Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Metastatic Effects of Lupeol via the Inhibition of MAPK/ERK Pathway in Lung Cancer

Author(s): Mital Bhatt, Mitesh Patel*, Mohd Adnan and Mandadi N. Reddy

Volume 21, Issue 2, 2021

Published on: 24 April, 2020

Page: [201 - 206] Pages: 6

DOI: 10.2174/1871520620666200424131548

Price: $65


Background and Objective: ERK pathway is one of the most crucial pathways in lung cancer metastasis. Targeting its pathway is decisive in lung cancer research. Thus, this study demonstrated for the first time for significant and selective anti-metastatic effects of lupeol against lung cancer A549 cells via perturbations in the ERK signaling pathway.

Materials and Methods: Human protein targets of lupeol were predicted in silico. Migration and cytotoxicity assays were carried out in vitro. Expression levels of proteins Erk1/2 and pErk1/2 were ensured using Enzyme- Linked Immunosorbent Assay (ELISA). Semi-quantitative RT-PCR technique was used to estimate changes in crucial mesenchymal marker gene expression levels of N-cadherin and vimentin.

Results: Lupeol was found to target ERK and MEK proteins effectively. Despite having no cytotoxic effects, lupeol also significantly inhibited cell migration in A549 cells with decreased expression of the pErk1/2 protein along with N-cadherin and vimentin genes.

Conclusion: Lupeol inhibits cell migration, showed no cytotoxic effects on A549 cells, decreased pErk1/2 and EMT gene expression. Thus, it can serve as a potential ERK pathway inhibitor in lung cancer therapeutics.

Keywords: Cancer, ERK, lupeol, metastasis, reverse docking, Epithelial-Mesenchymal Transition (EMT) marker genes.

Graphical Abstract
Zakaria, N.; Satar, N.A.; Abu Halim, N.H.; Ngalim, S.H.; Yusoff, N.M.; Lin, J.; Yahaya, B.H. Targeting lung cancer stem cells: Research and clinical impacts. Front. Oncol., 2017, 7, 80.
[] [PMID: 28529925]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[] [PMID: 21376230]
Adnan, M.; Khan, S.; Al-Shammari, E.; Patel, M.; Saeed, M.; Hadi, S. In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Med. Hypotheses, 2017, 100, 78-81.
[] [PMID: 28236853]
Adnan, M.; Patel, M.; Reddy, M.N.; Alshammari, E. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep., 2018, 8(1), 1740.
[] [PMID: 29379181]
Vicent, S.; López-Picazo, J.M.; Toledo, G.; Lozano, M.D.; Torre, W.; Garcia-Corchón, C.; Quero, C.; Soria, J.C.; Martín-Algarra, S.; Manzano, R.G.; Montuenga, L.M. ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br. J. Cancer, 2004, 90(5), 1047-1052.
[] [PMID: 14997206]
Zhao, S.; Qiu, Z.X.; Zhang, L.; Li, W.M. Prognostic values of ERK1/2 and p-ERK1/2 expressions for poor survival in non-small cell lung cancer. Tumour Biol., 2015, 36(6), 4143-4150.
[] [PMID: 25596700]
Buonato, J.M.; Lazzara, M.J. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res., 2014, 74(1), 309-319.
[] [PMID: 24108744]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[] [PMID: 19464787]
Tsai, F.S.; Lin, L.W.; Wu, C.R. Lupeol and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 145-175.
[] [PMID: 27771924]
Saleem, M.; Maddodi, N.; Abu Zaid, M.; Khan, N. bin Hafeez, B.; Asim, M.; Suh, Y.; Yun, J.M.; Setaluri, V.; Mukhtar, H. Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis. Clin. Cancer Res., 2008, 14(7), 2119-2127.
[] [PMID: 18381953]
Li, W.; Xiao, Y. Synthesis and in vitro antitumour activities of lupeol derivatives. Nat. Prod. Res., 2018, 32(1), 48-53.
[] [PMID: 28511560]
Gauthier, C.; Legault, J.; Lebrun, M.; Dufour, P.; Pichette, A. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg. Med. Chem., 2006, 14(19), 6713-6725.
[] [PMID: 16787747]
Prasad, S.; Kalra, N.; Shukla, Y. Induction of apoptosis by lupeol and mango extract in mouse prostate and LNCaP cells. Nutr. Cancer, 2008, 60(1), 120-130.
[] [PMID: 18444143]
Margareth, B.; Gallo, C.; Miranda, J. Biological activities of lupeol. Int. J. Biomed. Phar. Sci., 2009, 3, 46-66.
Wal, P.; Wal, A.; Sharma, G. Biological activities of lupeol. Syst. Rev. Phar., 2011, 2, 96-103.
Saleem, M.; Afaq, F.; Adhami, V.M.; Mukhtar, H. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene, 2004, 23(30), 5203-5214.
[] [PMID: 15122342]
Siddique, H.R.; Mishra, S.K.; Karnes, R.J.; Saleem, M. Lupeol, a novel androgen receptor inhibitor: Implications in prostate cancer therapy. Clin. Cancer Res., 2011, 17(16), 5379-5391.
[] [PMID: 21712449]
Bhatt, M.H.; Prajapati, C.K.; Reddy, M.N. In silico docking studies of Lupeol with MAPK pathway proteins- Raf-1, MEK & ERK. J. Exp. Ther. Oncol., 2017, 12(2), 137-140.
[PMID: 29161781]
Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach., Nucleic Acids Res., 2010, 38(Web Server issue), W609-614..
[] [PMID: 20430828]
Wang, X.; Pan, C.; Gong, J.; Liu, X.; Li, H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model., 2016, 56(6), 1175-1183.
[] [PMID: 27187084]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[] [PMID: 28472422]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
Shi, F.; Chiu, Y.J.; Cho, Y.; Bullard, T.A.; Sokabe, M.; Fujiwara, K. Down-regulation of ERK but not MEK phosphorylation in cultured endothelial cells by repeated changes in cyclic stretch. Cardiovasc. Res., 2007, 73(4), 813-822.
[] [PMID: 17289004]
Sommer, G.; Rossa, C.; Chi, A.C.; Neville, B.W.; Heise, T. Implication of RNA-binding protein La in proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. PLoS One, 2011, 6(10)e25402
[] [PMID: 22016766]
Christiansen, J.J.; Rajasekaran, A.K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res., 2006, 66(17), 8319-8326.
[] [PMID: 16951136]
Lu, C.C.; Yang, J.S.; Chiang, J.H.; Hour, M.J.; Amagaya, S.; Lu, K.W.; Lin, J.P.; Tang, N.Y.; Lee, T.H.; Chung, J.G. Inhibition of invasion and migration by newly synthesized quinazolinone MJ-29 in human oral cancer CAL 27 cells through suppression of MMP-2/9 expression and combined down-regulation of MAPK and AKT signaling. Anticancer Res., 2012, 32(7), 2895-2903.
[PMID: 22753753]
Patel, M.; Sachidanandan, M.; Adnan, M. Serine arginine protein kinase 1 (SRPK1): A moonlighting protein with theranostic ability in cancer prevention. Mol. Biol. Rep., 2019, 46(1), 1487-1497.
[] [PMID: 30535769]
Wen, Z.; Jiang, R.; Huang, Y.; Wen, Z.; Rui, D.; Liao, X.; Ling, Z. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir. Res., 2019, 20(1), 194.
[] [PMID: 31443651]
Xiao, D.; He, J. Epithelial mesenchymal transition and lung cancer. J. Thorac. Dis., 2010, 2(3), 154-159.
[PMID: 22263037]
Goto, W.; Kashiwagi, S.; Asano, Y.; Takada, K.; Morisaki, T.; Fujita, H.; Takashima, T.; Ohsawa, M.; Hirakawa, K.; Ohira, M. Eribulin promotes antitumor immune responses in patients with locally advanced or metastatic breast cancer. Anticancer Res., 2018, 38(5), 2929-2938.
[PMID: 29715119]
Hung, S.P.; Hsu, J.R.; Lo, C.P.; Huang, H.J.; Wang, J.P.; Chen, S.T. Genistein-induced neuronal differentiation is associated with activation of extracellular signal-regulated kinases and upregulation of p21 and N-cadherin. J. Cell. Biochem., 2005, 96(5), 1061-1070.
[] [PMID: 16149052]
Diamond, M.E.; Sun, L.; Ottaviano, A.J.; Joseph, M.J.; Munshi, H.G. Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. J. Cell Sci., 2008, 121(Pt 13), 2197-2207.
[] [PMID: 18544635]
Perlson, E.; Michaelevski, I.; Kowalsman, N.; Ben-Yaakov, K.; Shaked, M.; Seger, R.; Eisenstein, M.; Fainzilber, M. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J. Mol. Biol., 2006, 364(5), 938-944.
[]] [PMID: 17046786]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy