotein B100 measurement in diabetes: discriminant ratio and unbiased equivalence. Cardiovasc. Diabetol., 2011, 10, 20.
[http://dx.doi.org/10.1186/1475-2840-10-20] [PMID: 21356116]
[18]
Davidson, N.O.; Shelness, G.S. Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu. Rev. Nutr., 2000, 20, 169-193.
[http://dx.doi.org/10.1146/annurev.nutr.20.1.169] [PMID: 10940331]
[19]
Feingold, K.R.; Grunfeld, C. Introduction to lipids and lipoproteinsIn: Endotext; Feingold, K.R.; Anawalt, B.; Boyce, A.; Chrousos, G.; de Herder, W.W.; Dungan, K.; Grossman, A.; Hershman, J.M.; Hofland, J.; Kaltsas, G.; Koch, C.; Kopp, P.; Korbonits, M.; McLachlan, R.; Morley, J.E.; New, M.; Purnell, J.; Singer, F.; Stratakis, C.A.; Trence, D.L.; Wilson, D.P., Eds.; South Dartmouth, 2021.
[PMID: 26247089]
[20]
Cromwell, W.C.; Barringer, T.A. Low-density lipoprotein and apolipoprotein B: clinical use in patients with coronary heart disease. Curr. Cardiol. Rep., 2009, 11(6), 468-475.
[http://dx.doi.org/10.1007/s11886-009-0067-z] [PMID: 19863872]
[21]
Shapiro, M.D.; Fazio, S. Apolipoprotein B-containing lipoproteins and atherosclerotic cardiovascular disease. F1000 Res., 2017, 6, 134.
[http://dx.doi.org/10.12688/f1000research.9845.1] [PMID: 28299190]
[22]
Twisk, J.; Gillian-Daniel, D.L.; Tebon, A.; Wang, L.; Barrett, P.H.R.; Attie, A.D. The role of the LDL receptor in apolipoprotein B secretion. J. Clin. Invest., 2000, 105(4), 521-532.
[http://dx.doi.org/10.1172/JCI8623] [PMID: 10683382]
[23]
Jiang, R.; Schulze, M.B.; Li, T.; Rifai, N.; Stampfer, M.J.; Rimm, E.B.; Hu, F.B. Non-HDL cholesterol and apolipoprotein B predict cardiovascular disease events among men with type 2 diabetes. Diabetes Care, 2004, 27(8), 1991-1997.
[http://dx.doi.org/10.2337/diacare.27.8.1991] [PMID: 15277429]
[24]
Olofsson, S.O.; Borèn, J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med., 2005, 258(5), 395-410.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01556.x] [PMID: 16238675]
[25]
Walldius, G.; Jungner, I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J. Intern. Med., 2004, 255(2), 188-205.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01276.x] [PMID: 14746556]
[26]
Contois, J.H.; McConnell, J.P.; Sethi, A.A.; Csako, G.; Devaraj, S.; Hoefner, D.M.; Warnick, G.R. AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC lipoproteins and vascular diseases division working group on best practices. Clin. Chem., 2009, 55(3), 407-419.
[http://dx.doi.org/10.1373/clinchem.2008.118356] [PMID: 19168552]
[27]
Walldius, G.; Jungner, I. The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy-a review of the evidence. J. Intern. Med., 2006, 259(5), 493-519.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01643.x] [PMID: 16629855]
[28]
Sniderman, A. Targets for LDL-lowering therapy. Curr. Opin. Lipidol., 2009, 20(4), 282-287.
[http://dx.doi.org/10.1097/MOL.0b013e32832ca1d6] [PMID: 19474729]
[29]
Barter, P.J.; Ballantyne, C.M.; Carmena, R.; Castro Cabezas, M.; Chapman, M.J.; Couture, P.; de Graaf, J.; Durrington, P.N.; Faergeman, O.; Frohlich, J.; Furberg, C.D.; Gagne, C.; Haffner, S.M.; Humphries, S.E.; Jungner, I.; Krauss, R.M.; Kwiterovich, P.; Marcovina, S.; Packard, C.J.; Pearson, T.A.; Reddy, K.S.; Rosenson, R.; Sarrafzadegan, N.; Sniderman, A.D.; Stalenhoef, A.F.; Stein, E.; Talmud, P.J.; Tonkin, A.M.; Walldius, G.; Williams, K.M. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J. Intern. Med., 2006, 259(3), 247-258.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01616.x] [PMID: 16476102]
[30]
Lau, J.F.; Smith, D.A. Advanced lipoprotein testing: recommendations based on current evidence. Endocrinol. Metab. Clin. North Am., 2009, 38(1), 1-31.
[http://dx.doi.org/10.1016/j.ecl.2008.11.008] [PMID: 19217510]
[31]
Meisinger, C.; Loewel, H.; Mraz, W.; Koenig, W. Prognostic value of apolipoprotein B and A-I in the prediction of myocardial infarction in middle-aged men and women: results from the MONICA/KORA Augsburg cohort study. Eur. Heart J., 2005, 26(3), 271-278.
[http://dx.doi.org/10.1093/eurheartj/ehi003] [PMID: 15618061]
[32]
Talmud, P.J.; Hawe, E.; Miller, G.J.; Humphries, S.E. Nonfasting apolipoprotein B and triglyceride levels as a useful predictor of coronary heart disease risk in middle-aged UK men. Arterioscler. Thromb. Vasc. Biol., 2002, 22(11), 1918-1923.
[http://dx.doi.org/10.1161/01.ATV.0000035521.22199.C7] [PMID: 12426225]
[33]
Walldius, G.; Jungner, I.; Holme, I.; Aastveit, A.H.; Kolar, W.; Steiner, E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet, 2001, 358(9298), 2026-2033.
[http://dx.doi.org/10.1016/S0140-6736(01)07098-2] [PMID: 11755609]
[34]
Moss, A.J.; Goldstein, R.E.; Marder, V.J.; Sparks, C.E.; Oakes, D.; Greenberg, H.; Weiss, H.J.; Zareba, W.; Brown, M.W.; Liang, C.S.; Lichstein, E.; Little, W.C.; Gillespie, J.A.; Van Voorhees, L.; Krone, R.J.; Bodenheimer, M.M.; Hochman, J.; Dwyer, E.M. Jr.; Arora, R.; Marcus, F.I.; Watelet, L.F.; Case, R.B. Thrombogenic factors and recurrent coronary events. Circulation, 1999, 99(19), 2517-2522.
[http://dx.doi.org/10.1161/01.CIR.99.19.2517] [PMID: 10330382]
[35]
Chan, D.C.; Watts, G.F. Apolipoproteins as markers and managers of coronary risk. QJM, 2006, 99(5), 277-287.
[http://dx.doi.org/10.1093/qjmed/hcl027] [PMID: 16504986]
[36]
Rosenson, R.S. Management of non-high-density lipoprotein abnormalities. Atherosclerosis, 2009, 207(2), 328-335.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.05.020] [PMID: 19545870]
[37]
Miller, M.; Ginsberg, H.N.; Schaefer, E.J. Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease. Am. J. Cardiol., 2008, 101(7), 1003-1008.
[http://dx.doi.org/10.1016/j.amjcard.2007.11.046] [PMID: 18359322]
[38]
Lim, Y.; Yoo, S.; Lee, S.A.; Chin, S.O.; Heo, D.; Moon, J.C.; Moon, S.; Boo, K.; Kim, S.T.; Seo, H.M.; Jwa, H.; Koh, G. Apolipoprotein B is related to metabolic syndrome independently of low density lipoprotein cholesterol in patients with type 2 diabetes. Endocrinol. Metab. (Seoul), 2015, 30(2), 208-215.
[http://dx.doi.org/10.3803/EnM.2015.30.2.208] [PMID: 26194080]
[39]
Williams, K.; Sniderman, A.D.; Sattar, N.; D’Agostino, R., Jr; Wagenknecht, L.E.; Haffner, S.M. Comparison of the associations of apolipoprotein B and low-density lipoprotein cholesterol with other cardiovascular risk factors in the insulin resistance atherosclerosis study (IRAS). Circulation, 2003, 108(19), 2312-2316.
[http://dx.doi.org/10.1161/01.CIR.0000097113.11419.9E] [PMID: 14581403]
[40]
Chi, X.X.; Zhang, T.; Zhang, D.J.; Yu, W.; Wang, Q.Y.; Zhen, J.L. Effects of isoflavones on lipid and apolipoprotein levels in patients with type 2 diabetes in Heilongjiang Province in China. J. Clin. Biochem. Nutr., 2016, 59(2), 134-138.
[http://dx.doi.org/10.3164/jcbn.15-147] [PMID: 27698541]
[41]
Ellsworth, D.L.; Costantino, N.S.; Blackburn, H.L.; Engler, R.J.; Kashani, M.; Vernalis, M.N. Lifestyle modification interventions differing in intensity and dietary stringency improve insulin resistance through changes in lipoprotein profiles. Obes. Sci. Pract., 2016, 2(3), 282-292.
[http://dx.doi.org/10.1002/osp4.54] [PMID: 27708845]
[42]
Kotani, K.; Koibuchi, H.; Yamada, T.; Taniguchi, N. The effects of lifestyle modification on a new oxidized low-density lipoprotein marker, serum amyloid A-LDL, in subjects with primary lipid disorder. Clin. Chim. Acta, 2009, 409(1-2), 67-69.
[http://dx.doi.org/10.1016/j.cca.2009.08.019]] [PMID: 19723514]
[43]
Chiuve, S.E.; Cook, N.R.; Shay, C.M.; Rexrode, K.M.; Albert, C.M.; Manson, J.E.; Willett, W.C.; Rimm, E.B. Lifestyle-based prediction model for the prevention of CVD: the healthy heart score. J. Am. Heart Assoc., 2014, 3(6)e000954
[http://dx.doi.org/10.1161/JAHA.114.000954] [PMID: 25398889]
[44]
Mannu, G.S.; Zaman, M.J.; Gupta, A.; Rehman, H.U.; Myint, P.K. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr. Cardiol. Rev., 2013, 9(1), 2-14.
[http://dx.doi.org/10.2174/157340313805076313] [PMID: 22998604]
[45]
Alissa, E.M.; Ferns, G.A. Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. J. Nutr. Metab., 2012, 2012569486
[http://dx.doi.org/10.1155/2012/569486] [PMID: 22570771]
[46]
Ramaa, C.S.; Shirode, A.R.; Mundada, A.S.; Kadam, V.J. Nutraceuticals-an emerging era in the treatment and prevention of cardiovascular diseases. Curr. Pharm. Biotechnol., 2006, 7(1), 15-23.
[http://dx.doi.org/10.2174/138920106775789647] [PMID: 16472130]
[47]
Zuchi, C.; Ambrosio, G.; Lüscher, T.F.; Landmesser, U. Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function. Cardiovasc. Ther., 2010, 28(4), 187-201.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00165.x] [PMID: 20553294]
[48]
Badimon, L.; Vilahur, G.; Padro, T. Nutraceuticals and atherosclerosis: human trials. Cardiovasc. Ther., 2010, 28(4), 202-215.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00189.x] [PMID: 20633023]
[49]
McCarty, M.F. Nutraceutical resources for diabetes prevention-an update. Med. Hypotheses, 2005, 64(1), 151-158.
[http://dx.doi.org/10.1016/j.mehy.2004.03.036] [PMID: 15533633]
[50]
Davì, G.; Santilli, F.; Patrono, C. Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc. Ther., 2010, 28(4), 216-226.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00179.x] [PMID: 20633024]
[51]
Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J. Diabetes Metab. Disord., 2013, 12(1), 43.
[http://dx.doi.org/10.1186/2251-6581-12-43] [PMID: 23938049]
[52]
Houston, M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J. Cardiol., 2014, 6(2), 38-66.
[http://dx.doi.org/10.4330/wjc.v6.i2.38] [PMID: 24575172]
[53]
Houston, M.C. Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog. Cardiovasc. Dis., 2005, 47(6), 396-449.
[http://dx.doi.org/10.1016/j.pcad.2005.01.004] [PMID: 16115519]
[54]
Houston, M.C. Nutrition and nutraceutical supplements in the treatment of hypertension. Expert Rev. Cardiovasc. Ther., 2010, 8(6), 821-833.
[http://dx.doi.org/10.1586/erc.10.63] [PMID: 20528640]
[55]
Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; Lip, G.Y.; Graham, I.; Wong, N.; Rysz, J.; Banach, M. Lipid and blood pressure meta‐analysis collaboration (LBPMC) group. Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc., 2016, 5(7)e002713
[http://dx.doi.org/10.1161/JAHA.115.002713] [PMID: 27405810]
[56]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: a clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[57]
Izzo, R.; de Simone, G.; Giudice, R.; Chinali, M.; Trimarco, V.; De Luca, N.; Trimarco, B. Effects of nutraceuticals on prevalence of metabolic syndrome and on calculated dyslipidemia. J. Hypertens., 2010, 28(7), 1482-1487.
[http://dx.doi.org/10.1097/HJH.0b013e3283395208] [PMID: 20498621]
[58]
Houston, M. The role of nutraceutical supplements in the treatment of dyslipidemia. J. Clin. Hypertens. (Greenwich), 2012, 14(2), 121-132.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00576.x] [PMID: 22277145]
[59]
Sirtori, C.R.; Galli, C.; Anderson, J.W.; Arnoldi, A. Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis, 2009, 203(1), 8-17.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.019] [PMID: 18687434]
[60]
Mannarino, M.R.; Ministrini, S.; Pirro, M. Nutraceuticals for the treatment of hypercholesterolemia. Eur. J. Intern. Med., 2014, 25(7), 592-599.
[http://dx.doi.org/10.1016/j.ejim.2014.06.008] [PMID: 24997485]
[61]
Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S. Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[http://dx.doi.org/10.1016/j.jff.2013.12.006]
[62]
Imai, S. Soybean and processed soy foods ingredients, and their role in cardiometabolic risk prevention. Recent Pat. Food Nutr. Agric., 2015, 7(2), 75-82.
[http://dx.doi.org/10.2174/2212798407666150629123839] [PMID: 26118770]
[63]
Yang, H-Y.; Tzeng, Y-H.; Chai, C-Y.; Hsieh, A-T.; Chen, J-R.; Chang, L-S.; Yang, S.S. Soy protein retards the progression of non-alcoholic steatohepatitis via improvement of insulin resistance and steatosis. Nutrition, 2011, 27(9), 943-948.
[http://dx.doi.org/10.1016/j.nut.2010.09.004] [PMID: 21333494]
[64]
Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem., 2001, 49(3), 1069-1086.
[http://dx.doi.org/10.1021/jf0009246] [PMID: 11312815]
[65]
Li, S.S.; Blanco Mejia, S.; Lytvyn, L.; Stewart, S.E.; Viguiliouk, E.; Ha, V.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc., 2017, 6(12)e006659
[http://dx.doi.org/10.1161/JAHA.117.006659] [PMID: 29263032]
[66]
Kim, M.; Kim, M.; Lee, A.; Yoo, H.J.; Her, J.S.; Jee, S.H.; Lee, J.H. Impact of 8-week linoleic acid intake in soy oil on Lp-PLA2 activity in healthy adults. Nutr. Metab. (Lond.), 2017, 14, 32.
[http://dx.doi.org/10.1186/s12986-017-0186-2] [PMID: 28503188]
[67]
Kwak, J.H.; Ahn, C.W.; Park, S.H.; Jung, S.U.; Min, B.J.; Kim, O.Y.; Lee, J.H. Weight reduction effects of a black soy peptide supplement in overweight and obese subjects: double blind, randomized, controlled study. Food Funct., 2012, 3(10), 1019-1024.
[http://dx.doi.org/10.1039/c2fo10244g] [PMID: 22739624]
[68]
Ruscica, M.; Pavanello, C.; Gandini, S.; Gomaraschi, M.; Vitali, C.; Macchi, C.; Morlotti, B.; Aiello, G.; Bosisio, R.; Calabresi, L.; Arnoldi, A.; Sirtori, C.R.; Magni, P. Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur. J. Nutr., 2018, 57(2), 499-511.
[http://dx.doi.org/10.1007/s00394-016-1333-7] [PMID: 27757595]
[69]
Maki, K.C.; Butteiger, D.N.; Rains, T.M.; Lawless, A.; Reeves, M.S.; Schasteen, C.; Krul, E.S. Effects of soy protein on lipoprotein lipids and fecal bile acid excretion in men and women with moderate hypercholesterolemia. J. Clin. Lipidol., 2010, 4(6), 531-542.
[http://dx.doi.org/10.1016/j.jacl.2010.09.001] [PMID: 21122701]
[70]
Tabibi, H.; Imani, H.; Hedayati, M.; Atabak, S.; Rahmani, L. Effects of soy consumption on serum lipids and apoproteins in peritoneal dialysis patients: a randomized controlled trial. Perit. Dial. Int., 2010, 30(6), 611-618.
[http://dx.doi.org/10.3747/pdi.2009.00161]] [PMID: 20378840]
[71]
Zung, A.; Shachar, S.; Zadik, Z.; Kerem, Z. Soy-derived isoflavones treatment in children with hypercholesterolemia: a pilot study. J. Pediatr. Endocrinol. Metab., 2010, 23(1-2), 133-141.
[http://dx.doi.org/10.1515/JPEM.2010.23.1-2.133] [PMID: 20432816]
[72]
Campbell, S.C.; Khalil, D.A.; Payton, M.E.; Arjmandi, B.H. One-year soy protein supplementation does not improve lipid profile in postmenopausal women. Menopause, 2010, 17(3), 587-593.
[http://dx.doi.org/10.1097/gme.0b013e3181cb85d3] [PMID: 20215976]
[73]
Pipe, E.A.; Gobert, C.P.; Capes, S.E.; Darlington, G.A.; Lampe, J.W.; Duncan, A.M. Soy protein reduces serum LDL cholesterol and the LDL cholesterol: HDL cholesterol and apolipoprotein B: apolipoprotein A-I ratios in adults with type 2 diabetes. J. Nutr., 2009, 139(9), 1700-1706.
[http://dx.doi.org/10.3945/jn.109.109595] [PMID: 19605528]
[74]
Welty, F.K.; Lee, K.S.; Lew, N.S.; Zhou, J.R. Effect of soy nuts on blood pressure and lipid levels in hypertensive, prehypertensive, and normotensive postmenopausal women. Arch. Intern. Med., 2007, 167(10), 1060-1067.
[http://dx.doi.org/10.1001/archinte.167.10.1060] [PMID: 17533209]
[75]
Lerman, R.H.; Minich, D.M.; Darland, G.; Lamb, J.J.; Chang, J.L.; Hsi, A.; Bland, J.S.; Tripp, M.L. Subjects with elevated LDL cholesterol and metabolic syndrome benefit from supplementation with soy protein, phytosterols, hops rho iso-alpha acids, and Acacia nilotica proanthocyanidins. J. Clin. Lipidol., 2010, 4(1), 59-68.
[http://dx.doi.org/10.1016/j.jacl.2009.11.002] [PMID: 21122628]
[76]
Matthan, N.R.; Jalbert, S.M.; Ausman, L.M.; Kuvin, J.T.; Karas, R.H.; Lichtenstein, A.H. Effect of soy protein from differently processed products on cardiovascular disease risk factors and vascular endothelial function in hypercholesterolemic subjects. Am. J. Clin. Nutr., 2007, 85(4), 960-966.
[http://dx.doi.org/10.1093/ajcn/85.4.960] [PMID: 17413093]
[77]
McVeigh, B.L.; Dillingham, B.L.; Lampe, J.W.; Duncan, A.M. Effect of soy protein varying in isoflavone content on serum lipids in healthy young men. Am. J. Clin. Nutr., 2006, 83(2), 244-251.
[http://dx.doi.org/10.1093/ajcn/83.2.244] [PMID: 16469981]
[78]
Høie, L.H.; Graubaum, H.J.; Harde, A.; Gruenwald, J.; Wernecke, K.D. Lipid-lowering effect of 2 dosages of a soy protein supplement in hypercholesterolemia. Adv. Ther., 2005, 22(2), 175-186.
[http://dx.doi.org/10.1007/BF02849888] [PMID: 16020407]
[79]
Høie, L.H.; Morgenstern, E.C.; Gruenwald, J.; Graubaum, H.J.; Busch, R.; Lüder, W.; Zunft, H.J. A double-blind placebo-controlled clinical trial compares the cholesterol-lowering effects of two different soy protein preparations in hypercholesterolemic subjects. Eur. J. Nutr., 2005, 44(2), 65-71.
[http://dx.doi.org/10.1007/s00394-004-0492-0] [PMID: 15309422]
[80]
Jenkins, D.J.; Kendall, C.W.; Jackson, C.J.; Connelly, P.W.; Parker, T.; Faulkner, D.; Vidgen, E.; Cunnane, S.C.; Leiter, L.A.; Josse, R.G. Effects of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure in hyperlipidemic men and women. Am. J. Clin. Nutr., 2002, 76(2), 365-372.
[http://dx.doi.org/10.1093/ajcn/76.2.365] [PMID: 12145008]
[81]
Yildirir, A.; Tokgozoglu, S.L.; Oduncu, T.; Oto, A.; Haznedaroglu, I.; Akinci, D.; Koksal, G.; Sade, E.; Kirazli, S.; Kes, S. Soy protein diet significantly improves endothelial function and lipid parameters. Clin. Cardiol., 2001, 24(11), 711-716.
[http://dx.doi.org/10.1002/clc.4960241105] [PMID: 11714128]
[82]
Hermansen, K.; Søndergaard, M.; Høie, L.; Carstensen, M.; Brock, B. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care, 2001, 24(2), 228-233.
[http://dx.doi.org/10.2337/diacare.24.2.228] [PMID: 11213870]
[83]
Wangen, K.E.; Duncan, A.M.; Xu, X.; Kurzer, M.S. Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr., 2001, 73(2), 225-231.
[http://dx.doi.org/10.1093/ajcn/73.2.225] [PMID: 11157317]
[84]
Merz-Demlow, B.E.; Duncan, A.M.; Wangen, K.E.; Xu, X.; Carr, T.P.; Phipps, W.R.; Kurzer, M.S. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am. J. Clin. Nutr., 2000, 71(6), 1462-1469.
[http://dx.doi.org/10.1093/ajcn/71.6.1462] [PMID: 10837286]
[85]
Teixeira, S.R.; Potter, S.M.; Weigel, R.; Hannum, S.; Erdman, J.W. Jr.; Hasler, C.M. Effects of feeding 4 levels of soy protein for 3 and 6 wk on blood lipids and apolipoproteins in moderately hypercholesterolemic men. Am. J. Clin. Nutr., 2000, 71(5), 1077-1084.
[http://dx.doi.org/10.1093/ajcn/71.5.1077] [PMID: 10799368]
[86]
Mochizuki, Y.; Maebuchi, M.; Kohno, M.; Hirotsuka, M.; Wadahama, H.; Moriyama, T.; Kawada, T.; Urade, R. Changes in lipid metabolism by soy beta-conglycinin-derived peptides in HepG2 cells. J. Agric. Food Chem., 2009, 57(4), 1473-1480.
[http://dx.doi.org/10.1021/jf8031793] [PMID: 19182913]
[87]
Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am. J. Clin. Nutr., 2010, 92(5), 1189-1196.
[http://dx.doi.org/10.3945/ajcn.2010.29673] [PMID: 20810976]
[88]
Priore, P.; Cavallo, A.; Gnoni, A.; Damiano, F.; Gnoni, G.V.; Siculella, L. Modulation of hepatic lipid metabolism by olive oil and its phenols in nonalcoholic fatty liver disease. IUBMB Life, 2015, 67(1), 9-17.
[http://dx.doi.org/10.1002/iub.1340] [PMID: 25631376]
[89]
Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J. Evidence of health benefits of canola oil. Nutr. Rev., 2013, 71(6), 370-385.
[http://dx.doi.org/10.1111/nure.12033] [PMID: 23731447]
[90]
Kruse, M.; von Loeffelholz, C.; Hoffmann, D.; Pohlmann, A.; Seltmann, A.C.; Osterhoff, M.; Hornemann, S.; Pivovarova, O.; Rohn, S.; Jahreis, G.; Pfeiffer, A.F. Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol. Nutr. Food Res., 2015, 59(3), 507-519.
[http://dx.doi.org/10.1002/mnfr.201400446] [PMID: 25403327]
[91]
Maki, K.C.; Lawless, A.L.; Kelley, K.M.; Kaden, V.N.; Geiger, C.J.; Palacios, O.M.; Dicklin, M.R. Corn oil intake favorably impacts lipoprotein cholesterol, apolipoprotein and lipoprotein particle levels compared with extra-virgin olive oil. Eur. J. Clin. Nutr., 2017, 71(1), 33-38.
[http://dx.doi.org/10.1038/ejcn.2016.169] [PMID: 27677368]
[92]
Hernáez, Á.; Remaley, A.T.; Farràs, M.; Fernández-Castillejo, S.; Subirana, I.; Schröder, H.; Fernández-Mampel, M.; Muñoz-Aguayo, D.; Sampson, M.; Solà, R.; Farré, M.; de la Torre, R.; López-Sabater, M.C.; Nyyssönen, K.; Zunft, H.J.; Covas, M.I.; Fitó, M. Olive oil polyphenols decrease LDL concentrations and LDL atherogenicity in men in a randomized controlled trial. J. Nutr., 2015, 145(8), 1692-1697.
[http://dx.doi.org/10.3945/jn.115.211557] [PMID: 26136585]
[93]
Solá, R.; Fitó, M.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; de La Torre, R.; Muñoz, M.A. López-Sabater, Mdel.C.; Martínez-González, M.A.; Arós, F.; Ruiz-Gutierrez, V.; Fiol, M.; Casals, E.; Wärnberg, J.; Buil-Cosiales, P.; Ros, E.; Konstantinidou, V.; Lapetra, J.; Serra-Majem, L.; Covas, M.I. Effect of a traditional Mediterranean diet on apolipoproteins B, A-I, and their ratio: a randomized, controlled trial. Atherosclerosis, 2011, 218(1), 174-180.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.026] [PMID: 21640348]
[94]
Bowen, K.J.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Jenkins, D.J.A.; Taylor, C.G.; Zahradka, P.; Hammad, S.S.; Sihag, J.; Chen, X.; Guay, V.; Maltais-Giguère, J.; Perera, D.; Wilson, A.; Juan, S.C.S.; Rempel, J.; Jones, P.J.H. Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity. J. Nutr., 2019, 149(3), 471-478.
[http://dx.doi.org/10.1093/jn/nxy307] [PMID: 30773586]
[95]
Violante, B.; Gerbaudo, L.; Borretta, G.; Tassone, F. Effects of extra virgin olive oil supplementation at two different low doses on lipid profile in mild hypercholesterolemic subjects: a randomised clinical trial. J. Endocrinol. Invest., 2009, 32(10), 794-796.
[http://dx.doi.org/10.1007/BF03345747] [PMID: 19465798]
[96]
Sun, G.; Xia, H.; Yang, Y.; Ma, S.; Zhou, H.; Shu, G.; Wang, S.; Yang, X.; Tang, H.; Wang, F.; He, Y.; Ding, R.; Yin, H.; Wang, Y.; Yang, Y.; Zhu, H.; Yang, L. Effects of palm olein and olive oil on serum lipids in a Chinese population: a randomized, double-blind, cross-over trial. Asia Pac. J. Clin. Nutr., 2018, 27(3), 572-580.
[http://dx.doi.org/10.6133/apjcn.032017.12] [PMID: 29737804]
[97]
Pedersen, A.; Baumstark, M.W.; Marckmann, P.; Gylling, H.; Sandström, B. An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets. J. Lipid Res., 2000, 41(12), 1901-1911.
[PMID: 11108723]
[98]
Ghobadi, S.; Hassanzadeh-Rostami, Z.; Mohammadian, F.; Zare, M.; Faghih, S. Effects of canola oil consumption on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials. J. Am. Coll. Nutr., 2019, 38(2), 185-196.
[http://dx.doi.org/10.1080/07315724.2018.1475270] [PMID: 30381009]
[99]
Iggman, D.; Gustafsson, I.B.; Berglund, L.; Vessby, B.; Marckmann, P.; Risérus, U. Replacing dairy fat with rapeseed oil causes rapid improvement of hyperlipidaemia: a randomized controlled study. J. Intern. Med., 2011, 270(4), 356-364.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02383.x] [PMID: 21466598]
[100]
Vega-López, S.; Ausman, L.M.; Jalbert, S.M.; Erkkilä, A.T.; Lichtenstein, A.H. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am. J. Clin. Nutr., 2006, 84(1), 54-62.
[http://dx.doi.org/10.1093/ajcn/84.1.54] [PMID: 16825681]
[101]
Vega-López, S.; Matthan, N.R.; Ausman, L.M.; Ai, M.; Otokozawa, S.; Schaefer, E.J.; Lichtenstein, A.H. Substitution of vegetable oil for a partially-hydrogenated fat favorably alters cardiovascular disease risk factors in moderately hypercholesterolemic postmenopausal women. Atherosclerosis, 2009, 207(1), 208-212.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.03.039] [PMID: 19423109]
[102]
Lemcke-Norojärvi, M.; Kamal-Eldin, A.; Appelqvist, L.A.; Dimberg, L.H.; Ohrvall, M.; Vessby, B. Corn and sesame oils increase serum gamma-tocopherol concentrations in healthy Swedish women. J. Nutr., 2001, 131(4), 1195-1201.
[http://dx.doi.org/10.1093/jn/131.4.1195] [PMID: 11285325]
[103]
Gobbo, L.C.D.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr., 2015, 102(6), 1347-1356.
[http://dx.doi.org/10.3945/ajcn.115.110965] [PMID: 26561616]
[104]
Wu, L.; Piotrowski, K.; Rau, T.; Waldmann, E.; Broedl, U.C.; Demmelmair, H.; Koletzko, B.; Stark, R.G.; Nagel, J.M.; Mantzoros, C.S.; Parhofer, K.G. Walnut-enriched diet reduces fasting non-HDL-cholesterol and apolipoprotein B in healthy Caucasian subjects: a randomized controlled cross-over clinical trial. Metabolism, 2014, 63(3), 382-391.
[http://dx.doi.org/10.1016/j.metabol.2013.11.005] [PMID: 24360749]
[105]
Iwamoto, M.; Imaizumi, K.; Sato, M.; Hirooka, Y.; Sakai, K.; Takeshita, A.; Kono, M. Serum lipid profiles in Japanese women and men during consumption of walnuts. Eur. J. Clin. Nutr., 2002, 56(7), 629-637.
[http://dx.doi.org/10.1038/sj.ejcn.1601400] [PMID: 12080402]
[106]
Muñoz, S.; Merlos, M.; Zambón, D.; Rodríguez, C.; Sabaté, J.; Ros, E.; Laguna, J.C. Walnut-enriched diet increases the association of LDL from hypercholesterolemic men with human HepG2 cells. J. Lipid Res., 2001, 42(12), 2069-2076.
[PMID: 11734580]
[107]
Chisholm, A.; Mann, J.; Skeaff, M.; Frampton, C.; Sutherland, W.; Duncan, A.; Tiszavari, S. A diet rich in walnuts favourably influences plasma fatty acid profile in moderately hyperlipidaemic subjects. Eur. J. Clin. Nutr., 1998, 52(1), 12-16.
[http://dx.doi.org/10.1038/sj.ejcn.1600507] [PMID: 9481526]
[108]
Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet reduces lipids in healthy Caucasian subjects, independent of recommended macronutrient replacement and time point of consumption: a prospective, randomized, controlled trial. Nutrients, 2017, 9(10), 1097.
[http://dx.doi.org/10.3390/nu9101097] [PMID: 28984822]
[109]
Carvalho, R.F.; Huguenin, G.V.; Luiz, R.R.; Moreira, A.S.; Oliveira, G.M.; Rosa, G. Intake of partially defatted Brazil nut flour reduces serum cholesterol in hypercholesterolemic patients-a randomized controlled trial. Nutr. J., 2015, 14(1), 59.
[http://dx.doi.org/10.1186/s12937-015-0036-x] [PMID: 26077768]
[110]
Tey, S.L.; Brown, R.C.; Chisholm, A.W.; Delahunty, C.M.; Gray, A.R.; Williams, S.M. Effects of different forms of hazelnuts on blood lipids and α-tocopherol concentrations in mildly hypercholesterolemic individuals. Eur. J. Clin. Nutr., 2011, 65(1), 117-124.
[http://dx.doi.org/10.1038/ejcn.2010.200] [PMID: 20877394]
[111]
Gebauer, S.K.; West, S.G.; Kay, C.D.; Alaupovic, P.; Bagshaw, D.; Kris-Etherton, P.M. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: a dose-response study. Am. J. Clin. Nutr., 2008, 88(3), 651-659.
[http://dx.doi.org/10.1093/ajcn/88.3.651] [PMID: 18779280]
[112]
Sheridan, M.J.; Cooper, J.N.; Erario, M.; Cheifetz, C.E. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr., 2007, 26(2), 141-148.
[http://dx.doi.org/10.1080/07315724.2007.10719595] [PMID: 17536125]
[113]
Li, S.C.; Liu, Y.H.; Liu, J.F.; Chang, W.H.; Chen, C.M.; Chen, C.Y. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism, 2011, 60(4), 474-479.
[http://dx.doi.org/10.1016/j.metabol.2010.04.009] [PMID: 20580779]
[114]
Sabaté, J.; Haddad, E.; Tanzman, J.S.; Jambazian, P.; Rajaram, S. Serum lipid response to the graduated enrichment of a step I diet with almonds: a randomized feeding trial. Am. J. Clin. Nutr., 2003, 77(6), 1379-1384.
[http://dx.doi.org/10.1093/ajcn/77.6.1379] [PMID: 12791613]
[115]
Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 2012, 61(8), 1058-1066.
[http://dx.doi.org/10.1016/j.metabol.2012.01.017] [PMID: 22401879]
[116]
Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int. J. Biol. Macromol., 2013, 61, 1-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.044] [PMID: 23831534]
[117]
Anderson, J.W.; Baird, P.; Davis, R.H. Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Hea-lth benefits of dietary fiber. Nutr. Rev., 2009, 67(4), 188-205.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00189.x] [PMID: 19335713]
[118]
Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am. J. Clin. Nutr., 2017, 105(5), 1239-1247.
[http://dx.doi.org/10.3945/ajcn.116.142158] [PMID: 28356275]
[119]
Ho, H.V.; Sievenpiper, J.L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A.L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reduc-tioni-iv. Eur. J. Clin. Nutr., 2016, 70(11), 1239-1245.
[http://dx.doi.org/10.1038/ejcn.2016.89] [PMID: 27273067]
[120]
Comerford, K.B.; Artiss, J.D.; Jen, K.L.; Karakas, S.E. The beneficial effects of α-cyclodextrin on blood lipids and weight loss in healthy humans. Obesity (Silver Spring), 2011, 19(6), 1200-1204.
[http://dx.doi.org/10.1038/oby.2010.280] [PMID: 21127475]
[121]
Ganji, V.; Kuo, J. Serum lipid responses to psyllium fiber: differences between pre- and post-menopausal, hypercholesterolemic women. Nutr. J., 2008, 7, 22.
[http://dx.doi.org/10.1186/1475-2891-7-22] [PMID: 18727833]
[122]
Cho, S.H.; Kim, T.H.; Lee, N.H.; Son, H.S.; Cho, I.J.; Ha, T.Y. Effects of Cassia tora fiber supplement on serum lipids in Korean diabetic patients. J. Med. Food, 2005, 8(3), 311-318.
[http://dx.doi.org/10.1089/jmf.2005.8.311] [PMID: 16176140]
[123]
Söderholm, P.P.; Alfthan, G.; Koskela, A.H.; Adlercreutz, H.; Tikkanen, M.J. The effect of high-fiber rye bread enriched with nonesterified plant sterols on major serum lipids and apolipoproteins in normocholesterolemic individuals. Nutr. Metab. Cardiovasc. Dis., 2012, 22(7), 575-582.
[http://dx.doi.org/10.1016/j.numecd.2010.09.011] [PMID: 21215605]
[124]
Garcia, A.L.; Steiniger, J.; Reich, S.C.; Weickert, M.O.; Harsch, I.; Machowetz, A.; Mohlig, M.; Spranger, J.; Rudovich, N.N.; Meuser, F.; Doerfer, J.; Katz, N.; Speth, M.; Zunft, H.J.; Pfeiffer, A.H.; Koebnick, C. Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance. Horm. Metab. Res., 2006, 38(11), 761-766.
[http://dx.doi.org/10.1055/s-2006-955089]] [PMID: 17111305]
[125]
Moreyra, A.E.; Wilson, A.C.; Koraym, A. Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch. Intern. Med., 2005, 165(10), 1161-1166.
[http://dx.doi.org/10.1001/archinte.165.10.1161] [PMID: 15911730]
[126]
Marett, R.; Slavin, J.L. No long-term benefits of supplementation with arabinogalactan on serum lipids and glucose. J. Am. Diet. Assoc., 2004, 104(4), 636-639.
[http://dx.doi.org/10.1016/j.jada.2004.01.017] [PMID: 15054349]
[127]
Jenkins, D.J.; Kendall, C.W.; Vuksan, V.; Vidgen, E.; Parker, T.; Faulkner, D.; Mehling, C.C.; Garsetti, M.; Testolin, G.; Cunnane, S.C.; Ryan, M.A.; Corey, P.N. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am. J. Clin. Nutr., 2002, 75(5), 834-839.
[http://dx.doi.org/10.1093/ajcn/75.5.834] [PMID: 11976156]
[128]
Solà, R.; Valls, R.M.; Godàs, G.; Perez-Busquets, G.; Ribalta, J.; Girona, J.; Heras, M.; Cabré, A.; Castro, A.; Domenech, G.; Torres, F.; Masana, L.; Anglés, N.; Reguant, J.; Ramírez, B.; Barriach, J.M. Cocoa, hazelnuts, sterols and soluble fiber cream reduces lipids and inflammation biomarkers in hypertensive patients: a randomized controlled trial. PLoS One, 2012, 7(2)e31103
[http://dx.doi.org/10.1371/journal.pone.0031103] [PMID: 22383996]
[129]
Shakibaei, M.; Harikumar, K.B.; Aggarwal, B.B. Resveratrol addiction: to die or not to die. Mol. Nutr. Food Res., 2009, 53(1), 115-128.
[http://dx.doi.org/10.1002/mnfr.200800148] [PMID: 19072742]
[130]
Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front. Biosci., 2007, 12(12), 4839-4854.
[http://dx.doi.org/10.2741/2432] [PMID: 17569614]
[131]
Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res., 2008, 658(1-2), 68-94.
[http://dx.doi.org/10.1016/j.mrrev.2007.08.004] [PMID: 17890139]
[132]
Mansur, A.P.; Roggerio, A.; Goes, M.F.S.; Avakian, S.D.; Leal, D.P.; Maranhão, R.C.; Strunz, C.M.C. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: a randomized trial. Int. J. Cardiol., 2017, 227, 788-794.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.058] [PMID: 28029409]
[133]
Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; García-Almagro, F.J.; Avilés-Plaza, F.; Parra, S.; Yáñez-Gascón, M.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res., 2012, 56(5), 810-821.
[http://dx.doi.org/10.1002/mnfr.201100673] [PMID: 22648627]
[134]
Zern, T.L.; Wood, R.J.; Greene, C.; West, K.L.; Liu, Y.; Aggarwal, D.; Shachter, N.S.; Fernandez, M.L. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr., 2005, 135(8), 1911-1917.
[http://dx.doi.org/10.1093/jn/135.8.1911] [PMID: 16046716]
[135]
Dash, S.; Xiao, C.; Morgantini, C.; Szeto, L.; Lewis, G.F. High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2895-2901.
[http://dx.doi.org/10.1161/ATVBAHA.113.302342] [PMID: 24072699]
[136]
Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 279-289.
[http://dx.doi.org/10.1024/0300-9831/a000528] [PMID: 30789808]
[137]
van der Made, S.M.; Plat, J.; Mensink, R.P. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: a randomized, placebo-controlled crossover trial. PLoS One, 2015, 10(3)e0118393
[http://dx.doi.org/10.1371/journal.pone.0118393] [PMID: 25790328]
[138]
Cho, I.J.; Ahn, J.Y.; Kim, S.; Choi, M.S.; Ha, T.Y. Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochem. Biophys. Res. Commun., 2008, 367(1), 190-194.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.140] [PMID: 18166149]
[139]
Jeon, S.M.; Lee, S.A.; Choi, M.S. Antiobesity and vasoprotective effects of resveratrol in apoE-deficient mice. J. Med. Food, 2014, 17(3), 310-316.
[http://dx.doi.org/10.1089/jmf.2013.2885] [PMID: 24433070]
[140]
Auger, C.; Teissedre, P.L.; Gérain, P.; Lequeux, N.; Bornet, A.; Serisier, S.; Besançon, P.; Caporiccio, B.; Cristol, J.P.; Rouanet, J.M. Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. J. Agric. Food Chem., 2005, 53(6), 2015-2021.
[http://dx.doi.org/10.1021/jf048177q] [PMID: 15769129]
[141]
Do, G.M.; Jung, U.J.; Park, H.J.; Kwon, E.Y.; Jeon, S.M.; McGregor, R.A.; Choi, M.S. Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. Mol. Nutr. Food Res., 2012, 56(8), 1282-1291.
[http://dx.doi.org/10.1002/mnfr.201200067] [PMID: 22715031]
[142]
Pal, S.; Ho, N.; Santos, C.; Dubois, P.; Mamo, J.; Croft, K.; Allister, E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J. Nutr., 2003, 133(3), 700-706.
[http://dx.doi.org/10.1093/jn/133.3.700] [PMID: 12612140]
[143]
Martin, R.C.; Aiyer, H.S.; Malik, D.; Li, Y. Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs. curcumin: similar root but different effects. Food Chem. Toxicol., 2012, 50(2), 227-231.
[http://dx.doi.org/10.1016/j.fct.2011.10.070] [PMID: 22079310]
[144]
Lee, H-Y.; Kim, S-W.; Lee, G-H.; Choi, M-K.; Chung, H-W.; Lee, Y-C.; Kim, H.R.; Kwon, H.J.; Chae, H.J. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci. Rep., 2017, 7(1), 6513.
[http://dx.doi.org/10.1038/s41598-017-06872-y] [PMID: 28747775]
[145]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[146]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[147]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: the role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[148]
Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156104765
[http://dx.doi.org/10.1016/j.phrs.2020.104765]] [PMID: 32217147]
[149]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[150]
Shakeri, A.; Cicero, A.F.G.; Panahi, Y.; Mohajeri, M.; Sahebkar, A. Curcumin: a naturally occurring autophagy modulator. J. Cell. Physiol., 2019, 234(5), 5643-5654.
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
[151]
Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415.
[http://dx.doi.org/10.1097/cej.0b013e32832c389e]] [PMID: 19531956]
[152]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. [review Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054]] [PMID: 29480523 ]
[153]
Hassanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: an inflammasome silencer. Pharmacol. Res., 2020, 159104921
[http://dx.doi.org/10.1016/j.phrs.2020.104921]] [PMID: 32464325 ]
[154]
Shin, S.K.; Ha, T.Y.; McGregor, R.A.; Choi, M.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol. Nutr. Food Res., 2011, 55(12), 1829-1840.
[http://dx.doi.org/10.1002/mnfr.201100440] [PMID: 22058071]
[155]
Zhou, M.; Fan, C.; Tian, N. Effects of curcumin on the gene expression profile of L-02 cells. Biomed. Rep., 2015, 3(4), 519-526.
[http://dx.doi.org/10.3892/br.2015.460] [PMID: 26171159]
[156]
Tian, N.; Li, X.; Luo, Y.; Han, Z.; Li, Z.; Fan, C. Curcumin regulates the metabolism of low density lipoproteins by improving the C-to-U RNA editing efficiency of apolipoprotein B in primary rat hepatocytes. Mol. Med. Rep., 2014, 9(1), 132-136.
[http://dx.doi.org/10.3892/mmr.2013.1754] [PMID: 24173373]
[157]
Cunningham, R.P.; Moore, M.P.; Moore, A.N.; Healy, J.C.; Roberts, M.D.; Rector, R.S.; Martin, J.S. Curcumin supplementation mitigates NASH development and progression in female Wistar rats. Physiol. Rep., 2018, 6(14)e13789
[http://dx.doi.org/10.14814/phy2.13789] [PMID: 30009570]
[158]
Jang, E-M.; Choi, M-S.; Jung, U.J.; Kim, M-J.; Kim, H-J.; Jeon, S-M.; Shin, S.K.; Seong, C.N.; Lee, M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism, 2008, 57(11), 1576-1583.
[http://dx.doi.org/10.1016/j.metabol.2008.06.014] [PMID: 18940397]
[159]
Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: an ancient medicine & modern functional food. J. Food Sci. Technol., 2014, 51(9), 1633-1653.
[http://dx.doi.org/10.1007/s13197-013-1247-9] [PMID: 25190822]
[160]
Brant, L.H.C.; Cardozo, L.F.; Velarde, L.G.; Boaventura, G.T. Impact of flaxseed intake upon metabolic syndrome indicators in female Wistar rats. Acta Cir. Bras., 2012, 27(8), 537-543.
[http://dx.doi.org/10.1590/S0102-86502012000800004] [PMID: 22850704]
[161]
Hutchins, A.M.; Brown, B.D.; Cunnane, S.C.; Domitrovich, S.G.; Adams, E.R.; Bobowiec, C.E. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr. Res., 2013, 33(5), 367-375.
[http://dx.doi.org/10.1016/j.nutres.2013.02.012] [PMID: 23684438]
[162]
Fukumitsu, S.; Aida, K.; Shimizu, H.; Toyoda, K. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr. Res., 2010, 30(7), 441-446.
[http://dx.doi.org/10.1016/j.nutres.2010.06.004] [PMID: 20797475]
[163]
Pan, A.; Yu, D.; Demark-Wahnefried, W.; Franco, O.H.; Lin, X. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am. J. Clin. Nutr., 2009, 90(2), 288-297.
[http://dx.doi.org/10.3945/ajcn.2009.27469] [PMID: 19515737]
[164]
Kawakami, Y.; Yamanaka-Okumura, H.; Naniwa-Kuroki, Y.; Sakuma, M.; Taketani, Y.; Takeda, E. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. Nutr. J., 2015, 14, 39.
[http://dx.doi.org/10.1186/s12937-015-0023-2] [PMID: 25896182]
[165]
Mani, U.V.; Mani, I.; Biswas, M.; Kumar, S.N. An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. J. Diet. Suppl., 2011, 8(3), 257-265.
[http://dx.doi.org/10.3109/19390211.2011.593615] [PMID: 22432725]
[166]
Dodin, S.; Cunnane, S.C.; Mâsse, B.; Lemay, A.; Jacques, H.; Asselin, G.; Tremblay-Mercier, J.; Marc, I.; Lamarche, B.; Légaré, F.; Forest, J.C. Flaxseed on cardiovascular disease markers in healthy menopausal women: a randomized, double-blind, placebo-controlled trial. Nutrition, 2008, 24(1), 23-30.
[http://dx.doi.org/10.1016/j.nut.2007.09.003] [PMID: 17981439]
[167]
Lucas, E.A.; Wild, R.D.; Hammond, L.J.; Khalil, D.A.; Juma, S.; Daggy, B.P.; Stoecker, B.J.; Arjmandi, B.H. Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. J. Clin. Endocrinol. Metab., 2002, 87(4), 1527-1532.
[http://dx.doi.org/10.1210/jcem.87.4.8374] [PMID: 11932276]
[168]
Jenkins, D.J.; Kendall, C.W.; Vidgen, E.; Agarwal, S.; Rao, A.V.; Rosenberg, R.S.; Diamandis, E.P.; Novokmet, R.; Mehling, C.C.; Perera, T.; Griffin, L.C.; Cunnane, S.C. Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. Am. J. Clin. Nutr., 1999, 69(3), 395-402.
[http://dx.doi.org/10.1093/ajcn/69.3.395] [PMID: 10075322]
[169]
Chan, J.K.; Bruce, V.M.; McDonald, B.E. Dietary alpha-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. Am. J. Clin. Nutr., 1991, 53(5), 1230-1234.
[http://dx.doi.org/10.1093/ajcn/53.5.1230] [PMID: 1673589]
[170]
de Oliveira, P.A.; Kovacs, C.; Moreira, P.; Magnoni, D.; Saleh, M.H.; Faintuch, J. Unsaturated fatty acids improve atherosclerosis markers in obese and overweight non-diabetic elderly patients. Obes. Surg., 2017, 27(10), 2663-2671.
[http://dx.doi.org/10.1007/s11695-017-2704-8] [PMID: 28470492]
[171]
Wu, H.; Pan, A.; Yu, Z.; Qi, Q.; Lu, L.; Zhang, G.; Yu, D.; Zong, G.; Zhou, Y.; Chen, X.; Tang, L.; Feng, Y.; Zhou, H.; Chen, X.; Li, H.; Demark-Wahnefried, W.; Hu, F.B.; Lin, X. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J. Nutr., 2010, 140(11), 1937-1942.
[http://dx.doi.org/10.3945/jn.110.126300] [PMID: 20826632]
[172]
Pu, S.; Rodríguez-Pérez, C.; Ramprasath, V.R.; Segura-Carretero, A.; Jones, P.J. Dietary high oleic canola oil supplemented with docosahexaenoic acid attenuates plasma proprotein convertase subtilisin kexin type 9 (PCSK9) levels in participants with cardiovascular disease risk: a randomized control trial. Vascul. Pharmacol., 2016, 87, 60-65.
[http://dx.doi.org/10.1016/j.vph.2016.06.007] [PMID: 27374222]
[173]
Campbell, S.C.; Bakhshalian, N.; Sadaat, R.L.; Lerner, M.R.; Lightfoot, S.A.; Brackett, D.; Arjmandi, B.H. Flaxseed reverses atherosclerotic lesion formation and lowers lipoprotein(a) in ovarian hormone deficiency. Menopause, 2013, 20(11), 1176-1183.
[http://dx.doi.org/10.1097/GME.0b013e31828cef8d] [PMID: 23571520]
[174]
Qin, B.; Polansky, M.M.; Sato, Y.; Adeli, K.; Anderson, R.A. Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J. Nutr. Biochem., 2009, 20(11), 901-908.
[http://dx.doi.org/10.1016/j.jnutbio.2008.08.005] [PMID: 18993048]
[175]
Allen, R.W.; Schwartzman, E.; Baker, W.L.; Coleman, C.I.; Phung, O.J. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann. Fam. Med., 2013, 11(5), 452-459.
[http://dx.doi.org/10.1370/afm.1517] [PMID: 24019277]
[176]
Khan, A.; Safdar, M.; Ali Khan, M.M.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care, 2003, 26(12), 3215-3218.
[http://dx.doi.org/10.2337/diacare.26.12.3215] [PMID: 14633804]
[177]
Sheng, X.; Zhang, Y.; Gong, Z.; Huang, C.; Zang, Y.Q. Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res., 2008, 2008581348
[http://dx.doi.org/10.1155/2008/581348] [PMID: 19096709]
[178]
Crawford, P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J. Am. Board Fam. Med., 2009, 22(5), 507-512.
[http://dx.doi.org/10.3122/jabfm.2009.05.080093] [PMID: 19734396]
[179]
Qin, B.; Panickar, K.S.; Anderson, R.A. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J. Diabetes Sci. Technol., 2010, 4(3), 685-693.
[http://dx.doi.org/10.1177/193229681000400324] [PMID: 20513336]
[180]
Qin, B.; Polansky, M.M.; Anderson, R.A. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats. Horm. Metab. Res., 2010, 42(3), 187-193.
[http://dx.doi.org/10.1055/s-0029-1242746]] [PMID: 19937569]
[181]
Koo, S.I.; Noh, S.K. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J. Nutr. Biochem., 2007, 18(3), 179-183.
[http://dx.doi.org/10.1016/j.jnutbio.2006.12.005] [PMID: 17296491]
[182]
Ueda, M.; Nishiumi, S.; Nagayasu, H.; Fukuda, I.; Yoshida, K.; Ashida, H. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem. Biophys. Res. Commun., 2008, 377(1), 286-290.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.128] [PMID: 18845128]
[183]
Wolfram, S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr., 2007, 26(4), 373S-388S.
[http://dx.doi.org/10.1080/07315724.2007.10719626] [PMID: 17906191]
[184]
Stangl, V.; Lorenz, M.; Stangl, K. The role of tea and tea flavonoids in cardiovascular health. Mol. Nutr. Food Res., 2006, 50(2), 218-228.
[http://dx.doi.org/10.1002/mnfr.200500118] [PMID: 16404706]
[185]
Hakim, I.A.; Harris, R.B.; Brown, S.; Chow, H.H.; Wiseman, S.; Agarwal, S.; Talbot, W. Effect of increased tea consumption on oxidative DNA damage among smokers: a randomized controlled study. J. Nutr., 2003, 133(10), 3303S-3309S.
[http://dx.doi.org/10.1093/jn/133.10.3303S] [PMID: 14519830]
[186]
Kim, J.A.; Formoso, G.; Li, Y.; Potenza, M.A.; Marasciulo, F.L.; Montagnani, M.; Quon, M.J. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J. Biol. Chem., 2007, 282(18), 13736-13745.
[http://dx.doi.org/10.1074/jbc.M609725200] [PMID: 17363366]
[187]
Khan, N.; Mukhtar, H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett., 2008, 269(2), 269-280.
[http://dx.doi.org/10.1016/j.canlet.2008.04.014] [PMID: 18501505]
[188]
Sakata, R.; Nakamura, T.; Torimura, T.; Ueno, T.; Sata, M. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: a double-blind placebo-controlled study. Int. J. Mol. Med., 2013, 32(5), 989-994.
[http://dx.doi.org/10.3892/ijmm.2013.1503] [PMID: 24065295]
[189]
Miyawaki, M.; Sano, H.; Imbe, H.; Fujisawa, R.; Tanimoto, K.; Terasaki, J.; Maeda-Yamamoto, M.; Tachibana, H.; Hanafusa, T.; Imagawa, A. “Benifuuki” extract reduces serum levels of lectin-like oxidized low-density lipoprotein receptor-1 ligands containing apolipoprotein b: a double-blind placebo-controlled randomized trial. Nutrients, 2018, 10(7), 924.
[http://dx.doi.org/10.3390/nu10070924] [PMID: 30029523]
[190]
Batista, G.A.P.; da Cunha, C.L.P.; Scartezini, M.; Heyde, R.V.; Bitencourt, M.G.; de Melo, S.F. Prospective double-blind crossover study of Camellia sinensis (green tea) in dyslipidemias. Arq. Bras. Cardiol., 2009, 93(2), 128-134.
[http://dx.doi.org/10.1590/S0066-782X2009000800010] [PMID: 19838489]
[191]
Liu, C.Y.; Huang, C.J.; Huang, L.H.; Chen, I.J.; Chiu, J.P.; Hsu, C.H. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One, 2014, 9(3)e91163
[http://dx.doi.org/10.1371/journal.pone.0091163] [PMID: 24614112]
[192]
Goto, T.; Saito, Y.; Morikawa, K.; Kanamaru, Y.; Nagaoka, S. Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes. Br. J. Nutr., 2012, 107(6), 769-773.
[http://dx.doi.org/10.1017/S0007114511003758] [PMID: 21851755]
[193]
Li, R.W.; Douglas, T.D.; Maiyoh, G.K.; Adeli, K.; Theriault, A.G. Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model. J. Ethnopharmacol., 2006, 104(1-2), 24-31.
[http://dx.doi.org/10.1016/j.jep.2005.08.045] [PMID: 16202550]
[194]
Yee, W.L.; Wang, Q.; Agdinaoay, T.; Dang, K.; Chang, H.; Grandinetti, A.; Franke, A.A.; Theriault, A. Green tea catechins decrease apolipoprotein B-100 secretion from HepG2 cells. Mol. Cell. Biochem., 2002, 229(1-2), 85-92.
[http://dx.doi.org/10.1023/A:1017920527201] [PMID: 11936850]
[195]
Hashimoto, R.; Yaita, M.; Tanaka, K.; Hara, Y.; Kojo, S. Inhibition of radical reaction of apolipoprotein B-100 and alpha-tocopherol in human plasma by green tea catechins. J. Agric. Food Chem., 2000, 48(12), 6380-6383.
[http://dx.doi.org/10.1021/jf000973i] [PMID: 11312811]
[196]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1)1559325817691158
[http://dx.doi.org/10.1177/1559325817691158] [PMID: 28228702]
[197]
Wang, Y.; Zhao, L.; Wang, D.; Huo, Y.; Ji, B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J. Sci. Food Agric., 2016, 96(7), 2494-2503.
[http://dx.doi.org/10.1002/jsfa.7370] [PMID: 26250597]
[198]
Valenti, L.; Riso, P.; Mazzocchi, A.; Porrini, M.; Fargion, S.; Agostoni, C. Dietary anthocyanins as nutritional therapy for nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2013, 2013145421
[http://dx.doi.org/10.1155/2013/145421] [PMID: 24282628]
[199]
Tsuda, T. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res., 2012, 56(1), 159-170.
[http://dx.doi.org/10.1002/mnfr.201100526] [PMID: 22102523]
[200]
Yang, L.; Ling, W.; Yang, Y.; Chen, Y.; Tian, Z.; Du, Z.; Chen, J.; Xie, Y.; Liu, Z.; Yang, L. Role of purified anthocyanins in improving cardiometabolic risk factors in chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial. Nutrients, 2017, 9(10)E1104
[http://dx.doi.org/10.3390/nu9101104] [PMID: 28994705]
[201]
Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr., 2015, 145(4), 742-748.
[http://dx.doi.org/10.3945/jn.114.205674] [PMID: 25833778]
[202]
Asgary, S.; Sahebkar, A.; Afshani, M.R.; Keshvari, M.; Haghjooyjavanmard, S.; Rafieian-Kopaei, M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother. Res., 2014, 28(2), 193-199.
[http://dx.doi.org/10.1002/ptr.4977] [PMID: 23519910]
[203]
Zeng, Y.; Song, J.X.; Shen, X.C. Herbal remedies supply a novel prospect for the treatment of atherosclerosis: a review of current mechanism studies. Phytother. Res., 2012, 26(2), 159-167.
[http://dx.doi.org/10.1002/ptr.3587] [PMID: 21928391]
[204]
Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem., 2010, 119(3), 1257-1261.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.063]
[205]
Asgary, S.; Kelishadi, R.; Rafieian-Kopaei, M.; Najafi, S.; Najafi, M.; Sahebkar, A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr. Cardiol., 2013, 34(7), 1729-1735.
[http://dx.doi.org/10.1007/s00246-013-0693-5] [PMID: 23625305]
[206]
Kim, S.; Hong, J.; Jeon, R.; Kim, H-S. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease. Nutr. Res., 2016, 36(1), 90-100.
[http://dx.doi.org/10.1016/j.nutres.2015.11.002]] [PMID: 26773785]
[207]
Chang, Y.C.; Huang, K.X.; Huang, A.C.; Ho, Y.C.; Wang, C.J. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chem. Toxicol., 2006, 44(7), 1015-1023.
[http://dx.doi.org/10.1016/j.fct.2005.12.006]] [PMID: 16473450]
[208]
Auger, C.; Rouanet, J-M.; Vanderlinde, R.; Bornet, A.; Décordé, K.; Lequeux, N.; Cristol, J.P.; Teissedre, P.L. Polyphenols-enriched chardonnay white wine and sparkling Pinot Noir red wine identically prevent early atherosclerosis in hamsters. J. Agric. Food Chem., 2005, 53(25), 9823-9829.
[http://dx.doi.org/10.1021/jf050988m] [PMID: 16332138]
[209]
Suleria, H.A.R.; Butt, M.S.; Khalid, N.; Sultan, S.; Raza, A.; Aleem, M. Garlic (Allium sativum): diet based therapy of 21st century-a review. Asian Pac. J. Trop. Dis., 2015, 5(4), 271-278.
[http://dx.doi.org/10.1016/S2222-1808(14)60782-9]
[210]
Borek, C. Antioxidant health effects of aged garlic extract. J. Nutr., 2001, 131(3s), 1010S-1015S.
[http://dx.doi.org/10.1093/jn/131.3.1010S] [PMID: 11238807]
[211]
Tsai, C-W.; Chen, H-W.; Sheen, L-Y.; Lii, C-K. Garlic: health benefits and actions. Biomedicine (Taipei), 2012, 2(1), 17-29.
[http://dx.doi.org/10.1016/j.biomed.2011.12.002]
[212]
Zeng, T.; Guo, F.F.; Zhang, C.L.; Song, F.Y.; Zhao, X.L.; Xie, K.Q. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J. Sci. Food Agric., 2012, 92(9), 1892-1902.
[http://dx.doi.org/10.1002/jsfa.5557] [PMID: 22234974]
[213]
Mahdavi-Roshan, M.; Zahedmehr, A.; Mohammad-Zadeh, A.; Sanati, H.R.; Shakerian, F.; Firouzi, A.; Kiani, R.; Nasrollahzadeh, J. Effect of garlic powder tablet on carotid intima-media thickness in patients with coronary artery disease: a preliminary randomized controlled trial. Nutr. Health, 2013, 22(2), 143-155.
[http://dx.doi.org/10.1177/0260106014563446] [PMID: 25573347]
[214]
Jung, E.S.; Park, S.H.; Choi, E.K.; Ryu, B.H.; Park, B.H.; Kim, D.S.; Kim, Y.G.; Chae, S.W. Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: a randomized controlled trial. Nutrition, 2014, 30(9), 1034-1039.
[http://dx.doi.org/10.1016/j.nut.2014.02.014] [PMID: 24976429]
[215]
Budoff, M.J.; Ahmadi, N.; Gul, K.M.; Liu, S.T.; Flores, F.R.; Tiano, J.; Takasu, J.; Miller, E.; Tsimikas, S. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial. Prev. Med., 2009, 49(2-3), 101-107.
[http://dx.doi.org/10.1016/j.ypmed.2009.06.018] [PMID: 19573556]
[216]
Superko, H.R.; Krauss, R.M. Garlic powder, effect on plasma lipids, postprandial lipemia, low-density lipoprotein particle size, high-density lipoprotein subclass distribution and lipoprotein (a). J. Am. Coll. Cardiol., 2000, 35(2), 321-326.
[http://dx.doi.org/10.1016/S0735-1097(99)90541-7] [PMID: 10676676]
[217]
McCrindle, B.W.; Helden, E.; Conner, W.T. Garlic extract therapy in children with hypercholesterolemia. Arch. Pediatr. Adolesc. Med., 1998, 152(11), 1089-1094.
[http://dx.doi.org/10.1001/archpedi.152.11.1089] [PMID: 9811286]
[218]
Phelps, S.; Harris, W.S. Garlic supplementation and lipoprotein oxidation susceptibility. Lipids, 1993, 28(5), 475-477.
[http://dx.doi.org/10.1007/BF02535949] [PMID: 8316057]
[219]
Bombicz, M.; Priksz, D.; Varga, B.; Gesztelyi, R.; Kertesz, A.; Lengyel, P.; Balogh, P.; Csupor, D.; Hohmann, J.; Bhattoa, H.P.; Haines, D.D.; Juhasz, B. Anti-atherogenic properties of Allium ursinum liophylisate: impact on lipoprotein homeostasis and cardiac biomarkers in hypercholesterolemic rabbits. Int. J. Mol. Sci., 2016, 17(8), 1284.
[http://dx.doi.org/10.3390/ijms17081284] [PMID: 27517918]
[220]
Han, S.Y.; Hu, Y.; Anno, T.; Yanagita, T. S-propyl cysteine reduces the secretion of apolipoprotein B100 and triacylglycerol by HepG2 cells. Nutrition, 2002, 18(6), 505-509.
[http://dx.doi.org/10.1016/S0899-9007(02)00749-9] [PMID: 12044824]
[221]
Lin, M.C.; Wang, E.J.; Lee, C.; Chin, K.T.; Liu, D.; Chiu, J.F.; Kung, H.F. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. J. Nutr., 2002, 132(6), 1165-1168.
[http://dx.doi.org/10.1093/jn/132.6.1165] [PMID: 12042427]
[222]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: from in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[223]
Liu, Y.; Zhang, L.; Song, H.; Ji, G. Update on berberine in nonalcoholic fatty liver disease. Evid. Based Complement. Alternat. Med., 2013, 2013308134
[http://dx.doi.org/10.1155/2013/308134] [PMID: 23843872]
[224]
Dahlberg, C.J.; Ou, J.J.; Babish, J.G.; Lamb, J.J.; Eliason, S.; Brabazon, H.; Gao, W.; Kaadige, M.R.; Tripp, M.L. A 13-week low glycemic load diet and lifestyle modification program combining low glycemic load protein shakes and targeted nutraceuticals improved weight loss and cardio-metabolic risk factors. Can. J. Physiol. Pharmacol., 2017, 95(12), 1414-1425.
[http://dx.doi.org/10.1139/cjpp-2016-0704] [PMID: 28800398]
[225]
Shidfar, F.; Ebrahimi, S.S.; Hosseini, S.; Heydari, I.; Shidfar, S.; Hajhassani, G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran. J. Pharm. Res., 2012, 11(2), 643-652.
[PMID: 24250489]
[226]
Spigoni, V.; Aldigeri, R.; Antonini, M.; Micheli, M.M.; Fantuzzi, F.; Fratter, A.; Pellizzato, M.; Derlindati, E.; Zavaroni, I.; Bonadonna, R.C.; Dei Cas, A. effects of a new nutraceutical formulation (berberine, red yeast rice and chitosan) on non-hdl cholesterol levels in individuals with dyslipidemia: results from a randomized, double blind, placebo-controlled study. Int. J. Mol. Sci., 2017, 18(7), 1498.
[http://dx.doi.org/10.3390/ijms18071498] [PMID: 28704936]
[227]
Cicero, A.F.; Rovati, L.C.; Setnikar, I. Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation. Arzneimittelforschung, 2007, 57(1), 26-30.
[http://dx.doi.org/10.1055/s-0031-1296582] [PMID: 17341006]
[228]
Solà, R.; Valls, R.M.; Puzo, J.; Calabuig, J.R.; Brea, A.; Pedret, A.; Moriña, D.; Villar, J.; Millán, J.; Anguera, A. Effects of poly-bioactive compounds on lipid profile and body weight in a moderately hypercholesterolemic population with low cardiovascular disease risk: a multicenter randomized trial. PLoS One, 2014, 9(8)e101978
[http://dx.doi.org/10.1371/journal.pone.0101978] [PMID: 25084280]
[229]
Liu, D.L.; Xu, L.J.; Dong, H.; Chen, G.; Huang, Z.Y.; Zou, X.; Wang, K.F.; Luo, Y.H.; Lu, F.E. Inhibition of proprotein convertase subtilisin/kexin type 9: a novel mechanism of berberine and 8-hydroxy dihydroberberine against hyperlipidemia. Chin. J. Integr. Med., 2015, 21(2), 132-138.
[http://dx.doi.org/10.1007/s11655-014-1775-1] [PMID: 24893659]
[230]
Zhou, W.; Rahimnejad, S.; Lu, K.; Wang, L.; Liu, W. Effects of berberine on growth, liver histology, and expression of lipid-related genes in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Fish Physiol. Biochem., 2019, 45(1), 83-91.
[http://dx.doi.org/10.1007/s10695-018-0536-7] [PMID: 29984398]
[231]
Chen, G.; Lu, F.; Xu, L.; Dong, H.; Yi, P.; Wang, F.; Huang, Z.; Zou, X. The anti-diabetic effects and pharmacokinetic profiles of berberine in mice treated with Jiao-Tai-Wan and its compatibility. Phytomedicine, 2013, 20(10), 780-786.
[http://dx.doi.org/10.1016/j.phymed.2013.03.004]] [PMID: 23582408]
[232]
Zhou, J.Y.; Zhou, S.W.; Zhang, K.B.; Tang, J.L.; Guang, L.X.; Ying, Y.; Xu, Y.; Zhang, L.; Li, D.D. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol. Pharm. Bull., 2008, 31(6), 1169-1176.
[http://dx.doi.org/10.1248/bpb.31.1169] [PMID: 18520050]
[233]
Hsieh, Y.S.; Kuo, W.H.; Lin, T.W.; Chang, H.R.; Lin, T.H.; Chen, P.N.; Chu, S.C. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J. Agric. Food Chem., 2007, 55(25), 10437-10445.
[http://dx.doi.org/10.1021/jf071868c] [PMID: 18001034]
[234]
Shukla, Y.; Singh, M. Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol., 2007, 45(5), 683-690.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[235]
Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food, 2005, 8(2), 125-132.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[236]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[237]
Yeh, G.Y.; Davis, R.B.; Phillips, R.S. Use of complementary therapies in patients with cardiovascular disease. Am. J. Cardiol., 2006, 98(5), 673-680.
[http://dx.doi.org/10.1016/j.amjcard.2006.03.051] [PMID: 16923460]
[238]
Khandouzi, N.; Shidfar, F.; Rajab, A.; Rahideh, T.; Hosseini, P.; Mir Taheri, M. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients. Iran. J. Pharm. Res., 2015, 14(1), 131-140.
[PMID: 25561919]
[239]
Ilkhanizadeh, B.; Shirpoor, A.; Khadem Ansari, M.H.; Nemati, S.; Rasmi, Y. Protective effects of ginger (Zingiber officinale) extract against diabetes-induced heart abnormality in rats. Diabetes Metab. J., 2016, 40(1), 46-53.
[http://dx.doi.org/10.4093/dmj.2016.40.1.46] [PMID: 26912155]
[240]
Ma, J.; Li, Y.; Ye, Q.; Li, J.; Hua, Y.; Ju, D.; Zhang, D.; Cooper, R.; Chang, M. Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agric. Food Chem., 2000, 48(11), 5220-5225.
[http://dx.doi.org/10.1021/jf000338c] [PMID: 11087463]
[241]
Zhu, X-Y.; Li, P.; Yang, Y-B.; Liu, M-L. Xuezhikang, extract of red yeast rice, improved abnormal hemorheology, suppressed caveolin-1 and increased eNOS expression in atherosclerotic rats. PLoS One, 2013, 8(5)e62731
[http://dx.doi.org/10.1371/journal.pone.0062731] [PMID: 23675421]
[242]
Wang, W.; Chen, K. Xuezhikang capsule for hyperlipidemia: a systematic review. Chinese J. Evidence-based Med., 2006, 6(5), 352-360.
[243]
Zhao, S.P.; Liu, L.; Cheng, Y.C.; Li, Y.L. Effect of xuezhikang, a cholestin extract, on reflecting postprandial triglyceridemia after a high-fat meal in patients with coronary heart disease. Atherosclerosis, 2003, 168(2), 375-380.
[http://dx.doi.org/10.1016/S0021-9150(03)00142-4] [PMID: 12801622]
[244]
Xu, R.X.; Zhang, Y.; Guo, Y.L.; Ma, C.Y.; Yao, Y.H.; Li, S.; Li, X.L.; Qing, P.; Gao, Y.; Wu, N.Q.; Zhu, C.G.; Liu, G.; Dong, Q.; Sun, J.; Li, J. Novel findings in relation to multiple anti-atherosclerotic effects of XueZhiKang in humans. Chronic Dis. Transl. Med., 2017, 4(2), 117-126.
[http://dx.doi.org/10.1016/j.cdtm.2017.09.004]] [PMID: 29988855]
[245]
Moriarty, P.M.; Roth, E.M.; Karns, A.; Ye, P.; Zhao, S.P.; Liao, Y.; Capuzzi, D.M.; Bays, H.E.; Zhang, F.; Liu, S.; Reichman, A.J.; Brusco, O.A.; Lu, G.; Lerman, S.; Duan, Z.; Guo, S.; Liu, P.L.; Zhao, J.; Zhang, Y.; Li, S. Effects of Xuezhikang in patients with dyslipidemia: a multicenter, randomized, placebo-controlled study. J. Clin. Lipidol., 2014, 8(6), 568-575.
[http://dx.doi.org/10.1016/j.jacl.2014.09.002] [PMID: 25499939]
[246]
Gao, J.; Liu, B.; Ning, Z.; Zhao, R.; Zhang, A.; Wu, Q. Characterization and antioxidant activity of flavonoid‐rich extracts from leaves of Ampelopsis grossedentata. J. Food Biochem., 2009, 33(6), 808-820.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00253.x]
[247]
Zhou, Y.; Shu, F.; Liang, X.; Chang, H.; Shi, L.; Peng, X.; Zhu, J.; Mi, M. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One, 2014, 9(2)e89021
[http://dx.doi.org/10.1371/journal.pone.0089021] [PMID: 24551210]
[248]
Xu, J.J.; Yao, M-J.; Xu, G. Study on antioxidant activities of dihydromyricetin. Food Sci., 2007, 28(9), 43-45.
[249]
Chen, S.; Zhao, X.; Wan, J.; Ran, L.; Qin, Y.; Wang, X.; Gao, Y.; Shu, F.; Zhang, Y.; Liu, P.; Zhang, Q.; Zhu, J.; Mi, M. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: a randomized controlled trial. Pharmacol. Res., 2015, 99, 74-81.
[http://dx.doi.org/10.1016/j.phrs.2015.05.009] [PMID: 26032587]
[250]
Aizzat, O.; Yap, S.W.; Sopiah, H.; Madiha, M.M.; Hazreen, M.; Shailah, A.; Wan, J.W.; Nur, S.A.; Srijit, D.; Musalmah, M.; Yasmin, A.M. Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (STZ) induced diabetic sprague-dawley rats. Adv. Med. Sci., 2010, 55(2), 281-288.
[http://dx.doi.org/10.2478/v10039-010-0046-z] [PMID: 21147697]
[251]
Ebrahimi-Mameghani, M.; Sadeghi, Z.; Farhangi, M.A.; Vaghef-Mehrabany, E.; Aliashrafi, S. Glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: beneficial effects of supplementation with microalgae Chlorella vulgaris: a double-blind placebo-controlled randomized clinical trial. Clin. Nutr., 2017, 36(4), 1001-1006.
[http://dx.doi.org/10.1016/j.clnu.2016.07.004] [PMID: 27475283]
[252]
Ryu, N.H.; Lim, Y.; Park, J.E.; Kim, J.; Kim, J.Y.; Kwon, S.W.; Kwon, O. Impact of daily chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: a double-blinded, randomized, placebo-controlled study. Nutr. J., 2014, 13(1), 57.
[http://dx.doi.org/10.1186/1475-2891-13-57] [PMID: 24920270]
[253]
Wiseman, S.A.; Balentine, D.A.; Frei, B. Antioxidants in tea. Crit. Rev. Food Sci. Nutr., 1997, 37(8), 705-718.
[http://dx.doi.org/10.1080/10408399709527798] [PMID: 9447271]
[254]
Mukhtar, H.; Ahmad, N. Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(6)(Suppl.), 1698S-1702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[255]
Yang, C.S.; Landau, J.M. Effects of tea consumption on nutrition and health. J. Nutr., 2000, 130(10), 2409-2412.
[http://dx.doi.org/10.1093/jn/130.10.2409] [PMID: 11015465]
[256]
Balentine, D.A.; Wiseman, S.A.; Bouwens, L.C. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr., 1997, 37(8), 693-704.
[http://dx.doi.org/10.1080/10408399709527797] [PMID: 9447270]
[257]
Davies, M.J.; Judd, J.T.; Baer, D.J.; Clevidence, B.A.; Paul, D.R.; Edwards, A.J.; Wiseman, S.A.; Muesing, R.A.; Chen, S.C. Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J. Nutr., 2003, 133(10), 3298S-3302S.
[http://dx.doi.org/10.1093/jn/133.10.3298S] [PMID: 14519829]
[258]
Patti, A.M.; Al-Rasadi, K.; Giglio, R.V.; Nikolic, D.; Mannina, C.; Castellino, G.; Chianetta, R.; Banach, M.; Cicero, A.F.G.; Lippi, G.; Montalto, G.; Rizzo, M.; Toth, P.P. Natural approaches in metabolic syndrome management. Arch. Med. Sci., 2018, 14(2), 422-441.
[http://dx.doi.org/10.5114/aoms.2017.68717] [PMID: 29593818]
[259]
Dos Santos, M.M.; Prestes, A.S.; de Macedo, G.T.; Ecker, A.; Barcelos, R.P.; Boligon, A.A.; Souza, D.; de Bem, A.F.; da Rocha, J.B.T.; Barbosa, N.V. Syzygium cumini leaf extract inhibits LDL oxidation, but does not protect the liproprotein from glycation. J. Ethnopharmacol., 2018, 210, 69-79.
[http://dx.doi.org/10.1016/j.jep.2017.08.033] [PMID: 28844679]
[260]
Sukhbold, E.; Sekimoto, S.; Watanabe, E.; Yamazaki, A.; Yang, L.; Takasugi, M.; Yamada, K.; Hosomi, R.; Fukunaga, K.; Arai, H. Effects of oolonghomobisflavan A on oxidation of low-density lipoprotein. Biosci. Biotechnol. Biochem., 2017, 81(8), 1569-1575.
[http://dx.doi.org/10.1080/09168451.2017.1314758] [PMID: 28463548]
[261]
Chu, S.L.; Fu, H.; Yang, J.X.; Liu, G.X.; Dou, P.; Zhang, L.; Tu, P.F.; Wang, X.M. A randomized double-blind placebo-controlled study of Pu’er tea extract on the regulation of metabolic syndrome. Chin. J. Integr. Med., 2011, 17(7), 492-498.
[http://dx.doi.org/10.1007/s11655-011-0781-4] [PMID: 21725873]
[262]
Chen, C-C.; Hsu, J-D.; Wang, S-F.; Chiang, H-C.; Yang, M-Y.; Kao, E-S.; Ho, Y.C.; Wang, C.J. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J. Agric. Food Chem., 2003, 51(18), 5472-5477.
[http://dx.doi.org/10.1021/jf030065w] [PMID: 12926900]
[263]
Lin, T-L.; Lin, H-H.; Chen, C-C.; Lin, M-C.; Chou, M-C.; Wang, C-J. Hibiscus sabdariffa extract reduces serum cholesterol in men and women. Nutr. Res., 2007, 27(3), 140-145.
[http://dx.doi.org/10.1016/j.nutres.2007.01.007]
[264]
Chen, C.C.; Chou, F.P.; Ho, Y.C.; Lin, W.L.; Wang, C.P.; Kao, E.S. Inhibitory effects of Hibiscus sabdariffa L extract on low‐density lipoprotein oxidation and anti‐hyperli-pidemia in fructose‐fed and cholesterol‐fed rats. J. Sci. Food Agric., 2004, 84(15), 1989-1996.
[http://dx.doi.org/10.1002/jsfa.1872]
[265]
Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.A.; Afkhami-Ardekani, M.; Fatehi, F. Effects of sour tea (Hibiscus sabdariffa) on lipid profile and lipoproteins in patients with type II diabetes. J. Altern. Complement. Med., 2009, 15(8), 899-903.
[http://dx.doi.org/10.1089/acm.2008.0540] [PMID: 19678781]
[266]
Um, M.Y.; Moon, M.K.; Ahn, J.; Youl Ha, T. Coumarin attenuates hepatic steatosis by down-regulating lipogenic gene expression in mice fed a high-fat diet. Br. J. Nutr., 2013, 109(9), 1590-1597.
[http://dx.doi.org/10.1017/S0007114512005260] [PMID: 23597175]
[267]
Matsumoto, R.L.; Mendonça, S.; de Oliveira, D.M.; Souza, M.F.; Bastos, D.H. Effects of maté tea intake on ex vivo LDL peroxidation induced by three different pathways. Nutrients, 2009, 1(1), 18-29.
[http://dx.doi.org/10.3390/nu1010018] [PMID: 22253965]
[268]
de Morais, E.C.; Stefanuto, A.; Klein, G.A.; Boaventura, B.C.; de Andrade, F.; Wazlawik, E.; Di Pietro, P.F.; Maraschin, M.; da Silva, E.L. Consumption of yerba maté (Ilex paraguariensis) improves serum lipid parameters in healthy dyslipidemic subjects and provides an additional LDL-cholesterol reduction in individuals on statin therapy. J. Agric. Food Chem., 2009, 57(18), 8316-8324.
[http://dx.doi.org/10.1021/jf901660g] [PMID: 19694438]
[269]
Du, W.H.; Peng, S-M.; Liu, Z.H.; Shi, L.; Tan, L-F.; Zou, X-Q. Hypoglycemic effect of the water extract of Pu-erh tea. J. Agric. Food Chem., 2012, 60(40), 10126-10132.
[http://dx.doi.org/10.1021/jf302426w] [PMID: 22957968]
[270]
Cao, Z.H.; Gu, D.H.; Lin, Q.Y.; Xu, Z.Q.; Huang, Q.C.; Rao, H.; Liu, E.W.; Jia, J.J.; Ge, C.R. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity. Phytother. Res., 2011, 25(2), 234-238.
[http://dx.doi.org/10.1002/ptr.3247] [PMID: 20641056]
[271]
Huang, Q.; Chen, S.; Chen, H.; Wang, Y.; Wang, Y.; Hochstetter, D.; Xu, P. Studies on the bioactivity of aqueous extract of pu-erh tea and its fractions: in vitro antioxidant activity and α-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food Chem. Toxicol., 2013, 53, 75-83.
[http://dx.doi.org/10.1016/j.fct.2012.11.039] [PMID: 23211442]
[272]
Hu, W-Y.; Ma, X-H.; Zhou, W-Y.; Li, X-X.; Sun, T-T.; Sun, H. Preventive effect of Silibinin in combination with Pu-erh tea extract on non-alcoholic fatty liver disease in ob/ob mice. Food Funct., 2017, 8(3), 1105-1115.
[http://dx.doi.org/10.1039/C6FO01591C] [PMID: 28164196]
[273]
Gugliucci, A.; Menini, T. Three different pathways for human LDL oxidation are inhibited in vitro by water extracts of the medicinal herb Achyrocline satureoides. Life Sci., 2002, 71(6), 693-705.
[http://dx.doi.org/10.1016/S0024-3205(02)01734-4] [PMID: 12072157]
[274]
Gliozzi, M.; Carresi, C.; Musolino, V.; Palma, E.; Muscoli, C.; Vitale, C. The effect of bergamot-derived polyphenolic fraction on LDL small dense particles and non alcoholic fatty liver disease in patients with metabolic syndrome. Adv. Biol. Chem., 2014, 4(02), 129.
[http://dx.doi.org/10.4236/abc.2014.42017]
[275]
He, P.; Tian, N. Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes. Korean J. Physiol. Pharmacol., 2019, 23(3), 181-189.
[http://dx.doi.org/10.4196/kjpp.2019.23.3.181] [PMID: 31080349]
[276]
Borradaile, N.M.; de Dreu, L.E.; Wilcox, L.J.; Edwards, J.Y.; Huff, M.W. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem. J., 2002, 366(Pt 2), 531-539.
[http://dx.doi.org/10.1042/bj20020046] [PMID: 12030847]
[277]
Banach, M.; Aronow, W.S.; Serban, C.; Sahabkar, A.; Rysz, J.; Voroneanu, L.; Covic, A. Lipids, blood pressure and kidney update 2014. Pharmacol. Res., 2015, 95-96, 111-125.
[http://dx.doi.org/10.1016/j.phrs.2015.03.009] [PMID: 25819754]
[278]
Sahebkar, A.; Watts, G.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc. Drugs Ther., 2013, 27(6), 559-567.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[279]
Perrone, V.; Sangiorgi, D.; Buda, S.; Esposti, L.D. Residual cardiovascular risk in patients who received lipid-lowering treatment in a real-life setting: retrospective study. Clinicoecon. Outcomes Res., 2016, 8, 649-655.
[http://dx.doi.org/10.2147/CEOR.S107992] [PMID: 27822076]
[280]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M.R.; Tokgozoglu, L.; Verschuren, W.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L. Authors/Task Force Members. 2016 ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Atherosclerosis, 2016, 253, 281-344.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.018] [PMID: 27594540]
[281]
Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; von Haehling, S.; Katsiki, N.; Langlois, M.; Latkovskis, G.; Mancini, G.B.J.; Mikhailidis, D.P.; Mitchenko, O.; Moriarty, P.M.; Muntner, P.; Nikolic, D.; Panagiotakos, D.B.; Paragh, G.; Paulweber, B.; Pella, D.; Pitsavos, C.; Reiner, Ž.; Rosano, G.M.C.; Rosenson, R.S.; Rysz, J.; Sahebkar, A.; Serban, M.C.; Vinereanu, D.; Vrablík, M.; Watts, G.F.; Wong, N.D.; Rizzo, M. International Lipid Expert Panel (ILEP). The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol., 2018, 72(1), 96-118.
[http://dx.doi.org/10.1016/j.jacc.2018.04.040] [PMID: 29957236]
[282]
Chruściel, P.; Sahebkar, A.; Rembek-Wieliczko, M.; Serban, M.C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Mosteoru, S.; Blaha, M.J.; Martin, S.S.; Rysz, J.; Toth, P.P.; Lip, G.Y.; Pencina, M.J.; Ray, K.K.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis, 2016, 253, 194-208.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.897] [PMID: 27498397]
[283]
Parizadeh, S.M.R.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; Ferns, G.A. Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial. Lipids, 2011, 46(4), 333-340.
[http://dx.doi.org/10.1007/s11745-010-3517-x] [PMID: 21207250]
[284]
Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557.
[http://dx.doi.org/10.1160/th14-11-0937] [PMID: 26017749]
[285]
Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Statin therapy reduces plasma endothelin-1 concentrations: a meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.022] [PMID: 26074317]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy