Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

A Concise Review on Multidimensional Silver Nanoparticle Health Aids and Threats

Author(s): Parmita Phaugat, Aparna Khansili*, Suchitra Nishal and Beena Kumari

Volume 15, Issue 5, 2020

Page: [457 - 468] Pages: 12

DOI: 10.2174/1574885515999200425234517

Price: $65

Abstract

Nanoparticles (Np) are the 21st century material in supreme formulations due to their unique properties and design. In review, systematic discussion of the synthesis, characterization, bio-applications, and risks of AgNps (Silver Nanoparticles) especially highlighting anticancer activity envisaging mechanisms as well as therapeutic approaches for cancer. Ag-Nps mainly possess toxicological concern.

Benefits and Risk: AgNps have beneficial approaches for cancer treatment and angiogenesisrelated diseases like rheumatoid arthritis, atherosclerosis, diabetic psoriasis, retinopathy, endometriosis, and adiposity.

Ag-Nps induced cytotoxicity through oxidative stress by the ROS (Reactive Oxygen Species) generation could be measured as dependent on different properties, such as nanoparticle shape, size, agglomeration, concentration, and aggregation.

Results: The advancing nanotechnology-based therapy needs to be devised better, and it should offload the hitches of prevailing treatment approaches. Essential studies are required to explain the synergistic effect of two different cytotoxic agents.

Keywords: AgNp, physicochemical properties, synthesis, ROS, cytotoxicity, antimicrobial action, risks, and benefits.

Graphical Abstract
[1]
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 2009; 12(1): 1-39.
[http://dx.doi.org/10.1590/S1516-14392009000100002]
[2]
Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro 2013; 27(2): 864-73.
[http://dx.doi.org/10.1016/j.tiv.2012.12.018] [PMID: 23274916]
[3]
Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013-6.
[4]
Edwards-Jones V. The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 2009; 49(2): 147-52.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02648.x] [PMID: 19515146]
[5]
Yu SJ, Yin YG, Liu JF. Silver nanoparticles in the environment. Environ Sci Process Impacts 2013; 15(1): 78-92.
[http://dx.doi.org/10.1039/C2EM30595J] [PMID: 24592429]
[6]
Alt V, Bechert T, Steinrücke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004; 25(18): 4383-91.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.078] [PMID: 15046929]
[7]
Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnology 2010; 8(1): 15.
[http://dx.doi.org/10.1186/1477-3155-8-15] [PMID: 20626911]
[8]
Furr JR, Russell A, Turner T, Andrews A. Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect 1994; 27(3): 201-8.
[9]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[10]
Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 2009; 5(4): 382-6.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[11]
Chung Y-C, Chen I-H, Chen C-J. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008; 29(12): 1807-16.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.032] [PMID: 18242693]
[12]
Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 1997; 25(4): 279-83.
[http://dx.doi.org/10.1046/j.1472-765X.1997.00219.x] [PMID: 9351278]
[13]
Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 2008; 61(4): 869-76.
[http://dx.doi.org/10.1093/jac/dkn034] [PMID: 18305203]
[14]
Nayak RR, Pradhan N, Behera D, et al. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 2011; 13(8): 3129-37.
[http://dx.doi.org/10.1007/s11051-010-0208-8]
[15]
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2013; 52(6): 1636-53.
[http://dx.doi.org/10.1002/anie.201205923] [PMID: 23255416]
[16]
Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008; 176(1): 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[17]
Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carrière M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008; 253(1-3): 137-46.
[http://dx.doi.org/10.1016/j.tox.2008.09.007] [PMID: 18835419]
[18]
Cho J-G, Kim K-T, Ryu T-K, et al. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. Available from: https://www.hindawi.com/journals/bmri/2013/494671/ (Accessed on 04/02/2020).
[19]
Lansdown AB. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in pharmacological sciences 2020. Available from: https://www. hindawi.com/journals/aps/2010/910686/ (Accessed on 04/02/2020)
[20]
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine (Lond) 2010; 6(4): 570-4.
[http://dx.doi.org/10.1016/j.nano.2009.12.002] [PMID: 20060498]
[21]
Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 2346-53.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[22]
Illingworth B, Bianco RW, Weisberg S. In vivo efficacy of silver-coated fabric against Staphylococcus epidermidis. J Heart Valve Dis 2000; 9(1): 135-41.
[PMID: 10678386]
[23]
Hoffmann S. Silver sulfadiazine: an antibacterial agent for topical use in burns. A review of the literature. Scand J Plast Reconstr Surg 1984; 18(1): 119-26.
[http://dx.doi.org/10.3109/02844318409057413] [PMID: 6377481]
[24]
Alidaee MR, Taheri A, Mansoori P, Ghodsi SZ. Silver nitrate cautery in aphthous stomatitis: a randomized controlled trial. Br J Dermatol 2005; 153(3): 521-5.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06490.x] [PMID: 16120136]
[25]
Tanweer F, Hanif J. Re: Silver nitrate cauterisation, does concentration matter? Clin Otolaryngol 2008; 33(5): 503-4.
[http://dx.doi.org/10.1111/j.1749-4486.2008.01803.x] [PMID: 18983401]
[26]
Bansal A, Verma S. Searching for alternative plasmonic materials for specific applications. Indian Journal of Materials Science Available from: https://www.hindawi.com/journals/ijms/2014/897125/abs/ (Accessed on 15/11/2019)
[27]
Zhang G, Niu A, Peng S, et al. Formation of novel polymeric nanoparticles. Acc Chem Res 2001; 34(3): 249-56.
[http://dx.doi.org/10.1021/ar000011x] [PMID: 11263883]
[28]
Lee SH, Jun B-H. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[29]
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014; 9(6): 385-406.
[PMID: 26339255]
[30]
Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2009; 2(3): 104-11.
[31]
Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[32]
El-Nour KMA, Eftaiha A, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3(3): 135-40.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[33]
Singh P, Kim YJ, Singh H, et al. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 2015; 10: 2567-77.
[PMID: 25848272]
[34]
Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 2015; 5(4): 499-504.
[http://dx.doi.org/10.1007/s13204-014-0341-2]
[35]
Mokhtari N, Daneshpajouh S, Seyedbagheri S, et al. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 2009; 44(6): 1415-21.
[http://dx.doi.org/10.1016/j.materresbull.2008.11.021]
[36]
Korbekandi H, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 2012; 87(7): 932-7.
[http://dx.doi.org/10.1002/jctb.3702]
[37]
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 2008; 62(29): 4411-3.
[http://dx.doi.org/10.1016/j.matlet.2008.06.051]
[38]
Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 2007; 42(5): 919-23.
[http://dx.doi.org/10.1016/j.procbio.2007.02.005]
[39]
Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 2007; 23(5): 2694-9.
[http://dx.doi.org/10.1021/la0613124] [PMID: 17309217]
[40]
Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 2014; 5(5): 1.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[41]
Klaus T, Joerger R, Olsson E, Granqvist C-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 1999; 96(24): 13611-4.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[42]
Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 2016; 11(1): 98.
[http://dx.doi.org/10.1186/s11671-016-1311-2] [PMID: 26909778]
[43]
Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 2015; 20(9): 16540-65.
[http://dx.doi.org/10.3390/molecules200916540] [PMID: 26378513]
[44]
Saravanan M, Nanda A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces 2010; 77(2): 214-8.
[http://dx.doi.org/10.1016/j.colsurfb.2010.01.026] [PMID: 20189360]
[45]
Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 2009; 11(8): 2079.
[http://dx.doi.org/10.1007/s11051-008-9573-y]
[46]
Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Springerplus 2014; 3(1): 645.
[http://dx.doi.org/10.1186/2193-1801-3-645] [PMID: 25485188]
[47]
Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 2008; 43(5): 1164-70.
[http://dx.doi.org/10.1016/j.materresbull.2007.06.020]
[48]
Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 2007; 61(6): 1413-8.
[http://dx.doi.org/10.1016/j.matlet.2006.07.042]
[49]
Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 2006; 47(2): 160-4.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.026] [PMID: 16420977]
[50]
Huang Z, Chen G, Zeng G, et al. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. J Hazard Mater 2017; 321: 37-46.
[http://dx.doi.org/10.1016/j.jhazmat.2016.08.075] [PMID: 27607931]
[51]
Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2003; 28(4): 313-8.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[52]
Velhal SG, Kulkarni S, Latpate R. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric. Int Nano Lett 2016; 6(4): 257-64.
[http://dx.doi.org/10.1007/s40089-016-0192-9]
[53]
Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 2016; 11(1): 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[54]
Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014; 6(1): 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[55]
El-Seedi HR, El-Shabasy RM, Khalifa SA, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances 2019; 9(42): 24539-59.
[http://dx.doi.org/10.1039/C9RA02225B]
[56]
Praba PS, Jeyasundari J, Arul Y. Synthesis of silver nano particles using Piper betle and its antibacterial activity. Eur Chem Bull 2014; 3(10): 1014-6.
[57]
Khan M, Tareq F, Hossen M, Roki M. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. J Eng Sci Technol 018 13(1): 158-66.
[58]
Ahmad N, Sharma S, Singh V, Shamsi S, Fatma A, Mehta B. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int Available from: https://www.hindawi.com/journals/btri/2011/454090/ (Accessed on 04/02/2020)
[59]
Chauhan N, Tyagi AK, Kumar P, Malik A. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol 2016; 7: 1748.
[http://dx.doi.org/10.3389/fmicb.2016.01748] [PMID: 27877160]
[60]
Rajasekharreddy P, Rani PU, Sreedhar B. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 2010; 12(5): 1711-21.
[http://dx.doi.org/10.1007/s11051-010-9894-5]
[61]
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 2018; 16(1): 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[62]
Ahmed S. Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Rad Res Appl Sciences 2016; 9(1): 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[63]
Hassaan MA, Hosny S. Green synthesis of Ag and Au nanoparticles from micro and macro Algae-Review. Intl J Atmospheric Oceanic Sciences 2018; 2(1): 10.
[http://dx.doi.org/10.11648/j.ijaos.20180201.12]
[64]
Saminathan K. Biosynthesis of silver nanoparticles using soil Actinomycetes Streptomyces sp. Int J Curr Microbiol Appl Sci 2015; 4(3): 1073-83.
[65]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[66]
Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res 2016; 88: 403-27.
[http://dx.doi.org/10.1016/j.watres.2015.10.025] [PMID: 26519626]
[67]
Garipov IT, Khaydarov RR, Gapurova OU, Efimova IL, Evgrafova SY. Silver Nanoparticles as a New Generation of Antimicrobial Prophylaxis. J Siberian Federal University Biol 2019; 12(3): 266-76.
[68]
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27(1): 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[69]
Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007; 3(1): 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[70]
He W, Liu X, Kienzle A, Müller WE, Feng Q. In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol 2016; 16(1): 219-28.
[http://dx.doi.org/10.1166/jnn.2016.10728] [PMID: 27398448]
[71]
Sonker AS, Pathak J, Kannaujiya VK, Sinha RP. Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Canadian J Biotechnol 2017; 1(1): 26.
[http://dx.doi.org/10.24870/cjb.2017-000103]
[72]
Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 2014; 9(5)e97881
[http://dx.doi.org/10.1371/journal.pone.0097881] [PMID: 24840186]
[73]
Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ 2015; 521-522: 305-14.
[http://dx.doi.org/10.1016/j.scitotenv.2015.03.101] [PMID: 25847174]
[74]
Yuan Y-G, Zhang S, Hwang J-Y, Kong I-K. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxidative medicine and cellular longevity Available from: https://www.hindawi.com/journals/omcl/2018/6121328/ (Accessed on 04/02/2020)
[75]
Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 2016; 17(10): 1603.
[http://dx.doi.org/10.3390/ijms17101603] [PMID: 27669221]
[76]
Barcińska E, Wierzbicka J, Zauszkiewicz-Pawlak A, Jacewicz D, Dabrowska A, Inkielewicz-Stepniak I. Role of oxidative and nitro-oxidative damage in silver nanoparticles cytotoxic effect against human pancreatic ductal adenocarcinoma cells. Oxidative medicine and cellular longevity Available from: https://www.hindawi.com/journals/omcl/2018/8251961/abs/ (Accessed on cited on15/11/2019)
[77]
Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules 2011; 16(10): 8894-918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[78]
Haggag EG, Elshamy AM, Rabeh MA, et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomedicine 2019; 14: 6217-29.
[http://dx.doi.org/10.2147/IJN.S214171] [PMID: 31496682]
[79]
Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 2013; 8(1): 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[80]
Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem 2017; 5: 6.
[http://dx.doi.org/10.3389/fchem.2017.00006] [PMID: 28271059]
[81]
Manjumeena R, Duraibabu D, Sudha J, Kalaichelvan PT. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach. J Environ SciHealth A Tox Hazard Subst Environ Eng 2014; 49(10): 1125-33.
[http://dx.doi.org/10.1080/10934529.2014.897149] [PMID: 24844893]
[82]
Khan SU, Saleh TA, Wahab A, et al. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 2018; 13: 733-62.
[http://dx.doi.org/10.2147/IJN.S153167] [PMID: 29440898]
[83]
Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 2011; 20(11): 543-9.
[http://dx.doi.org/10.12968/jowc.2011.20.11.543] [PMID: 22240850]
[84]
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for Wound Healing and Infection Control. Materials 2019; 12(13): 2176.
[http://dx.doi.org/10.3390/ma12132176] [PMID: 31284587]
[85]
Yusuf M. Silver nanoparticles: synthesis and applications. In: Handbook of Ecomaterials. 2017; pp. 1-14.
[86]
Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 2015; 5(5): 2554-74.
[http://dx.doi.org/10.1039/C5CY00285K]
[87]
Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 2018; 16(1): 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[88]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases nature 2000; 407(6801): 249.
[89]
Tímár J, Döme B, Fazekas K, Janovics A, Paku S. Angiogenesis-dependent diseases and angiogenesis therapy. Pathol Oncol Res 2001; 7(2): 85-94.
[http://dx.doi.org/10.1007/BF03032573] [PMID: 11458270]
[90]
Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 2009; 20(45)455104
[http://dx.doi.org/10.1088/0957-4484/20/45/455104] [PMID: 19822927]
[91]
Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci 2007; 52(10): 2732-42.
[http://dx.doi.org/10.1007/s10620-006-9738-4] [PMID: 17436088]
[92]
Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007; 2(1): 129-36.
[http://dx.doi.org/10.1002/cmdc.200600171] [PMID: 17075952]
[93]
Xu J, Zhu X, Zhou X, Khusbu FY, Ma C. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. Trends Analyt Chem 2019; 11: 5786.
[94]
Shamsipur M, Molaabasi F, Hosseinkhani S, Rahmati F. Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal Chem 2016; 88(4): 2188-97.
[http://dx.doi.org/10.1021/acs.analchem.5b03824] [PMID: 26812937]
[95]
Yin J, He X, Wang K, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem 2013; 85(24): 12011-9.
[http://dx.doi.org/10.1021/ac402989u] [PMID: 24266455]
[96]
Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 2012; 3(1): 2.
[http://dx.doi.org/10.1186/2041-9414-3-2] [PMID: 22321936]
[97]
Foldbjerg R, Irving ES, Hayashi Y, et al. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012; 130(1): 145-57.
[http://dx.doi.org/10.1093/toxsci/kfs225] [PMID: 22831968]
[98]
Lin J, Huang Z, Wu H, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 2014; 10(11): 2006-20.
[http://dx.doi.org/10.4161/auto.36293] [PMID: 25484080]
[99]
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 2009; 190(2): 156-62.
[http://dx.doi.org/10.1016/j.toxlet.2009.07.009] [PMID: 19607894]
[100]
Li Y, Guo M, Lin Z, et al. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine 2016; 11: 6693-702.
[http://dx.doi.org/10.2147/IJN.S122666] [PMID: 27994465]
[101]
Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 274(25): 17941-5.
[http://dx.doi.org/10.1074/jbc.274.25.17941] [PMID: 10364241]
[102]
Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 2010; 24(3): 872-8.
[http://dx.doi.org/10.1016/j.tiv.2009.12.001] [PMID: 19969064]
[103]
Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 2017; 9: 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[104]
Grün AL, Manz W, Kohl YL, et al. Impact of silver nanoparticles (AgNp) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur 2019; 31(1): 15.
[http://dx.doi.org/10.1186/s12302-019-0196-y]
[105]
Grün AL, Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil. Environ Sci Eur 2018; 30(1): 31.
[http://dx.doi.org/10.1186/s12302-018-0160-2] [PMID: 30221103]
[106]
Tripathi DK, Tripathi A, Shweta , et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 2017; 8: 7.
[http://dx.doi.org/10.3389/fmicb.2017.00007] [PMID: 28184215]
[107]
Jiang HS, Yin L, Ren NN, et al. The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut 2017; 223: 395-402.
[http://dx.doi.org/10.1016/j.envpol.2017.01.036] [PMID: 28117183]
[108]
Hou J, Zhou Y, Wang C, Li S, Wang X. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ Sci Technol 2017; 51(21): 12868-78.
[http://dx.doi.org/10.1021/acs.est.7b03918] [PMID: 28968066]
[109]
CD creative diagnostics. Properties and Applications of Silver Nanoparticles. Available from: Home > Support > Technology > Properties and Applications of Silver Nanoparticles. https://www.cdbioparticles.com/t/Properties-and-Applications-of-Silver-Nanoparticles_60.html Cited on 20/11/2019

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy