Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Isoquinolines: Important Cores in Many Marketed and Clinical Drugs

Author(s): Chunying Luo, Maxwell Ampomah-Wireko, Huanhuan Wang, Chunli Wu*, Qing Wang, Hui Zhang and Yaquan Cao

Volume 21 , Issue 7 , 2021

Published on: 24 April, 2020

Page: [811 - 824] Pages: 14

DOI: 10.2174/1871520620666200424132248

Price: $65

Abstract

Background: Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases.

Methods: Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names.

Results: At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail.

Conclusion: The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.

Keywords: Isoquinoline, clinical drug, disease, chemical property, pharmacology, activity.

Graphical Abstract
[1]
Datusalia, A.K.; Khatik, G.L. Editorial: Thiazole heterocycle: A privileged scaffold for drug design and discovery. Curr. Drug Discov. Technol., 2018, 15(3), 162.
[http://dx.doi.org/10.2174/157016381503180620153423] [PMID: 29984640]
[2]
Duan, Y.T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[3]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[4]
Nayak, S.; Gaonkar, S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[5]
Sharma, A.; Kumar, V.; Kharb, R.; Kumar, S.; Sharma, P.C.; Pathak, D.P. Imidazole derivatives as potential therapeutic agents. Curr. Pharm. Des., 2016, 22(21), 3265-3301.
[http://dx.doi.org/10.2174/1381612822666160226144333] [PMID: 26916016]
[6]
Wu, S.; Fluxe, A.; Sheffer, J.; Janusz, J.M.; Blass, B.E.; White, R.; Jackson, C.; Hedges, R.; Murawsky, M.; Fang, B.; Fadayel, G.M.; Hare, M.; Djandjighian, L. Discovery and in vitro/in vivo studies of tetrazole derivatives as Kv1.5 blockers. Bioorg. Med. Chem. Lett., 2006, 16(24), 6213-6218.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.021] [PMID: 17010606]
[7]
Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[8]
Sissi, C.; Palumbo, M. The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 439-450.
[http://dx.doi.org/10.2174/1568011033482279] [PMID: 14529452]
[9]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[10]
Ali, N.A.; Dar, B.A.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: A mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[11]
Tang, T. Progress in synthesis of isoquinoline skeleton compounds. JiangXiHuaGong, 2015, 3, 13-18.
[12]
Ding, Q.P.; Chen, Z.Y.; Yu, X.X.; Peng, Y.Y.; Wu, J. Highly efficient electrophilic cyclization of N′-(2-alkynylbenzylidene) hydrazides. Tetrahedron Lett., 2009, 50(3), 340-342.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.006]
[13]
Chen, Z.; Wu, J. Efficient generation of biologically active H-pyrazolo[5,1-a]isoquinolines via multicomponent reaction. Org. Lett., 2010, 12(21), 4856-4859.
[http://dx.doi.org/10.1021/ol101988q] [PMID: 20873765]
[14]
Bhongade, B.A.; Gadad, A.K. Insight into the structural requirements of urokinase-type plasminogen activator inhibitors based on 3D QSAR CoMFA/CoMSIA models. J. Med. Chem., 2006, 49(2), 475-489.
[http://dx.doi.org/10.1021/jm050149r] [PMID: 16420035]
[15]
Fish, P.V.; Barber, C.G.; Brown, D.G.; Butt, R.; Collis, M.G.; Dickinson, R.P.; Henry, B.T.; Horne, V.A.; Huggins, J.P.; King, E.; O’gara, M.; Mccleverty, D.; Mcintosh, F.; Phillips, C.; Webster, R. Selective urokinase-type plasminogen activator inhibitors. 4. 1-(7-sulfonamidoisoquinolinyl) guanidines. J. Med. Chem., 2007, 50(10), 2341-2351.
[16]
Barber, C.G.; Dickinson, R.P.; Fish, P.V.; Fish, P.V. Selective urokinase-type Plasminogen Activator (uPA) inhibitors. Part 3: 1-isoquinolinylguanidines. Bioorg. Med. Chem. Lett., 2004, 14(12), 3227-3230.
[PMID: 15149680]
[17]
Kim, H.Y.; Kim, K.S.; Kim, M.J.; Kim, H.S.; Lee, K.Y.; Kang, K.W. Auranofin inhibits RANKL-induced osteoclastogenesis by suppressing inhibitors of κB kinase and inflammasome-mediated interleukin-1β secretion. Oxid. Med. Cell. Longev., 2019, 2019, 3503912.
[http://dx.doi.org/10.1155/2019/3503912] [PMID: 31275508]
[18]
Kim, D.Y.; Chung, S.I.; Ro, S.W.; Paik, Y.H.; Lee, J.I.; Jung, M.K.; Lee, M.G.; Park, Y.N.; Lee, K.S.; Park, J.G.; Park, H.D.; Han, K.H. Combined effects of an antioxidant and caspase inhibitor on the reversal of hepatic fibrosis in rats. Apoptosis, 2013, 18(12), 1481-1491.
[http://dx.doi.org/10.1007/s10495-013-0896-5] [PMID: 24045874]
[19]
Thorburn, A. Death receptor-induced cell killing. Cell. Signal., 2004, 16(2), 139-144.
[http://dx.doi.org/10.1016/j.cellsig.2003.08.007] [PMID: 14636884]
[20]
Kiriyama, A.; Nishiura, T.; Yamaji, H.; Takada, K. Metabolic characterization of a tripeptide human immunodeficiency virus type 1 protease inhibitor, KNI-272, in rat liver microsomes. Antimicrob. Agents Chemother., 1999, 43(3), 549-556.
[http://dx.doi.org/10.1128/AAC.43.3.549] [PMID: 10049266]
[21]
Mimoto, T.; Imai, J.; Kisanuki, S.; Enomoto, H.; Hattori, N.; Akaji, K.; Kiso, Y. Kynostatin (KNI)-227 and -272, highly potent anti-HIV agents: Conformationally constrained tripeptide inhibitors of HIV protease containing allophenylnorstatine. Chem. Pharm. Bull. (Tokyo), 1992, 40(8), 2251-2253.
[http://dx.doi.org/10.1248/cpb.40.2251] [PMID: 1423795]
[22]
Doi, M.; Ishida, T.; Katsuya, Y.; Sasaki, M.; Taniguchi, T.; Hasegawa, H.; Mimoto, T.; Kiso, Y. KNI-272, a highly selective and potent peptidic HIV protease inhibitor. Acta Crystallogr. C, 2001, 57(Pt 11), 1333-1335.
[http://dx.doi.org/10.1107/S0108270101013701] [PMID: 11706266]
[23]
Humphrey, R.W.; Wyvill, K.M.; Nguyen, B.Y.; Shay, L.E.; Kohler, D.R.; Steinberg, S.M.; Ueno, T.; Fukasawa, T.; Shintani, M.; Hayashi, H.; Mitsuya, H.; Yarchoan, R. A phase I trial of the pharmacokinetics, toxicity, and activity of KNI-272, an inhibitor of HIV-1 protease, in patients with AIDS or symptomatic HIV infection. Antiviral Res., 1999, 41(1), 21-33.
[http://dx.doi.org/10.1016/S0166-3542(98)00058-8] [PMID: 10321576]
[24]
Kiriyama, A.; Nishiura, T.; Ishino, M.; Yamamoto, Y.; Ogita, I.; Kiso, Y.; Takada, K. Binding characteristics of KNI-272 to plasma proteins, a new potent tripeptide HIV protease inhibitor. Biopharm. Drug Dispos., 1996, 17(9), 739-751.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199612)17:9<739:AID-BDD987>3.0.CO;2-0] [PMID: 8968527]
[25]
Sugahara, M.; Kiriyama, A.; Hamada, Y.; Kiso, Y.; Takada, K. Absorption of new HIV-1 protease inhibitor, KNI-272, after intraduodenal and intragastric administrations to rats: Effect of solvent. Biopharm. Drug Dispos., 1995, 16(4), 269-277.
[http://dx.doi.org/10.1002/bdd.2510160403] [PMID: 7548776]
[26]
Pascoal, T.A.; Shin, M.; Kang, M.S.; Chamoun, M.; Chartrand, D.; Mathotaarachchi, S.; Bennacef, I.; Therriault, J.; Ng, K.P.; Hopewell, R.; Bouhachi, R.; Hsiao, H.H.; Benedet, A.L.; Soucy, J.P.; Massarweh, G.; Gauthier, S.; Rosa-Neto, P. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res. Ther., 2018, 10(1), 74-87.
[http://dx.doi.org/10.1186/s13195-018-0402-y] [PMID: 30064520]
[27]
Koole, M.; Lohith, T.G.; Valentine, J.L.; Bennacef, I.; Declercq, R.; Reynders, T.; Riffel, K.; Celen, S.; Serdons, K.; Bormans, G.; Ferry-Martin, S.; Laroque, P.; Walji, A.; Hostetler, E.D.; Briscoe, R.J.; De Hoon, J.; Sur, C.; Van Laere, K.; Struyk, A. Preclinical safety evaluation and human dosimetry of [(18)F]MK-6240, a novel PET tracer for imaging neurofibrillary tangles. Mol. Imaging Biol., 2020, 22(1), 173-180.
[PMID: 31111397]
[28]
Betthauser, T.J.; Cody, K.A.; Zammit, M.D.; Murali, D.; Converse, A.K.; Barnhart, T.E.; Stone, C.K.; Rowley, H.A.; Johnson, S.C.; Christian, B.T. In vivo characterization and quantification of neurofibrillary Tau PET radioligand 18F-MK-6240 in humans from alzheimer disease dementia to young controls. J. Nucl. Med., 2019, 60(1), 93-99.
[http://dx.doi.org/10.2967/jnumed.118.209650] [PMID: 29777006]
[29]
Lohith, T.G.; Bennacef, I.; Vandenberghe, R.; Vandenbulcke, M.; Salinas, C.A.; Declercq, R.; Reynders, T.; Telan-Choing, N.F.
Riffel, K.; Celen, S.; Serdons, K.; Bormans, G.; Tsai, K.; Walji, A.; Hostetler, E.D.; Evelhoch, J.L.; Van Laere, K.; Forman, M.; Stoch, A.; Sur, C.; Struyk, A. Brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangles. J. Nucl. Med., 2019, 60(1), 107-114.
[http://dx.doi.org/10.2967/jnumed.118.208215] [PMID: 29880509]
[30]
Hostetler, E.D.; Walji, A.M.; Zeng, Z.; Miller, P.; Bennacef, I.; Salinas, C.; Connolly, B.; Gantert, L.; Haley, H.; Holahan, M.; Purcell, M.; Riffel, K.; Lohith, T.G.; Coleman, P.; Soriano, A.; Ogawa, A.; Xu, S.; Zhang, X.; Joshi, E.; Della Rocca, J.; Hesk, D.; Schenk, D.J.; Evelhoch, J.L. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J. Nucl. Med., 2016, 57(10), 1599-1606.
[http://dx.doi.org/10.2967/jnumed.115.171678] [PMID: 27230925]
[31]
Palumbo, J.M. Compositions comprising Transient Receptor Potential Melastatin 8 (TRPM8) antagonist for treating or preventing vasomotor symptoms. WO Patent 2,017,217,351, 2017.
[32]
Takao, K. Preparation of crystal forms of 4-[[(4-cyclopropylisoquinolin-3-yl)[4-(trifluoromethoxy)benzyl]amino] sulfonyl]benzoi c acid. JP Patent 2,019,116,445, 2019.
[33]
Tsuzuki, Y.; Sawamoto, D.; Sakamoto, T.; Kato, H.; Tanba, S.; Shibui, N. Pharmaceutical compositions containing sulfonamides as Transient Receptor Potential channel 8 (TRPM8) blockers or their prodrugs. JP Patent 2,014,074,021, 2014.
[34]
Cook, J.; Zusi, F.C.; McDonald, I.M.; King, D.; Hill, M.D.; Iwuagwu, C.; Mate, R.A.; Fang, H.; Zhao, R.; Wang, B.; Cutrone, J.; Ma, B.; Gao, Q.; Knox, R.J.; Matchett, M.; Gallagher, L.; Ferrante, M.; Post-Munson, D.; Molski, T.; Easton, A.; Miller, R.; Jones, K.; Digavalli, S.; Healy, F.; Lentz, K.; Benitex, Y.; Clarke, W.; Natale, J.; Siuciak, J.A.; Lodge, N.; Zaczek, R.; Denton, R.; Morgan, D.; Bristow, L.J.; Macor, J.E.; Olson, R.E. Design and Synthesis of a new series of 4-heteroarylamino-1′-azaspiro[oxazole-5,3′-bicyclo[2.2.2]octanes as α7 nicotinic receptor agonists. 1. Development of pharmacophore and early structure-activity relationship. J. Med. Chem., 2016, 59(24), 11171-11181.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01506] [PMID: 27958732]
[35]
Pieschl, R.L.; Miller, R.; Jones, K.M.; Post-Munson, D.J.; Chen, P.; Newberry, K.; Benitex, Y.; Molski, T.; Morgan, D.; McDonald, I.M.; Macor, J.E.; Olson, R.E.; Asaka, Y.; Digavalli, S.; Easton, A.; Herrington, J.; Westphal, R.S.; Lodge, N.J.; Zaczek, R.; Bristow, L.J.; Li, Y.W. Effects of BMS-902483, an α7 nicotinic acetylcholine receptor partial agonist, on cognition and sensory gating in relation to receptor occupancy in rodents. Eur. J. Pharmacol., 2017, 807, 1-11.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.024] [PMID: 28438647]
[36]
Guan, S.J.; Ma, Z.H.; Wu, Y.L.; Zhang, J.P.; Liang, F.; Weiss, J.W.; Guo, Q.Y.; Wang, J.Y.; Ji, E.S.; Chu, L. Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2012, 50(6), 1874-1882.
[http://dx.doi.org/10.1016/j.fct.2012.03.006] [PMID: 22429817]
[37]
Zhou, H.; Zhang, K.X.; Li, Y.J.; Guo, B.Y.; Wang, M.; Wang, M. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses high glucose-induced proliferation and collagen synthesis in rat cardiac fibroblasts. Clin. Exp. Pharmacol. Physiol., 2011, 38(6), 387-394.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05523.x] [PMID: 21457293]
[38]
Fukushima, M.; Nakamuta, M.; Kohjima, M.; Kotoh, K.; Enjoji, M.; Kobayashi, N.; Nawata, H. Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int., 2005, 25(4), 829-838.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01142.x] [PMID: 15998434]
[39]
Debruyne, J.C.; Versijpt, J.; Van Laere, K.J.; De Vos, F.; Keppens, J.; Strijckmans, K.; Achten, E.; Slegers, G.; Dierckx, R.A.; Korf, J.; De Reuck, J.L. PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur. J. Neurol., 2003, 10(3), 257-264.
[http://dx.doi.org/10.1046/j.1468-1331.2003.00571.x] [PMID: 12752399]
[40]
Folkersma, H.; Foster Dingley, J.C.; van Berckel, B.N.; Rozemuller, A.; Boellaard, R.; Huisman, M.C.; Lammertsma, A.A.; Vandertop, W.P.; Molthoff, C.F. Increased cerebral (R)-[(11)C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: A longitudinal pilot study. J. Neuroinflammation, 2011, 8, 67-73.
[http://dx.doi.org/10.1186/1742-2094-8-67] [PMID: 21672189]
[41]
Kropholler, M.A.; Boellaard, R.; Schuitemaker, A.; van Berckel, B.N.; Luurtsema, G.; Windhorst, A.D.; Lammertsma, A.A. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J. Cereb. Blood Flow Metab., 2005, 25(7), 842-851.
[http://dx.doi.org/10.1038/sj.jcbfm.9600092] [PMID: 15744248]
[42]
Schuitemaker, A.; van Berckel, B.N.; Kropholler, M.A.; Kloet, R.W.; Jonker, C.; Scheltens, P.; Lammertsma, A.A.; Boellaard, R. Evaluation of methods for generating parametric (R-[11C]PK11195 binding images. J. Cereb. Blood Flow Metab., 2007, 27(9), 1603-1615.
[http://dx.doi.org/10.1038/sj.jcbfm.9600459] [PMID: 17311080]
[43]
Palumbo, J.M. Compositions comprising Transient Receptor Potential Melastatin 8 (TRPM8) antagonist for treating or preventing vasomotor symptoms. WO Patent 2,017,217,351, 2017.
[44]
Carbajal, K.; Weksler, M.; Moore, L.; Ding, J.; Kopczynski, C.; Lin, C-W. AR-13503 enhances the efficacy of aflibercept in a mouse model of proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2018, 59(9), 200.
[45]
Ding, J.; Foley, B.E.; Kopczynski, C.; Lin, C-W. ROCK/PKC inhibitor AR-13503 inhibits angiogenesis and protects the barrier function of retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci., 2018, 59(9), 205.
[46]
Berg, G.; Jönsson, K.A.; Hammar, M.; Norlander, B. Variable bioavailability of papaverine. Pharmacol. Toxicol., 1988, 62(5), 308-310.
[http://dx.doi.org/10.1111/j.1600-0773.1988.tb01893.x] [PMID: 3413033]
[47]
Berkó, S.; Zsikó, S.; Deák, G.; Gácsi, A.; Kovács, A.; Budai-Szűcs, M.; Pajor, L.; Bajory, Z.; Csányi, E. Papaverine hydrochloride containing nanostructured lyotropic liquid crystal formulation as a potential drug delivery system for the treatment of erectile dysfunction. Drug Des. Devel. Ther., 2018, 12, 2923-2931.
[http://dx.doi.org/10.2147/DDDT.S168218] [PMID: 30254422]
[48]
Capasso, A.; Loizzo, A. The effect of papaverine on acute opiate withdrawal in guinea pig ileum. Phytother. Res., 2003, 17(7), 774-777.
[http://dx.doi.org/10.1002/ptr.1234] [PMID: 12916076]
[49]
Oswald, W.J.; Baeder, D.H. Pharmacology of ethaverine HC1: Human and animal studies. South. Med. J., 1975, 68(12), 1481-1484.
[http://dx.doi.org/10.1097/00007611-197512000-00007] [PMID: 1105795]
[50]
Resch, H.; Weigert, G.; Karl, K.; Pemp, B.; Garhofer, G.; Schmetterer, L. Effect of systemic moxaverine on ocular blood flow in humans. Acta Ophthalmol., 2009, 87(7), 731-735.
[http://dx.doi.org/10.1111/j.1755-3768.2008.01338.x] [PMID: 18778333]
[51]
Walter, S. Drug discovery: A history (Sneader, Walter). J. Chem. Educ., 2006, 83(2), 215.
[http://dx.doi.org/10.1021/ed083p215.1]
[52]
Bergstrand, H.; Lundquist, B. Human basophil histamine release is differently affected by inhibitors of calmodulin, diacylglycerol kinase and peptidyl prolyl cis-trans isomerase in a secretagogue specific manner. Allergy, 1992, 47(4 Pt 2), 353-361.
[http://dx.doi.org/10.1111/j.1398-9995.1992.tb02071.x] [PMID: 1280915]
[53]
Cohen, M.R.; Smetzer, J.L. How nondrug allergies are listed in an electronic database; operating room practice: “Stop Using Multiple Dose Vials”; etravirine and ethaverine mix-up; rapaflo and rapamune confusion. Hosp. Pharm., 2012, 47(5), 328-331.
[http://dx.doi.org/10.1310/hpj4705-328]
[54]
Becker, U.; Ehrhardt, C.; Schaefer, U.F.; Gukasyan, H.J.; Kim, K.J.; Lee, V.H.; Lehr, C.M. Tissue distribution of moxaverine-hydrochloride in the rabbit eye and plasma. J. Ocul. Pharmacol. Ther., 2005, 21(3), 210-216.
[http://dx.doi.org/10.1089/jop.2005.21.210] [PMID: 15969638]
[55]
Minoru, I.; Toshiyuki, S.; Hajime, S.; Yoshimichi, O.; Takeshi, N.; Hideaki, S.; Nobuhiro, K.; Yasuhiko, K. Investigation of hepatic energy metabolism in normothermic hepatic ischemia- the effect of calmodulin antagonist on normal and cirrhotic rat liver. Jpn. J. Gastroenterol. Surg, 1991, 24(5), 1187-1195.
[http://dx.doi.org/10.5833/jjgs.24.1187]
[56]
Weijlard, J.; Swanezy, E.F.; Tashjian, E. The preparation of 6,7-diethoxy-1-(3′,4′-di-ethoxybenzyl)-isoquinoline. Notes, 1949, 71, 1889-1890.
[57]
Turcsan, I.; Jelinek, I.; Ugrics, J.; Csik, I.; Somfai, E.; Toth, I.C.N. Process for the manufacture of pure isoquinoline derivatives. US Patent 4,126,615, 1976.
[58]
Akamatsu, N.; Sugawara, Y.; Kokudo, N. Asunaprevir (BMS-650032) for the treatment of hepatitis C virus. Expert Rev. Anti Infect. Ther., 2015, 13(11), 1307-1317.
[http://dx.doi.org/10.1586/14787210.2015.1091724] [PMID: 26414905]
[59]
Eley, T.; Garimella, T.; Li, W.; Bertz, R.J. Asunaprevir: A review of preclinical and clinical pharmacokinetics and drug-drug interactions. Clin. Pharmacokinet., 2015, 54(12), 1205-1222.
[http://dx.doi.org/10.1007/s40262-015-0299-6] [PMID: 26177803]
[60]
Eley, T.; Garimella, T.; Li, W.; Bertz, R.J. Asunaprevir: An HCV protease inhibitor with preferential liver distribution. Clin. Pharmacol. Drug Dev., 2017, 6(2), 195-200.
[61]
Gentile, I.; Buonomo, A.R.; Zappulo, E.; Minei, G.; Morisco, F.; Borrelli, F.; Coppola, N.; Borgia, G. Asunaprevir, a protease inhibitor for the treatment of hepatitis C infection. Ther. Clin. Risk Manag., 2014, 10, 493-504.
[62]
McPhee, F.; Sheaffer, A.K.; Friborg, J.; Hernandez, D.; Falk, P.; Zhai, G.; Levine, S.; Chaniewski, S.; Yu, F.; Barry, D.; Chen, C.; Lee, M.S.; Mosure, K.; Sun, L.Q.; Sinz, M.; Meanwell, N.A.; Colonno, R.J.; Knipe, J.; Scola, P. Preclinical profile and characterization of the Hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother., 2012, 56(10), 5387-5396.
[http://dx.doi.org/10.1128/AAC.01186-12] [PMID: 22869577]
[63]
Scola, P.M.; Sun, L.Q.; Wang, A.X.; Chen, J.; Sin, N.; Venables, B.L.; Sit, S.Y.; Chen, Y.; Cocuzza, A.; Bilder, D.M.; D’Andrea, S.V.; Zheng, B.; Hewawasam, P.; Tu, Y.; Friborg, J.; Falk, P.; Hernandez, D.; Levine, S.; Chen, C.; Yu, F.; Sheaffer, A.K.; Zhai, G.; Barry, D.; Knipe, J.O.; Han, Y.H.; Schartman, R.; Donoso, M.; Mosure, K.; Sinz, M.W.; Zvyaga, T.; Good, A.C.; Rajamani, R.; Kish, K.; Tredup, J.; Klei, H.E.; Gao, Q.; Mueller, L.; Colonno, R.J.; Grasela, D.M.; Adams, S.P.; Loy, J.; Levesque, P.C.; Sun, H.; Shi, H.; Sun, L.; Warner, W.; Li, D.; Zhu, J.; Meanwell, N.A.; McPhee, F. The discovery of asunaprevir (BMS-650032), an orally efficacious NS3 protease inhibitor for the treatment of hepatitis C virus infection. J. Med. Chem., 2014, 57(5), 1730-1752.
[http://dx.doi.org/10.1021/jm500297k] [PMID: 24564672]
[64]
Scola, P.M.; Wang, A.X.; Good, A.C.; Sun, L.Q.; Combrink, K.D.; Campbell, J.A.; Chen, J.; Tu, Y.; Sin, N.; Venables, B.L.; Sit, S.Y.; Chen, Y.; Cocuzza, A.; Bilder, D.M.; D’Andrea, S.; Zheng, B.; Hewawasam, P.; Ding, M.; Thuring, J.; Li, J.; Hernandez, D.; Yu, F.; Falk, P.; Zhai, G.; Sheaffer, A.K.; Chen, C.; Lee, M.S.; Barry, D.; Knipe, J.O.; Li, W.; Han, Y.H.; Jenkins, S.; Gesenberg, C.; Gao, Q.; Sinz, M.W.; Santone, K.S.; Zvyaga, T.; Rajamani, R.; Klei, H.E.; Colonno, R.J.; Grasela, D.M.; Hughes, E.; Chien, C.; Adams, S.; Levesque, P.C.; Li, D.; Zhu, J.; Meanwell, N.A.; McPhee, F. Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection. J. Med. Chem., 2014, 57(5), 1708-1729.
[http://dx.doi.org/10.1021/jm401840s] [PMID: 24555570]
[65]
Brown, D.G.; Boström, J. Where do recent small molecule clinical development candidates come from? J. Med. Chem., 2018, 61(21), 9442-9468.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00675] [PMID: 29920198]
[66]
Jenkins, S.; Scola, P.; McPhee, F.; Knipe, J.; Gesenberg, C.; Sinz, M.; Arora, V.; Pilcher, G.; Santone, K. Preclinical pharmacokinetics and in vitro metabolism of BMS-605339: A novel HCV NS3 protease inhibitor. J. Pharm. Sci., 2014, 103(6), 1891-1902.
[http://dx.doi.org/10.1002/jps.23959] [PMID: 24700293]
[67]
Wang, H.; Guo, C.; Chen, B.Z.; Ji, M. Computational study on the drug resistance mechanism of HCV NS3 protease to BMS-605339. Biotechnol. Appl. Biochem., 2017, 64(2), 153-164.
[http://dx.doi.org/10.1002/bab.1479] [PMID: 26790544]
[68]
Bowsher, M.; Hiebert, S.; Li, R.; Wang, A.X.; Friborg, J.; Yu, F.; Hernandez, D.; Wang, Y.K.; Klei, H.; Rajamani, R.; Mosure, K.; Knipe, J.O.; Meanwell, N.A.; McPhee, F.; Scola, P.M. The discovery and optimization of naphthalene-linked P2-P4 Macrocycles as inhibitors of HCV NS3 protease. Bioorg. Med. Chem. Lett., 2018, 28(1), 43-48.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.005] [PMID: 29162454]
[69]
Yang, N.; Sun, Q.; Xu, Z.; Wang, X.; Zhao, X.; Cao, Y.; Chen, L.; Fan, G. LC-ESI-MS/MS analysis and pharmacokinetics of GP205, an innovative potent macrocyclic inhibitor of hepatitis C virus NS3/4A protease in rats. Molecules, 2015, 20(3), 4319-4336.
[http://dx.doi.org/10.3390/molecules20034319] [PMID: 25756650]
[70]
Zhai, P.B.; Qing, J.; Li, B.; Zhang, L.Q.; Ma, L.; Chen, L. GP205, a new hepatitis C virus NS3/4A protease inhibitor, displays higher metabolic stability in vitro and drug exposure in vivo. Acta Pharmacol. Sin., 2018, 39(11), 1746-1752.
[http://dx.doi.org/10.1038/s41401-018-0046-2] [PMID: 29930277]
[71]
Song, Z.J.; Tellers, D.M.; Dormer, P.G.; Zewge, D.; Janey, J.M.; Nolting, A.; Steinhuebel, D.; Oliver, S.; Devine, P.N.; Tschaen, D.M. Practical synthesis of A macrocyclic HCV protease inhibitor: A high-yielding macrolactam formation. Org. Process Res. Dev., 2014, 18(3), 423-430.
[http://dx.doi.org/10.1021/op400331j]
[72]
Rudd, M.T.; McCauley, J.A.; Butcher, J.W.; Romano, J.J.; McIntyre, C.J.; Nguyen, K.T.; Gilbert, K.F.; Bush, K.J.; Holloway, M.K.; Swestock, J.; Wan, B.L.; Carroll, S.S.; DiMuzio, J.M.; Graham, D.J.; Ludmerer, S.W.; Stahlhut, M.W.; Fandozzi, C.M.; Trainor, N.; Olsen, D.B.; Vacca, J.P.; Liverton, N.J. Discovery of MK-1220: A macrocyclic inhibitor of Hepatitis C virus NS3/4A protease with improved preclinical plasma exposure. ACS Med. Chem. Lett., 2011, 2(3), 207-212.
[http://dx.doi.org/10.1021/ml1002426] [PMID: 24900304]
[73]
Alam, N.; Angeli, M.G.; Greenblatt, D.J. Mechanism of in vitro inhibition of UGT1A1 by paritaprevir. J. Pharm. Pharmacol., 2017, 69(12), 1794-1801.
[http://dx.doi.org/10.1111/jphp.12821] [PMID: 28990653]
[74]
Menon, R.M.; Polepally, A.R.; Khatri, A.; Awni, W.M.; Dutta, S. Clinical pharmacokinetics of paritaprevir. Clin. Pharmacokinet., 2017, 56(10), 1125-1137.
[75]
Keating, G.M. Ombitasvir/paritaprevir/ritonavir: A review in chronic HCV genotype 4 infection. Drugs, 2016, 76(12), 1203-1211.
[PMID: 27401997]
[76]
Deeks, E.D. Ombitasvir/paritaprevir/ritonavir plus dasabuvir: A review in chronic HCV genotype 1 infection. Drugs, 2015, 75(9), 1027-1038.
[http://dx.doi.org/10.1007/s40265-015-0412-z] [PMID: 26059288]
[77]
Yu, M.L.; Chen, Y.L.; Huang, C.F.; Lin, K.H.; Yeh, M.L.; Huang, C.I.; Hsieh, M.H.; Lin, Z.Y.; Chen, S.C.; Huang, J.F.; Dai, C.Y.; Chuang, W.L. Paritaprevir/ritonavir/ombitasvir plus dasabuvir with ribavirin for treatment of recurrent chronic hepatitis C genotype 1 infection after liver transplantation: Real-world experience. J. Formos. Med. Assoc., 2018, 117(6), 518-526.
[http://dx.doi.org/10.1016/j.jfma.2017.06.006] [PMID: 28662883]
[78]
Ahmed, H.; Abushouk, A.I.; Menshawy, A.; Mohamed, A.; Negida, A.; Loutfy, S.A.; Abdel-Daim, M.M. Safety and efficacy of ombitasvir/paritaprevir/ritonavir and Dasabuvir with or without ribavirin for treatment of Hepatitis C virus genotype 1: A systematic review and meta-analysis. Clin. Drug Investig., 2017, 37(11), 1009-1023.
[79]
Kawada, J.I.; Ando, S.; Torii, Y.; Watanabe, T.; Sato, Y.; Ito, Y.; Kimura, H. Antitumor effects of duvelisib on Epstein-Barr virus-associated lymphoma cells. Cancer Med., 2018, 7(4), 1275-1284.
[PMID: 29522278]
[80]
Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M.; Duvelisib, A.; Duvelisib:, A 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals (Basel), 2019, 12(2), 69-75.
[http://dx.doi.org/10.3390/ph12020069] [PMID: 31064155]
[81]
Frustaci, A.M.; Tedeschi, A.; Deodato, M.; Zamprogna, G.; Cairoli, R.; Montillo, M. Duvelisib: A new phosphoinositide-3-kinase inhibitor in chronic lymphocytic leukemia. Future Oncol., 2019, 15(19), 2227-2239.
[http://dx.doi.org/10.2217/fon-2018-0881] [PMID: 31137964]
[82]
Flinn, I.W.; Hillmen, P.; Montillo, M.; Nagy, Z.; Illés, Á.; Etienne, G.; Delgado, J.; Kuss, B.J.; Tam, C.S.; Gasztonyi, Z.; Offner, F.; Lunin, S.; Bosch, F.; Davids, M.S.; Lamanna, N.; Jaeger, U.; Ghia, P.; Cymbalista, F.; Portell, C.A.; Skarbnik, A.P.; Cashen, A.F.; Weaver, D.T.; Kelly, V.M.; Turnbull, B.; Stilgenbauer, S. The phase 3 DUO trial: Duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood, 2018, 132(23), 2446-2455.
[http://dx.doi.org/10.1182/blood-2018-05-850461] [PMID: 30287523]
[83]
Blair, H.A. Duvelisib: First global approval. Drugs, 2018, 78(17), 1847-1853.
[84]
Blair, H.A.; Faia, K.; White, K.; Murphy, E.; Proctor, J.; Pink, M.; Kosmider, N.; Mcgovern, K.; Kutok, J. The Phosphoinositide-3 Kinase (PI3K)-delta, gamma inhibitor, duvelisib show preclinical synergy with multiple targeted therapies in hematologic malignancies. PLoS One, 2018, 13(8), e0200725.
[PMID: 30067771]
[85]
Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; Kelly, V.M.; Allen, K.; Douglas, M.; Sweeney, J.; Kelly, P.; Horwitz, S. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood, 2018, 131(8), 877-887.
[http://dx.doi.org/10.1182/blood-2017-05-786566] [PMID: 29191916]
[86]
De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L.F.; Liu, C.; Cymerman, D.H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; Douglas, M.; Tibbitts, T.; Sharma, S.; Proctor, J.; Kosmider, N.; White, K.; Stern, H.; Soglia, J.; Adams, J.; Palombella, V.J.; McGovern, K.; Kutok, J.L.; Wolchok, J.D.; Merghoub, T. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature, 2016, 539(7629), 443-447.
[http://dx.doi.org/10.1038/nature20554] [PMID: 27828943]
[87]
Jia, H.; Dai, G.; Su, W.; Xiao, K.; Weng, J.; Zhang, Z.; Wang, Q.; Yuan, T.; Shi, F.; Zhang, Z.; Chen, W.; Sai, Y.; Wang, J.; Li, X.; Cai, Y.; Yu, J.; Ren, P.; Venable, J.; Rao, T.; Edwards, J.P.; Bembenek, S.D. Discovery, optimization, and evaluation of potent and highly selective PI3Kγ-PI3Kδ dual inhibitors. J. Med. Chem., 2019, 62(10), 4936-4948.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02014] [PMID: 31033293]
[88]
Qiu, X.; Tian, Y.; Liang, Z.; Sun, Y.; Li, Z.; Bian, J. Recent discovery of phosphoinositide 3-kinase γ inhibitors for the treatment of immune diseases and cancers. Future Med. Chem., 2019, 11(16), 2151-2169.
[http://dx.doi.org/10.4155/fmc-2019-0010] [PMID: 31538525]
[89]
Zhang, X.; Shen, L.; Liu, Q.; Hou, L.; Huang, L. Inhibiting PI3 kinase-γ in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J. Control. Release, 2019, 309, 173-180.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.039] [PMID: 31362079]
[90]
Evans, C.A.; Liu, T.; Lescarbeau, A.; Nair, S.J.; Grenier, L.; Pradeilles, J.A.; Glenadel, Q.; Tibbitts, T.; Rowley, A.M.; DiNitto, J.P.; Brophy, E.E.; O’Hearn, E.L.; Ali, J.A.; Winkler, D.G.; Goldstein, S.I.; O’Hearn, P.; Martin, C.M.; Hoyt, J.G.; Soglia, J.R.; Cheung, C.; Pink, M.M.; Proctor, J.L.; Palombella, V.J.; Tremblay, M.R.; Castro, A.C. Discovery of a selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett., 2016, 7(9), 862-867.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00238] [PMID: 27660692]
[91]
Crowley, H.J.; Yaremko, B.; Selig, W.M.; Janero, D.R.; Burghardt, C.; Welton, A.F.; O’Donnell, M. Pharmacology of a potent platelet-activating factor antagonist: Ro 24-4736. J. Pharmacol. Exp. Ther., 1991, 259(1), 78-85.
[PMID: 1656030]
[92]
Anastasi, E.M.; Williams, T.H.; Sasso, G.J.; Chang, D.; Liberato, D.J.; Loh, A.C. Disposition and metabolism of Ro 24-4736 in the rat. Life Sci., 1994, 54(26), PL483-PL490.
[http://dx.doi.org/10.1016/0024-3205(94)00721-7] [PMID: 8208055]
[93]
Welton, A.F.; O’Donnell, M.; Renzetti, L.; Simko, B.; Tocker, J.; Cashin, C.; Newbold, P.; Wasserman, M.A. Studies of the combination of Ro 24-5913, a peptidoleukotriene antagonist, and Ro 24-4736, a PAF antagonist, in guinea pig and rat models of lung inflammation. Ann. N. Y. Acad. Sci., 1994, 744, 274-288.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb52745.x] [PMID: 7825850]
[94]
Grisk, O.; Schlüter, T.; Reimer, N.; Zimmermann, U.; Katsari, E.; Plettenburg, O.; Löhn, M.; Wollert, H.G.; Rettig, R. The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries. J. Hypertens., 2012, 30(5), 980-989.
[http://dx.doi.org/10.1097/HJH.0b013e328351d459] [PMID: 22388233]
[95]
Guagnini, F.; Ferazzini, M.; Grasso, M.; Blanco, S.; Croci, T. Erectile properties of the Rho-kinase inhibitor SAR407899 in diabetic animals and human isolated corpora cavernosa. J. Transl. Med., 2012, 10, 59-69.
[http://dx.doi.org/10.1186/1479-5876-10-59] [PMID: 22444253]
[96]
Löhn, M.; Plettenburg, O.; Kannt, A.; Kohlmann, M.; Hofmeister, A.; Kadereit, D.; Monecke, P.; Schiffer, A.; Schulte, A.; Ruetten, H.; Ivashchenko, Y. End-organ protection in hypertension by the novel and selective Rho-kinase inhibitor, SAR407899. World J. Cardiol., 2015, 7(1), 31-42.
[http://dx.doi.org/10.4330/wjc.v7.i1.31] [PMID: 25632317]
[97]
Löhn, M.; Plettenburg, O.; Ivashchenko, Y.; Kannt, A.; Hofmeister, A.; Kadereit, D.; Schaefer, M.; Linz, W.; Kohlmann, M.; Herbert, J.M.; Janiak, P.; O’Connor, S.E.; Ruetten, H. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension, 2009, 54(3), 676-683.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.134353] [PMID: 19597037]
[98]
Chen, W.; Chen, S.; Chen, W.; Li, X.C.; Ghobrial, R.M.; Kloc, M. Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transpl. Immunol., 2018, 50, 15-25.
[http://dx.doi.org/10.1016/j.trim.2018.06.002] [PMID: 29885441]
[99]
Zhao, H.P.; Zhang, X.S.; Xiang, B.R. Discontinued drugs in 2010: Cardiovascular drugs. Expert Opin. Investig. Drugs, 2011, 20(10), 1311-1325.
[http://dx.doi.org/10.1517/13543784.2011.611500] [PMID: 21870899]
[100]
Kuota, N.K.H.; Watanabe, K.; Onikubo, T.; Sugai, T. Effects of N-1518, an α,β-adrenoceptor blocking agent, on peripheral circulation. Jpn. J. Pharmacol., 1993, 61(Suppl. 1), 214.
[101]
Sugai, T. Pharmacological properties of (+/-)-4-[2-hydroxy-3-(3-(2-methoxyphenoxy)-2-propylamino)propoxy]-1(2H) -isoquinolinone (N-1518), a new combined alpha- and beta-adrenoceptor blocking drug. Nippon Yakurigaku Zasshi, 1990, 96(3), 117-127.
[http://dx.doi.org/10.1254/fpj.96.3_117] [PMID: 1980255]
[102]
Maulard, C.; Urien, S.; Bastian, G.; Tillement, J.P. Binding of retelliptine, a new antitumoral agent, to serum proteins and erythrocytes. Biochem. Pharmacol., 1990, 40(4), 895-898.
[http://dx.doi.org/10.1016/0006-2952(90)90333-G] [PMID: 2386553]
[103]
Enescu, M.; Fontaine-Aupart, M-P.; Soep, B.; Tfibel, F. Interaction of the antitumoral drug pazelliptine with polynucleotides: A subpicosecond transient absorption study. J. Phys. Chem. B, 1998, 102(18), 3631-3636.
[http://dx.doi.org/10.1021/jp980099k]
[104]
Fontaine-Aupart, M.P.; Frejacques, M.; Renault, E.; Ferradini, C.; Gardes-Albert, M.; Hickel, B.; Rivalle, C.; Bisagni, E. Two-photon ionisation of the antitumor drug pazelliptine (BD40) by 355nm laser photolysis. J. Photochem. Photobiol. B, 1993, 21(2-3), 203-209.
[http://dx.doi.org/10.1016/1011-1344(93)80184-B] [PMID: 8301416]
[105]
Moustacchi, E.; Favaudon, V.; Bisagni, E. Likelihood of the new antitumoral drug 10-[gamma-diethylaminopropylamino]-6-methyl-5H-pyrido[3′,4′:4,5]pyrrolo [2,3-g]isoquinoline (BD-40), a pyridopyrroloisoquinoline derivative, to induce DNA strand breaks in vivo and its nonmutagenicity in yeast. Cancer Res., 1983, 43(8), 3700-3706.
[PMID: 6344990]
[106]
Renault, E.; Fontaine-Aupart, M.P.; Tfibel, F.; Gardes-Albert, M.; Bisagni, E. Spectroscopic study of the interaction of pazelliptine with nucleic acids. J. Photochem. Photobiol. B, 1997, 40(3), 218-227.
[http://dx.doi.org/10.1016/S1011-1344(97)00059-6] [PMID: 9463113]
[107]
Shimamoto, T.; Imajo, S.; Honda, T.; Yoshimura, S.; Ishiguro, M. Structure-activity relationship study on N-glycosyl moieties through model building of DNA and ellipticine N-glycoside complex. Bioorg. Med. Chem. Lett., 1996, 6(12), 1331-1334.
[http://dx.doi.org/10.1016/0960-894X(96)00219-3]
[108]
Vilarem, M.J.; Gras, M.P.; Larsen, C.J. BD-40, an ellipticine-related DNA intercalative agent induces DNA-protein bridges in vivo. Nucleic Acids Res., 1984, 12(22), 8653-8665.
[http://dx.doi.org/10.1093/nar/12.22.8653] [PMID: 6504706]
[109]
Le Mée, S.; Pierré, A.; Markovits, J.; Atassi, G.; Jacquemin-Sablon, A.; Saucier, J.M. S16020-2, a new highly cytotoxic antitumor olivacine derivative: DNA interaction and DNA topoisomerase II inhibition. Mol. Pharmacol., 1998, 53(2), 213-220.
[http://dx.doi.org/10.1124/mol.53.2.213] [PMID: 9463478]
[110]
Le Mée, S.; Chaminade, F.; Delaporte, C.; Markovits, J.; Saucier, J.M.; Jacquemin-Sablon, A. Cellular resistance to the antitumor DNA topoisomerase II inhibitor S16020-2: Importance of the N-[2(Dimethylamino)ethyl]carbamoyl side chain. Mol. Pharmacol., 2000, 58(4), 709-718.
[http://dx.doi.org/10.1124/mol.58.4.709] [PMID: 10999940]
[111]
Kraus-Berthier, L.; Guilbaud, N.; Jan, M.; Saint-Dizier, D.; Rouillon, M.H.; Burbridge, M.F.; Pierré, A.; Atassi, G. Experimental antitumour activity of S 16020-2 in a panel of human tumours. Eur. J. Cancer, 1997, 33(11), 1881-1887.
[http://dx.doi.org/10.1016/S0959-8049(97)00232-3] [PMID: 9470851]
[112]
Kraus-Berthier, L.; Guilbaud, N.; Léonce, S.; Parker, T.; Genissel, P.; Guillonneau, C.; Goldstein, S.; Atassi, G.; Pierré, A. Comparison of the pharmacological profile of an olivacine derivative and a potential prodrug. Cancer Chemother. Pharmacol., 2002, 50(2), 95-103.
[http://dx.doi.org/10.1007/s00280-002-0481-z] [PMID: 12172972]
[113]
Léonce, S.; Perez, V.; Casabianca-Pignede, M.R.; Anstett, M.; Bisagni, E.; Pierré, A.; Atassi, G. In vitro cytotoxicity of S16020-2, a new olivacine derivative. Invest. New Drugs, 1996, 14(2), 169-180.
[http://dx.doi.org/10.1007/BF00210788] [PMID: 8913838]
[114]
Malonne, H.; Farinelle, S.; Decaestecker, C.; Gordower, L.; Fontaine, J.; Chaminade, F.; Saucier, J.M.; Atassi, G.; Kiss, R. In vitro and in vivo pharmacological characterizations of the antitumor properties of two new olivacine derivatives, S16020-2 and S30972-1. Clin. Cancer Res., 2000, 6(9), 3774-3782.
[PMID: 10999772]
[115]
Kohn, K.W.; Waring, M.J.; Glaubiger, D.; Friedman, C.A. Intercalative binding of ellipticine to DNA. Cancer Res., 1975, 35(1), 71-76.
[PMID: 1109798]
[116]
Pierson, V.; Pierre, A.; de Cointet, P.; Nguyen, C.H.; Bisagni, E.; Gros, P. Interrelationship between affinity for DNA, cytotoxicity and induction of DNA-breaks in cultured L1210 cells for two series of tricyclic intercalators. Simplified analogues of ellipticine derivatives. Biochem. Pharmacol., 1989, 38(9), 1395-1406.
[http://dx.doi.org/10.1016/0006-2952(89)90178-0] [PMID: 2719718]
[117]
Maggiorella, L.; Frascogna, V.; Poullain, M.G.; Berlion, M.; Lucas, C.; Razy, S.D.; Eschwege, F.; Bourhis, J. The olivacine S16020 enhances the antitumor effect of ionizing radiation without increasing radio-induced mucositis. Clin. Cancer Res., 2001, 7(7), 2091-2095.
[PMID: 11448928]
[118]
Pierré, A.; Léonce, S.; Pérez, V.; Atassi, G. Circumvention of P-glycoprotein-mediated multidrug resistance by S16020-2: Kinetics of uptake and efflux in sensitive and resistant cell lines. Cancer Chemother. Pharmacol., 1998, 42(6), 454-460.
[http://dx.doi.org/10.1007/s002800050845] [PMID: 9788571]
[119]
Ducrocq, C.; Wendling, F.; Tourbez-Perrin, M.; Rivalle, C.; Tambourin, P.; Pochon, F.; Bisagni, E.; Chermann, J.C. Structure-activity relationships in a series of newly synthesized 1-amino-substituted ellipticine derivatives. J. Med. Chem., 1980, 23(11), 1212-1216.
[http://dx.doi.org/10.1021/jm00185a012] [PMID: 7452670]
[120]
Tourbez-Perrin, M.; Pochon, F.; Ducrocq, C.; Rivalle, C.; Bisagni, E. Intercalative binding to DNA of new antitumoral agents: Dipyrido [4,3-b] [3,4-f] indoles. Bull. Cancer, 1980, 67(1), 9-13.
[PMID: 7362892]
[121]
Antony, S.; Kohlhagen, G.; Agama, K.; Jayaraman, M.; Cao, S.; Durrani, F.A.; Rustum, Y.M.; Cushman, M.; Pommier, Y. Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol. Pharmacol., 2005, 67(2), 523-530.
[http://dx.doi.org/10.1124/mol.104.003889] [PMID: 15531731]
[122]
Beck, D.E.; Abdelmalak, M.; Lv, W.; Reddy, P.V.; Tender, G.S.; O’Neill, E.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Discovery of potent indenoisoquinoline topoisomerase I poisons lacking the 3-nitro toxicophore. J. Med. Chem., 2015, 58(9), 3997-4015.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00303] [PMID: 25909279]
[123]
Beck, D.E.; Agama, K.; Marchand, C.; Chergui, A.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of new carbohydrate-substituted indenoisoquinoline topoisomerase I inhibitors and improved syntheses of the experimental anticancer agents indotecan (LMP400) and indimitecan (LMP776). J. Med. Chem., 2014, 57(4), 1495-1512.
[http://dx.doi.org/10.1021/jm401814y] [PMID: 24517248]
[124]
Beck, D.E.; Lv, W.; Abdelmalak, M.; Plescia, C.B.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of new fluorinated and chlorinated indenoisoquinoline topoisomerase I poisons. Bioorg. Med. Chem., 2016, 24(7), 1469-1479.
[http://dx.doi.org/10.1016/j.bmc.2016.02.015] [PMID: 26906474]
[125]
Cinelli, M.A.; Reddy, P.V.; Lv, P.C.; Liang, J.H.; Chen, L.; Agama, K.; Pommier, Y.; van Breemen, R.B.; Cushman, M. Identification, synthesis, and biological evaluation of metabolites of the experimental cancer treatment drugs indotecan (LMP400) and indimitecan (LMP776) and investigation of isomerically hydroxylated indenoisoquinoline analogues as topoisomerase I poisons. J. Med. Chem., 2012, 55(24), 10844-10862.
[http://dx.doi.org/10.1021/jm300519w] [PMID: 23215354]
[126]
Holleran, J.L.; Parise, R.A.; Yellow-Duke, A.E.; Egorin, M.J.; Eiseman, J.L.; Covey, J.M.; Beumer, J.H. Liquid chromatography-tandem mass spectrometric assay for the quantitation in human plasma of the novel indenoisoquinoline topoisomerase I inhibitors, NSC 743400 and NSC 725776. J. Pharm. Biomed. Anal., 2010, 52(5), 714-720.
[http://dx.doi.org/10.1016/j.jpba.2010.02.020] [PMID: 20236781]
[127]
Huang, C.Y.; Kavala, V.; Kuo, C.W.; Konala, A.; Yang, T.H.; Yao, C.F. Synthesis of biologically active indenoisoquinoline derivatives via a one-pot copper(II)-catalyzed tandem reaction. J. Org. Chem., 2017, 82(4), 1961-1968.
[http://dx.doi.org/10.1021/acs.joc.6b02814] [PMID: 28177250]
[128]
Cushman, M.; Jayaraman, M.; Vroman, J.A.; Fukunaga, A.K.; Fox, B.M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y. Synthesis of new indeno[1,2-c]isoquinolines: Cytotoxic non-camptothecin topoisomerase I inhibitors. J. Med. Chem., 2000, 43(20), 3688-3698.
[http://dx.doi.org/10.1021/jm000029d] [PMID: 11020283]
[129]
Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles. J. Med. Chem., 2006, 49(21), 6283-6289.
[http://dx.doi.org/10.1021/jm060564z] [PMID: 17034134]
[130]
Antony, S.; Jayaraman, M.; Laco, G.; Kohlhagen, G.; Kohn, K.W.; Cushman, M.; Pommier, Y. Differential induction of topoisomerase I-DNA cleavage complexes by the indenoisoquinoline MJ-III-65 (NSC 706744) and camptothecin: Base sequence analysis and activity against camptothecin-resistant topoisomerases I. Cancer Res., 2003, 63(21), 7428-7435.
[PMID: 14612542]
[131]
Kanzawa, F.; Nishio, K.; Ishida, T.; Fukuda, M.; Kurokawa, H.; Fukumoto, H.; Nomoto, Y.; Fukuoka, K.; Bojanowski, K.; Saijo, N. Anti-tumour activities of a new benzo[c]phenanthridine agent, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phena nthridini um hydrogensulphate dihydrate (NK109), against several drug-resistant human tumour cell lines. Br. J. Cancer, 1997, 76(5), 571-581.
[http://dx.doi.org/10.1038/bjc.1997.428] [PMID: 9303354]
[132]
Morohashi, K.; Yoshino, A.; Yoshimori, A.; Saito, S.; Tanuma, S.; Sakaguchi, K.; Sugawara, F. Identification of a drug target motif: An anti-tumor drug NK109 interacts with a PNxxxxP. Biochem. Pharmacol., 2005, 70(1), 37-46.
[http://dx.doi.org/10.1016/j.bcp.2005.03.035] [PMID: 15899472]
[133]
Nakanishi, T.; Masuda, A.; Suwa, M.; Akiyama, Y.; Hoshino-Abe, N.; Suzuki, M. Synthesis of derivatives of NK109, 7-OH benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and reduction-resistant properties. Bioorg. Med. Chem. Lett., 2000, 10(20), 2321-2323.
[http://dx.doi.org/10.1016/S0960-894X(00)00467-4] [PMID: 11055347]
[134]
Nakanishi, T.; Suzuki, M.; Saimoto, A.; Kabasawa, T. Structural considerations of NK109, an antitumor benzo[c]phenanthridine alkaloid. J. Nat. Prod., 1999, 62(6), 864-867.
[http://dx.doi.org/10.1021/np990005d] [PMID: 10395504]
[135]
Hisatomi, T.; Sueoka-Aragane, N.; Sato, A.; Tomimasu, R.; Ide, M.; Kurimasa, A.; Okamoto, K.; Kimura, S.; Sueoka, E. NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase IIalpha and DNA-dependent protein kinase. Blood, 2011, 117(13), 3575-3584.
[http://dx.doi.org/10.1182/blood-2010-02-270439] [PMID: 21245486]
[136]
Onda, T.; Toyoda, E.; Miyazaki, O.; Seno, C.; Kagaya, S.; Okamoto, K.; Nishikawa, K. NK314, a novel topoisomerase II inhibitor, induces rapid DNA double-strand breaks and exhibits superior antitumor effects against tumors resistant to other topoisomerase II inhibitors. Cancer Lett., 2008, 259(1), 99-110.
[http://dx.doi.org/10.1016/j.canlet.2007.10.004] [PMID: 17998154]
[137]
Toyoda, E.; Kagaya, S.; Cowell, I.G.; Kurosawa, A.; Kamoshita, K.; Nishikawa, K.; Iiizumi, S.; Koyama, H.; Austin, C.A.; Adachi, N. NK314, a topoisomerase II inhibitor that specifically targets the alpha isoform. J. Biol. Chem., 2008, 283(35), 23711-23720.
[http://dx.doi.org/10.1074/jbc.M803936200] [PMID: 18596031]
[138]
Houghton, P.J.; Lock, R.; Carol, H.; Morton, C.L.; Gorlick, R.; Anders Kolb, E.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Maris, J.M.; Billups, C.A.; Zhang, M.X.; Madden, S.L.; Teicher, B.A.; Smith, M.A. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2012, 58(2), 200-209.
[http://dx.doi.org/10.1002/pbc.23016] [PMID: 21548007]
[139]
Kurtzberg, L.S.; Roth, S.; Krumbholz, R.; Crawford, J.; Bormann, C.; Dunham, S.; Yao, M.; Rouleau, C.; Bagley, R.G.; Yu, X.J.; Wang, F.; Schmid, S.M.; Lavoie, E.J.; Teicher, B.A. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin. Cancer Res., 2011, 17(9), 2777-2787.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0542] [PMID: 21415217]
[140]
Sooryakumar, D.; Dexheimer, T.S.; Teicher, B.A.; Pommier, Y. Molecular and cellular pharmacology of the novel noncamptothecin topoisomerase I inhibitor Genz-644282. Mol. Cancer Ther., 2011, 10(8), 1490-1499.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1043] [PMID: 21636699]
[141]
Chen, J.Z.; Chen, K.X.; Jiang, H.L.; Lin, M.W.; Ji, R.Y. Theoretical investigation on interaction binding of analogues of AT-1840 to double-stranded polynucleotide. Prog. Nat. Sci., 1997, 3, 75-81.
[142]
Zhang, S.Y.; Lu, F.L.; Yang, J.L.; Wang, L.J.; Xu, B. Effect on animal tumors and toxicity of lycobetaine acetate (author’s transl). Zhongguo Yao Li Xue Bao, 1981, 2(1), 41-45.
[PMID: 6461201]
[143]
Cicero, A.F.; Baggioni, A. Berberine and its role in chronic disease. Adv. Exp. Med. Biol., 2016, 928, 27-45.
[http://dx.doi.org/10.1007/978-3-319-41334-1_2] [PMID: 27671811]
[144]
Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res., 2016, 30(11), 1745-1764.
[http://dx.doi.org/10.1002/ptr.5693] [PMID: 27528198]
[145]
Kumar, A. Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[146]
Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I. Berberine, an epiphany against cancer. Molecules, 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[147]
Wang, K.; Feng, X.; Chai, L.; Cao, S.; Qiu, F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev., 2017, 49(2), 139-157.
[http://dx.doi.org/10.1080/03602532.2017.1306544]
[148]
Messmer, A.; Batori, S.; Hajos, G.; Benko, P.; Furdyga, E.; Petocz, L.; Grasser, K.; Kosoczky, I.; Szirt, E. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev., 2017, 49(2), 139-157.
[http://dx.doi.org/10.1080/03602532.2017.1306544]
[149]
Gyertyán, I.; Petöcz, L.; Bajnógel, J.; Szücs, Z.; Hegedüs, M.; Gyüre, K.; Gacsályi, I.; Krizsán, D.; Fekete, M.I. Possible involvement of the dopaminergic system in the mode of action of the potential antidepressant trazium esilate. Arzneimittelforschung, 1989, 39(7), 775-781.
[PMID: 2551306]
[150]
Lengyel, J.; Szüts, T.; Fekete, M.; Magyar, K. In vitro metabolic study of EGYT-3615 using rat liver microsomes. Pol. J. Pharmacol. Pharm., 1987, 39(2), 117-122.
[PMID: 3432156]
[151]
Sandor, B.; Gyoergy, H.; Andras, M.; Pal, B.; Laszlo, P.; Lujza, P.; Katalin, G.; Ibolya, K.; Eniko, S. Preparation of triazinoquinolinium and -isoquinolinium salts as central nervous system agents. DE Patent 3,715,076, 1987.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy