Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Behavior of Human Umbilical Vein Endothelial Cells on Titanium Surfaces Functionalized with VE-Cadherin Extracellular 1-4 Domains

Author(s): Hye-Jin Seo, SuJin Lee, Ji-Eun Kim and Jun-Hyeog Jang*

Volume 27 , Issue 9 , 2020

Page: [895 - 903] Pages: 9

DOI: 10.2174/0929866527666200420103016

Price: $65

Abstract

Background: Angiogenesis is essential for the optimal functioning of orthopedic medical implants. Protein functionalization of implant surfaces can improve tissue integration through proper vascularization and prevent implant failure in patients lacking sufficient angiogenesis.

Objective: The aim of this study was to evaluate the angiogenic activity of titanium surfaces functionalized with recombinant VE-cadherin extracelluar1-4 (VE-CADEC1-4) protein in human umbilical vein endothelial cells (HUVECs).

Methods: After titanium discs were coated with recombinant VE-CADEC1-4 protein at appropriate concentrations, the behavior of HUVECs on the VE-CADEC1-4-functionalized titanium discs were evaluated by cell adhesion assay, proliferation assay, and real-time RT-PCR.

Results: Recombinant VE-CADEC1-4–functionalized titanium surfaces improved the adhesion of HUVECs by 1.8-fold at the optimal concentration, and the proliferative activity was 1.3-fold higher than the control at 14 days. In addition, when angiogenesis markers were confirmed by real-time RT-PCR, PECAM-1 increased approximately 1.2-fold, TEK approximately 1.4-fold, KDR approximately 1.6-fold, and Tie-1 approximately 2.1-fold compared to the control.

Conclusion: Recombinant VE-CADEC1-4–functionalized titanium surfaces improved cell adhesion, proliferation, and angiogenic differentiation of HUVECs, suggesting that the VE-CADEC1-4-functionalization of titanium surfaces can offer angiogenic surfaces with the potential to improve bone healing in orthopedic applications.

Keywords: Angiogenesis, bone healing, blood vessels, HUVECs, titanium, VE-cadherin.

Graphical Abstract
[1]
Caplan, A.I. Bone development. Ciba Found. Symp., 1988, 136, 3-21.
[PMID: 3068015]
[2]
Maes, C.; Carmeliet, P.; Moermans, K.; Stockmans, I.; Smets, N.; Collen, D.; Bouillon, R.; Carmeliet, G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev., 2002, 111(1-2), 61-73.
[http://dx.doi.org/10.1016/S0925-4773(01)00601-3] [PMID: 11804779]
[3]
Kumar, S.; Wan, C.; Ramaswamy, G.; Clemens, T.L.; Ponnazhagan, S. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol. Ther., 2010, 18(5), 1026-1034.
[http://dx.doi.org/10.1038/mt.2009.315] [PMID: 20068549]
[4]
Malda, J.; Rouwkema, J.; Martens, D.E.; Le Comte, E.P.; Kooy, F.K.; Tramper, J.; van Blitterswijk, C.A.; Riesle, J. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling. Biotechnol. Bioeng., 2004, 86(1), 9-18.
[http://dx.doi.org/10.1002/bit.20038] [PMID: 15007836]
[5]
Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A. Vascularization in tissue engineering. Trends Biotechnol., 2008, 26(8), 434-441.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.009] [PMID: 18585808]
[6]
Kanczler, J.M.; Oreffo, R.O. Osteogenesis and angiogenesis: The potential for engineering bone. Eur. Cell. Mater., 2008, 15, 100-114.
[http://dx.doi.org/10.22203/eCM.v015a08] [PMID: 18454418]
[7]
Kang, W.; Yun, Y.R.; Lee, D.S.; Kim, T.H.; Kim, J.H.; Kim, H.W.; Jang, J.H. Fluorescence-based retention assays reveals sustained release of vascular endothelial growth factor from bone grafts. J. Biomed. Mater. Res. A, 2016, 104(1), 283-290.
[http://dx.doi.org/10.1002/jbm.a.35566] [PMID: 26386269]
[8]
Filipowska, J.; Tomaszewski, K.A.; Niedźwiedzki, Ł.; Walocha, J.A.; Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis, 2017, 20(3), 291-302.
[http://dx.doi.org/10.1007/s10456-017-9541-1] [PMID: 28194536]
[9]
Oreffo, R.O.; Triffitt, J.T. Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone, 1999, 25(2)(Suppl.), 5S-9S.
[http://dx.doi.org/10.1016/S8756-3282(99)00124-6] [PMID: 10458266]
[10]
Bauer, T.W.; Muschler, G.F. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res., 2000, 371, 10-27.
[http://dx.doi.org/10.1097/00003086-200002000-00003] [PMID: 10693546]
[11]
Long, M.; Rack, H.J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials, 1998, 19(18), 1621-1639.
[http://dx.doi.org/10.1016/S0142-9612(97)00146-4] [PMID: 9839998]
[12]
Rubshtein, A.P.; Makarova, E.B.; Rinkevich, A.B.; Medvedeva, D.S.; Yakovenkova, L.I.; Vladimirov, A.B. Elastic properties of a porous titanium-bone tissue composite. Mater. Sci. Eng. C, 2015, 52, 54-60.
[http://dx.doi.org/10.1016/j.msec.2015.03.015] [PMID: 25953540]
[13]
Mendonça, G.; Mendonça, D.B.; Aragão, F.J.; Cooper, L.F. Advancing dental implant surface technology--from micron- to nanotopography. Biomaterials, 2008, 29(28), 3822-3835.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.012] [PMID: 18617258]
[14]
Schimmel, L.; Gordon, E. The precise molecular signals that control endothelial cell-cell adhesion within the vessel wall. Biochem. Soc. Trans., 2018, 46(6), 1673-1680.
[http://dx.doi.org/10.1042/BST20180377] [PMID: 30514769]
[15]
Rho, S.S.; Ando, K.; Fukuhara, S. Dynamic regulation of vascular permeability by vascular endothelial cadherin-mediated endothelial cell-cell junctions. J. Nippon Med. Sch., 2017, 84(4), 148-159.
[http://dx.doi.org/10.1272/jnms.84.148] [PMID: 28978894]
[16]
Taddei, A.; Giampietro, C.; Conti, A.; Orsenigo, F.; Breviario, F.; Pirazzoli, V.; Potente, M.; Daly, C.; Dimmeler, S.; Dejana, E. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol., 2008, 10(8), 923-934.
[http://dx.doi.org/10.1038/ncb1752] [PMID: 18604199]
[17]
Gavard, J.; Gutkind, J.S. VE-cadherin and claudin-5: It takes two to tango. Nat. Cell Biol., 2008, 10(8), 883-885.
[http://dx.doi.org/10.1038/ncb0808-883] [PMID: 18670447]
[18]
Azzi, S.; Hebda, J.K.; Gavard, J. Vascular permeability and drug delivery in cancers. Front. Oncol., 2013, 3, 211.
[http://dx.doi.org/10.3389/fonc.2013.00211] [PMID: 23967403]
[19]
Gavard, J. Breaking the VE-cadherin bonds. FEBS Lett., 2009, 583(1), 1-6.
[http://dx.doi.org/10.1016/j.febslet.2008.11.032] [PMID: 19059243]
[20]
Dejana, E. Endothelial cell-cell junctions: Happy together. Nat. Rev. Mol. Cell Biol., 2004, 5(4), 261-270.
[http://dx.doi.org/10.1038/nrm1357] [PMID: 15071551]
[21]
Giannotta, M.; Trani, M.; Dejana, E. VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Dev. Cell, 2013, 26(5), 441-454.
[http://dx.doi.org/10.1016/j.devcel.2013.08.020] [PMID: 24044891]
[22]
Gory-Fauré, S.; Prandini, M.H.; Pointu, H.; Roullot, V.; Pignot-Paintrand, I.; Vernet, M.; Huber, P. Role of vascular endothelial-cadherin in vascular morphogenesis. Development, 1999, 126(10), 2093-2102.
[PMID: 10207135]
[23]
Carmeliet, P.; Lampugnani, M.G.; Moons, L.; Breviario, F.; Compernolle, V.; Bono, F.; Balconi, G.; Spagnuolo, R.; Oosthuyse, B.; Dewerchin, M.; Zanetti, A.; Angellilo, A.; Mattot, V.; Nuyens, D.; Lutgens, E.; Clotman, F.; de Ruiter, M.C.; Gittenberger-de Groot, A.; Poelmann, R.; Lupu, F.; Herbert, J.M.; Collen, D.; Dejana, E. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 1999, 98(2), 147-157.
[http://dx.doi.org/10.1016/S0092-8674(00)81010-7] [PMID: 10428027]
[24]
Koch, A.W.; Bozic, D.; Pertz, O.; Engel, J. Homophilic adhesion by cadherins. Curr. Opin. Struct. Biol., 1999, 9(2), 275-281.
[http://dx.doi.org/10.1016/S0959-440X(99)80038-4] [PMID: 10322209]
[25]
Breier, G.; Grosser, M.; Rezaei, M. Endothelial cadherins in cancer. Cell Tissue Res., 2014, 355(3), 523-527.
[http://dx.doi.org/10.1007/s00441-014-1851-7] [PMID: 24619142]
[26]
Delgado-Bellido, D.; Serrano-Saenz, S.; Fernández-Cortés, M.; Oliver, F.J. Vasculogenic mimicry signaling revisited: Focus on non-vascular VE-cadherin. Mol. Cancer, 2017, 16(1), 65.
[http://dx.doi.org/10.1186/s12943-017-0631-x] [PMID: 28320399]
[27]
Xu, K.; Shuai, Q.; Li, X.; Zhang, Y.; Gao, C.; Cao, L.; Hu, F.; Akaike, T.; Wang, J.X.; Gu, Z.; Yang, J. Human VE-cadherin fusion protein as an artificial extracellular matrix enhancing the proliferation and differentiation functions of endothelial cell. Biomacromolecules, 2016, 17(3), 756-766.
[http://dx.doi.org/10.1021/acs.biomac.5b01467] [PMID: 26859785]
[28]
Lertkiatmongkol, P.; Liao, D.; Mei, H.; Hu, Y.; Newman, P.J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol., 2016, 23(3), 253-259.
[http://dx.doi.org/10.1097/MOH.0000000000000239] [PMID: 27055047]
[29]
Michael, I.P.; Orebrand, M.; Lima, M.; Pereira, B.; Volpert, O.; Quaggin, S.E.; Jeansson, M. Angiopoietin-1 deficiency increases tumor metastasis in mice. BMC Cancer, 2017, 17(1), 539.
[http://dx.doi.org/10.1186/s12885-017-3531-y] [PMID: 28800750]
[30]
Honarvar, N.; Sheikhha, M.H.; Farashahi Yazd, E.; Pashaiefar, H.; Mohtaram, S.; Sazegari, A.; Feizollahi, Z.; Ghasemi, N. KDR gene polymorphisms and idiopathic recurrent spontaneous abortion. J. Matern. Fetal Neonatal Med., 2016, 29(22), 3737-3740.
[http://dx.doi.org/10.3109/14767058.2016.1142966] [PMID: 26866667]
[31]
Yang, P.; Chen, N.; Jia, J.H.; Gao, X.J.; Li, S.H.; Cai, J.; Wang, Z. Tie-1: A potential target for anti-angiogenesis therapy. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(5), 615-622.
[http://dx.doi.org/10.1007/s11596-015-1479-1] [PMID: 26489611]
[32]
Rakhmatia, Y.D.; Ayukawa, Y.; Jinno, Y.; Furuhashi, A.; Koyano, K. Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: Preliminary experiment in a canine model. Odontology, 2017, 105(4), 408-417.
[http://dx.doi.org/10.1007/s10266-017-0298-1] [PMID: 28389977]
[33]
Hatamleh, M.M.; Wu, X.; Alnazzawi, A.; Watson, J.; Watts, D. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent. Mater., 2018, 34(4), 676-683.
[http://dx.doi.org/10.1016/j.dental.2018.01.016] [PMID: 29398110]
[34]
Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000, 2017, 73(1), 22-40.
[http://dx.doi.org/10.1111/prd.12179] [PMID: 28000277]
[35]
Zheng, X.; Mo, A.; Wang, Y.; Guo, Y.; Wu, Y.; Yuan, Q. Effect of FK-506 (tacrolimus) therapy on bone healing of titanium implants: A histometric and biomechanical study in mice. Eur. J. Oral Sci., 2017, 125(1), 28-33.
[http://dx.doi.org/10.1111/eos.12320] [PMID: 27935130]
[36]
Monjo, M.; Ramis, J.M.; Rønold, H.J.; Taxt-Lamolle, S.F.; Ellingsen, J.E.; Lyngstadaas, S.P. Correlation between molecular signals and bone bonding to titanium implants. Clin. Oral Implants Res., 2013, 24(9), 1035-1043.
[PMID: 22587025]
[37]
Ilan, N.; Madri, J.A. PECAM-1: Old friend, new partners. Curr. Opin. Cell Biol., 2003, 15(5), 515-524.
[http://dx.doi.org/10.1016/S0955-0674(03)00100-5] [PMID: 14519385]
[38]
Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology. Exp. Mol. Pathol., 2016, 100(3), 409-415.
[http://dx.doi.org/10.1016/j.yexmp.2016.03.012] [PMID: 27079772]
[39]
Cao, G.; O’Brien, C.D.; Zhou, Z.; Sanders, S.M.; Greenbaum, J.N.; Makrigiannakis, A.; DeLisser, H.M. Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am. J. Physiol. Cell Physiol., 2002, 282(5), C1181-C1190.
[http://dx.doi.org/10.1152/ajpcell.00524.2001] [PMID: 11940533]
[40]
Newman, P.J.; Berndt, M.C.; Gorski, J.; White, G.C., II; Lyman, S.; Paddock, C.; Muller, W.A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science, 1990, 247(4947), 1219-1222.
[http://dx.doi.org/10.1126/science.1690453] [PMID: 1690453]
[41]
DeLisser, H.M.; Christofidou-Solomidou, M.; Strieter, R.M.; Burdick, M.D.; Robinson, C.S.; Wexler, R.S.; Kerr, J.S.; Garlanda, C.; Merwin, J.R.; Madri, J.A.; Albelda, S.M. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol., 1997, 151(3), 671-677.
[PMID: 9284815]
[42]
Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett., 2013, 328(1), 18-26.
[http://dx.doi.org/10.1016/j.canlet.2012.08.018] [PMID: 22922303]
[43]
Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996, 87(7), 1171-1180.
[http://dx.doi.org/10.1016/S0092-8674(00)81813-9] [PMID: 8980224]
[44]
Dumont, D.J.; Fong, G.H.; Puri, M.C.; Gradwohl, G.; Alitalo, K.; Breitman, M.L. Vascularization of the mouse embryo: A study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn., 1995, 203(1), 80-92.
[http://dx.doi.org/10.1002/aja.1002030109] [PMID: 7647376]
[45]
Santos, S.C.; Miguel, C.; Domingues, I.; Calado, A.; Zhu, Z.; Wu, Y.; Dias, S. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing. Exp. Cell Res., 2007, 313(8), 1561-1574.
[http://dx.doi.org/10.1016/j.yexcr.2007.02.020] [PMID: 17382929]
[46]
Lv, M.; Xia, Y.F.; Li, B.; Liu, H.; Pan, J.Y.; Li, B.B.; Zhang, C.; An, F.S. Serum amyloid A stimulates vascular endothelial growth factor receptor 2 expression and angiogenesis. J. Physiol. Biochem., 2016, 72(1), 71-81.
[http://dx.doi.org/10.1007/s13105-015-0462-4] [PMID: 26714823]
[47]
Shin, W.S.; Na, H.W.; Lee, S.T. Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis. Biochim. Biophys. Acta, 2015, 1853(10 Pt A), 2251-2260.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.015] [PMID: 25986862]
[48]
Tsiamis, A.C.; Morris, P.N.; Marron, M.B.; Brindle, N.P. Vascular endothelial growth factor modulates the Tie-2:Tie-1 receptor complex. Microvasc. Res., 2002, 63(2), 149-158.
[http://dx.doi.org/10.1006/mvre.2001.2377] [PMID: 11866538]
[49]
Marron, M.B.; Hughes, D.P.; McCarthy, M.J.; Beaumont, E.R.; Brindle, N.P. Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: Potential signalling mechanisms and roles in angiogenesis. Adv. Exp. Med. Biol., 2000, 476, 35-46.
[http://dx.doi.org/10.1007/978-1-4615-4221-6_3] [PMID: 10949653]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy