Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

A Cassava CPRF-2-like bZIP Transcription Factor Showed Increased Transcript Levels during Light Treatment

Author(s): Lígia Cristine Gonçalves Pontes, Cristina Michiko Yokoyama Cardoso, Daihany Moraes Callegari, Sávio Pinho dos Reis, Érika do Socorro Alves Namias, Solange da Cunha Ferreira and Cláudia Regina Batista de Souza*

Volume 27 , Issue 9 , 2020

Page: [904 - 914] Pages: 11

DOI: 10.2174/0929866527666200420110338

Price: $65

Abstract

Background: bZIP proteins participate in the regulation of gene expression, playing crucial roles in various biological processes in plants, including response to environmental changes. Luminosity is an environmental factor of extreme importance for plant metabolism, acting as a regulator of its growth and development. Despite advances in the identification of bZIP proteins in several plant species, studies on these transcription factors in cassava are lacking. Cassava (Manihot esculenta Crantz) is one of the most important food crops in tropical and subtropical regions, mainly in developing countries, where its storage root is a major source of calories for low-income people.

Objectives: Our main aim was the isolation of a cDNA sequence encoding a bZIP protein from cassava (MebZIP) as well as the in silico characterization of its nucleotide and deduced amino acid sequences. In addition, we evaluated the expression pattern of the MebZIP gene in response to light, and its possible relationship with regulation of the chalcone synthase (MeCHS) gene.

Methods: RT-PCR and 3’ and 5’ RACE assays were used to isolate the full-length cDNA sequence of MebZIP. Bioinformatics tools were used to characterize the nucleotide and amino acid sequences of MebZIP. Semiquantitative RT-PCR assays were used to evaluate the expression levels of MebZIP and MeCHS genes.

Results: We isolated the full-length cDNA sequence of MebZIP with a 1320-bp ORF encoding a deduced protein with a predicted molecular weight and isoelectric point of 47 kDa and 5.85, respectively. Comparative analyses with GenBank sequences showed high identity of MebZIP with bZIP CPRF-2 of Hevea brasiliensis (XP_021650934) and Petroselinum crispum (Q99090.2). Besides the basic region and leucine zipper domains, MebZIP contains putative conserved domains (D1- D4), found in parsley CPRF-2 and bZIP proteins closely related to this protein. Since CPRF proteins are known for their function in regulation of the CHS gene by light, we evaluated the expression levels of the MebZIP gene and the possible target gene to be regulated by MebZIP (the MeCHS gene) in cassava under light conditions. Semi-quantitative RT-PCR assays revealed that MebZIP transcription increased in response to white light, with maximum expression levels at 6 h of light exposure. On the other hand, the expression levels of the MeCHS gene were statistically constant in all samples, indicating that they were not influenced by the experimental conditions used here.

Conclusion: The putative MebZIP protein identified in this work contains the conserved domains (bZIP, D1-D4) that indicate its functionality, thus allowing it to be considered a new member of the bZIP transcription factor CPRF-2 family. The expression levels of the MebZIP gene increased during white light exposure, indicating a potential function in light-response in cassava.

Keywords: bZIP protein, cassava, light-response, transcription factor, transcriptional regulation, MebZIP protein.

Graphical Abstract
[1]
Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhong, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res., 2012, 19(6), 463-476.
[http://dx.doi.org/10.1093/dnares/dss026] [PMID: 23103471]
[2]
Liu, X.; Chu, Z. Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics, 2015, 16, 227.
[http://dx.doi.org/10.1186/s12864-015-1457-9] [PMID: 25887221]
[3]
Alagarasan, G.; Dubey, M.; Aswathy, K.S.; Chandel, G. Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front. Plant Sci., 2017, 8, 775.
[http://dx.doi.org/10.3389/fpls.2017.00775] [PMID: 28555148]
[4]
Alves, M.S.; Dadalto, S.P.; Gonçalves, A.B.; De Souza, G.B.; Barros, V.A.; Fietto, L.G. Plant bZIP transcription factors responsive to pathogens: A review. Int. J. Mol. Sci., 2013, 14(4), 7815-7828.
[http://dx.doi.org/10.3390/ijms14047815] [PMID: 23574941]
[5]
Li, X.; Fan, S.; Hu, W.; Liu, G.; Wei, Y.; He, C.; Shi, H. Two cassava basic leucine zipper (BZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front. Plant Sci., 2017, 8, 2110.
[http://dx.doi.org/10.3389/fpls.2017.02110] [PMID: 29276527]
[6]
Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200.
[http://dx.doi.org/10.1096/fasebj.8.2.8119490] [PMID: 8119490]
[7]
Shen, H.; Cao, K.; Wang, X. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem. Biophys. Res. Commun., 2007, 362(2), 425-430.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.026] [PMID: 17719007]
[8]
Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111.
[http://dx.doi.org/10.1016/S1360-1385(01)02223-3] [PMID: 11906833]
[9]
Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol., 2008, 66(6), 675-683.
[http://dx.doi.org/10.1007/s11103-008-9298-4] [PMID: 18236009]
[10]
Dröge-Laser, W.; Kaiser, A.; Lindsay, W.P.; Halkier, B.A.; Loake, G.J.; Doerner, P.; Dixon, R.A.; Lamb, C. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J., 1997, 16(4), 726-738.
[http://dx.doi.org/10.1093/emboj/16.4.726] [PMID: 9049302]
[11]
Yoshida, K.; Wakamatsu, S.; Sakuta, M. Characterization of SBZ1, a soybean bZIP protein that binds to the chalcone synthase gene promoter. Plant Biotechnol. J., 2008, 25, 131-140.
[http://dx.doi.org/10.5511/plantbiotechnology.25.131]
[12]
Weisshaar, B.; Armstrong, G.A.; Block, A. da Costa e Silva, O.; Hahlbrock, K. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J., 1991, 10(7), 1777-1786.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb07702.x] [PMID: 2050115]
[13]
Kuhlmann, M.; Horvay, K.; Strathmann, A.; Heinekamp, T.; Fischer, U.; Böttner, S.; Dröge-Laser, W. The α-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J. Biol. Chem., 2003, 278(10), 8786-8794.
[http://dx.doi.org/10.1074/jbc.M210292200] [PMID: 12499372]
[14]
Lima, A.M.; Moura, E.F.; Ishida, A.K.N.; Pereira, A.C.; Reis, S.P.; de Souza, C.R.B. Expression profiles of defense genes in cassava storage roots upon exposure to Phytopythium sp., causal agent of soft root rot disease. Physiol. Mol. Plant Pathol., 2018, 104, 23-30.
[http://dx.doi.org/10.1016/j.pmpp.2018.09.001]
[15]
Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci., 2014, 5, 170.
[http://dx.doi.org/10.3389/fpls.2014.00170] [PMID: 24904597]
[16]
Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci., 2015, 6, 84.
[http://dx.doi.org/10.3389/fpls.2015.00084] [PMID: 25741357]
[17]
An, J.P.; Qu, F.J.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic. Res., 2017, 4, 17023.
[http://dx.doi.org/10.1038/hortres.2017.23] [PMID: 28611922]
[18]
Fukuda, N. Plant growth and physiological responses to light conditions.Plant Factory using Artificial Light; Anpo, M.; Fukuda, N.; Wada, T., Eds.; Elsevier; , 2019, pp. 71-77.
[http://dx.doi.org/10.1016/B978-0-12-813973-8.00008-7]
[19]
Gallemí, M.; Martínez-García, J.F. bZIP and bHLH Family members integrate transcriptional responses to light. In: Plant Transcription Factors: Evolutionary, Structural and Functional Aspects; Gonzales, DH., Ed.; Academic Press, 2015, pp. 329-342.
[20]
Wellmer, F.; Kircher, S.; Rügner, A.; Frohnmeyer, H.; Schäfer, E.; Harter, K. Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light. J. Biol. Chem., 1999, 274(41), 29476-29482.
[http://dx.doi.org/10.1074/jbc.274.41.29476] [PMID: 10506211]
[21]
Wellmer, F.; Schäfer, E.; Harter, K. The DNA binding properties of the parsley bZIP transcription factor CPRF4a are regulated by light. J. Biol. Chem., 2001, 276(9), 6274-6279.
[http://dx.doi.org/10.1074/jbc.M007971200] [PMID: 11106651]
[22]
Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1989, 40, 347-369.
[http://dx.doi.org/10.1146/annurev.pp.40.060189.002023]
[23]
Ali, K.; Rai, R.D.; Tyagi, A. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice. Indian J. Exp. Biol., 2016, 54(5), 332-337.
[PMID: 27319052]
[24]
de Souza, C.R.B.; Almeida, E.R.P.; Carvalho, L.J.C.B.; Gander, E.S. Studies toward the identification of transcription factors in cassava storage root. Braz. J. Plant Physiol., 2003, 15, 167-170.
[http://dx.doi.org/10.1590/S1677-04202003000300006]
[25]
Hu, W.; Yang, H.; Yan, Y.; Wei, Y.; Tie, W.; Ding, Z.; Zuo, J.; Peng, M.; Li, K. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep., 2016, 6, 22783.
[http://dx.doi.org/10.1038/srep22783] [PMID: 26947924]
[26]
Olsen, K.M. SNPs, SSRs and inferences on cassava’s origin. Plant Mol. Biol., 2004, 56(4), 517-526.
[http://dx.doi.org/10.1007/s11103-004-5043-9] [PMID: 15630616]
[27]
Rabara, R.C.; Tripathi, P.; Rushton, P.J. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS, 2014, 18(10), 601-614.
[http://dx.doi.org/10.1089/omi.2013.0177] [PMID: 25118806]
[28]
Cardoso, C.M.Y. Caracterização da proteína MebZIP e análise de expressão do seu gene em raízes e folhas de mandioca (Characterization of MebZIP protein and evaluation of spatial gene expression in cassava roots and leaves). Completion of Course Work; Universidade Federal do Pará 2008,
[29]
Costa, C.N.; Brígida, A.B.S.; Borges, B.N.; Neto, M.A.M.; Carvalho, L.J.C.B.; de Souza, C.R.B. Levels of MeLEA3, a cDNA sequence coding for an atypical late embryogenesis abundant protein in cassava, increase under in vitro salt stress treatment. Plant Mol. Biol. Report., 2011, 29, 997-1005.
[http://dx.doi.org/10.1007/s11105-011-0292-7]
[30]
Jones, J.D.G.; Dunsmuir, P.; Bedbrook, J. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J., 1985, 4(10), 2411-2418.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb03949.x] [PMID: 15929216]
[31]
Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report., 1993, 11(2), 113-116.
[http://dx.doi.org/10.1007/BF02670468]
[32]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[33]
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 41, 95-98.
[34]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22(22), 4673-4680.
[http://dx.doi.org/10.1093/nar/22.22.4673] [PMID: 7984417]
[35]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[36]
Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 1992, 8(3), 275-282.
[http://dx.doi.org/10.1093/bioinformatics/8.3.275] [PMID: 1633570]
[37]
Kosugi, S.; Hasebe, M.; Tomita, M.; Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10171-10176.
[http://dx.doi.org/10.1073/pnas.0900604106] [PMID: 19520826]
[38]
Wilkins, M.R.; Williams, K.L. Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: A theoretical evaluation. J. Theor. Biol., 1997, 186(1), 7-15.
[http://dx.doi.org/10.1006/jtbi.1996.0346] [PMID: 9176634]
[39]
Kircher, S.; Wellmer, F.; Nick, P.; Rügner, A.; Schäfer, E.; Harter, K. Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J. Cell Biol., 1999, 144(2), 201-211.
[http://dx.doi.org/10.1083/jcb.144.2.201] [PMID: 9922448]
[40]
Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H.; Qin, Y. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1), 159.
[http://dx.doi.org/10.1186/s12864-018-4511-6] [PMID: 29471787]
[41]
Varagona, M.J.; Schmidt, R.J.; Raikhel, N.V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell, 1992, 4(10), 1213-1227.
[PMID: 1332794]
[42]
Hicks, G.R.; Raikhel, N.V. Protein import into the nucleus: An integrated view. Annu. Rev. Cell Dev. Biol., 1995, 11, 155-188.
[http://dx.doi.org/10.1146/annurev.cb.11.110195.001103] [PMID: 8689555]
[43]
Bernhofer, M.; Goldberg, T.; Wolf, S.; Ahmed, M.; Zaugg, J.; Boden, M.; Rost, B. NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res., 2018, 46(D1), D503-D508.
[http://dx.doi.org/10.1093/nar/gkx1021] [PMID: 29106588]
[44]
Armstrong, G.A.; Weisshaar, B.; Hahlbrock, K. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell, 1992, 4(5), 525-537.
[PMID: 1498607]
[45]
Sprenger-Haussels, M.; Weisshaar, B. Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J., 2000, 22(1), 1-8.
[http://dx.doi.org/10.1046/j.1365-313x.2000.00687.x] [PMID: 10792815]
[46]
Heinekamp, T.; Kuhlmann, M.; Lenk, A.; Strathmann, A.; Dröge-Laser, W. The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol. Genet. Genomics, 2002, 267(1), 16-26.
[http://dx.doi.org/10.1007/s00438-001-0636-3] [PMID: 11919711]
[47]
Lara, P.; Oñate-Sánchez, L.; Abraham, Z.; Ferrándiz, C.; Díaz, I.; Carbonero, P.; Vicente-Carbajosa, J. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J. Biol. Chem., 2003, 278(23), 21003-21011.
[http://dx.doi.org/10.1074/jbc.M210538200] [PMID: 12657652]
[48]
de Souza, C.R.B.; Carvalho, L.J.C.B.; de Mattos Cascardo, J.C. Comparative gene expression study to identify genes possibly related to storage root formation in cassava. Protein Pept. Lett., 2004, 11(6), 577-582.
[http://dx.doi.org/10.2174/0929866043406319] [PMID: 15579128]
[49]
Schindler, U.; Menkens, A.E.; Beckmann, H.; Ecker, J.R.; Cashmore, A.R. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J., 1992, 11(4), 1261-1273.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05170.x] [PMID: 1373374]
[50]
Feldbrügge, M.; Sprenger, M.; Dinkelbach, M.; Yazaki, K.; Harter, K.; Weisshaar, B. Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell, 1994, 6(11), 1607-1621.
[PMID: 7827494]
[51]
Pan, Y.; Hu, X.; Li, C.; Xu, X.; Su, C.; Li, J.; Song, H.; Zhang, X.; Pan, Y. SlbZIP38, a Tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance. Genes (Basel), 2017, 8(12), 402.
[http://dx.doi.org/10.3390/genes8120402] [PMID: 29261143]
[52]
Stracke, R.; Favory, J.J.; Gruber, H.; Bartelniewoehner, L.; Bartels, S.; Binkert, M.; Funk, M.; Weisshaar, B.; Ulm, R. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ., 2010, 33(1), 88-103.
[PMID: 19895401]
[53]
Song, J.Y.; Lee, J.S.; An, C.S. Expression of CHS, CHI, and DFR Genes in response to light in small radish seedlings. J. Plant Biol., 1998, 41, 277-282.
[http://dx.doi.org/10.1007/BF03030328]
[54]
Ohl, S.; Hahlbrock, K.; Schäfer, E. A stable blue-light-derived signal modulates ultraviolet-light-induced activation of the chalcone-synthase gene in cultured parsley cells. Planta, 1989, 177(2), 228-236.
[http://dx.doi.org/10.1007/BF00392811] [PMID: 24212345]
[55]
Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 18225-18230.
[http://dx.doi.org/10.1073/pnas.0507187102] [PMID: 16330762]
[56]
Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7(7), 1085-1097.
[http://dx.doi.org/10.2307/3870059] [PMID: 12242399]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy