Abstract
Several families of functionally and structurally distinct ion channels have been identified throughout the last decade, resulting in a growing complexity in our understanding of ion transport across biological membranes. Here, we introduce a novel family of putative chloride channel proteins with nine bovine, murine, and human homologs identified to date. The gene family has been termed CLCA family (chloride channels, calcium-activated) based on observations that heterologous expression of several family members is associated with the appearance of a novel anion channel activity that depends on the concentration of intracellular calcium. The family members identified so far are the bovine calcium-activated chloride channel (CaCC or bCLCA1), the bovine lung endothelial cell adhesion molecule-1 (LuECAM-1), the murine calcium-activated chloride channels mCLCA1, mCLCA2, and mCLCA3 (previously termed gob-5), and four human homologs (hCLCA1, hCLCA2, hCLCA3, and hCaCC2). Each of these homologs is character ized by a unique cellular and tissue expression pattern with most consistent expression in secretory epithelia of the digestive, respiratory, and reproductive organs. Of special interest is the observation that several of these molecules seem to combine cell-cell adhesion properties with ion channel function. Structural analyses have revealed that a four- or five-transmembrane topography is conserved throughout the family. Their functional features as well as the cellular coexpression of several CLCA homologs with the cystic fibrosis transmembrane conductance regulator (CFTR) in numerous tissues raises the question whether CLCA family members may participate in the complex ion channel disorder of cystic fibrosis.
Keywords: CLCA Gene Family, Putative Chloride Channels, Calcium Activated chloride channel, CaCC or bCLCA1, Bovin lung endothelial cell, Adhesion molecule, LuECAM, HCLCA1, MCLCA2, CLCA family Members
Current Genomics
Title: The CLCA Gene Family A Novel Family of Putative Chloride Channels
Volume: 1 Issue: 2
Author(s): A. D. Gruber, C. M. Fuller, R. C. Elble, D. J. Benos and B. U. Pauli
Affiliation:
Keywords: CLCA Gene Family, Putative Chloride Channels, Calcium Activated chloride channel, CaCC or bCLCA1, Bovin lung endothelial cell, Adhesion molecule, LuECAM, HCLCA1, MCLCA2, CLCA family Members
Abstract: Several families of functionally and structurally distinct ion channels have been identified throughout the last decade, resulting in a growing complexity in our understanding of ion transport across biological membranes. Here, we introduce a novel family of putative chloride channel proteins with nine bovine, murine, and human homologs identified to date. The gene family has been termed CLCA family (chloride channels, calcium-activated) based on observations that heterologous expression of several family members is associated with the appearance of a novel anion channel activity that depends on the concentration of intracellular calcium. The family members identified so far are the bovine calcium-activated chloride channel (CaCC or bCLCA1), the bovine lung endothelial cell adhesion molecule-1 (LuECAM-1), the murine calcium-activated chloride channels mCLCA1, mCLCA2, and mCLCA3 (previously termed gob-5), and four human homologs (hCLCA1, hCLCA2, hCLCA3, and hCaCC2). Each of these homologs is character ized by a unique cellular and tissue expression pattern with most consistent expression in secretory epithelia of the digestive, respiratory, and reproductive organs. Of special interest is the observation that several of these molecules seem to combine cell-cell adhesion properties with ion channel function. Structural analyses have revealed that a four- or five-transmembrane topography is conserved throughout the family. Their functional features as well as the cellular coexpression of several CLCA homologs with the cystic fibrosis transmembrane conductance regulator (CFTR) in numerous tissues raises the question whether CLCA family members may participate in the complex ion channel disorder of cystic fibrosis.
Export Options
About this article
Cite this article as:
Gruber D. A., Fuller M. C., Elble C. R., Benos J. D. and Pauli U. B., The CLCA Gene Family A Novel Family of Putative Chloride Channels, Current Genomics 2000; 1 (2) . https://dx.doi.org/10.2174/1389202003351526
DOI https://dx.doi.org/10.2174/1389202003351526 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Advanced AI Techniques in Big Genomic Data Analysis
The thematic issue on "Advanced AI Techniques in Big Genomic Data Analysis" aims to explore the cutting-edge methodologies and applications of artificial intelligence (AI) in the realm of genomic research, where vast amounts of data pose both challenges and opportunities. This issue will cover a broad spectrum of AI-driven strategies, ...read more
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep Learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
New Strategies in the Chemotherapy of Leukemia: Eradicating Cancer Stem Cells in Chronic Myeloid Leukemia
Current Cancer Drug Targets Anti-CD20 in Targeting B Lymphocytes for the Treatment of Autoimmune Diseases: Clinical Benefits and Insights into the Role of B Lymphocytes in Pathophysiology
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) CBP-dependent Wnt/β-catenin signaling is crucial in regulation of MDR1 transcription
Current Cancer Drug Targets Patent Selections
Recent Patents on Anti-Cancer Drug Discovery Entrectinib: A New Selective Tyrosine Kinase Inhibitor Approved for the Treatment of Pediatric and Adult Patients with NTRK Fusionpositive, Recurrent or Advanced Solid Tumors
Current Medicinal Chemistry Inhibition of Multidrug Resistance of Cancer Cells by Natural Diterpenes, Triterpenes and Carotenoids
Current Pharmaceutical Design Role of Drug Metabolism in the Cytotoxicity and Clinical Efficacy of Anthracyclines
Current Drug Metabolism <i>In Vivo</i> Anti-Tumor Effects of Flavokawain A in 4T1 Breast Cancer Cell-Challenged Mice
Anti-Cancer Agents in Medicinal Chemistry Biological Activities of Red Propolis: A Review
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Mitochondrial Drug Targets in Cell Death and Cancer
Current Pharmaceutical Design Signaling Pathways Modulating Dependence of Lung Cancer on Mutant Epidermal Growth Factor Receptor and Mechanisms of Intrinsic and Acquired Resistance to Tyrosine Kinase Inhibitors
Current Pharmaceutical Design Editorial
Current Molecular Medicine Targeted Radiotherapy of Bone Malignancies
Current Drug Discovery Technologies EBV-Associated Tumors: Pathogenetic Insights for Improved Disease Monitoring and Treatment
Current Cancer Therapy Reviews Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery
Current Drug Targets Monofunctional Platinum (PtII) Compounds – Shifting the Paradigm in Designing New Pt-based Anticancer Agents
Current Medicinal Chemistry Subject Index to Volume 4
Current Cancer Drug Targets New Approaches to Target Cancer Stem Cells: Current Scenario
Mini-Reviews in Medicinal Chemistry Highlights on Fluorine-containing Drugs Approved by U.S. FDA in 2023
Current Topics in Medicinal Chemistry Phenothiazine: The Parent Molecule
Current Drug Targets