Generic placeholder image

Current Radiopharmaceuticals


ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Thymoquinone Glucuronide Conjugated Magnetic Nanoparticle for Bimodal Imaging and Treatment of Cancer as a Novel Theranostic Platform

Author(s): İskender İnce*, Zümrüt Biber Müftüler, E.İlker Medine, Özge Kozguş Güldü, Gökhan Takan, Ayşegül Ergönül, Yasemin Parlak, Yeliz Yıldırım, Burcu Çakar, Elvan Sayit Bilgin, Ömer Aras, Erdem Göker and Perihan Ünak*

Volume 14, Issue 1, 2021

Published on: 13 April, 2020

Page: [23 - 36] Pages: 14

DOI: 10.2174/2211556009666200413085800

Price: $65


Background: Theranostic oncology combines therapy and diagnosis and is a new field of medicine that specifically targets the disease by using targeted molecules to destroy the cancerous cells without damaging the surrounding healthy tissues.

Objective: We aimed to develop a tool that exploits enzymatic TQ release from glucuronide (G) for the imaging and treatment of lung cancer. We added magnetic nanoparticles (MNP) to enable magnetic hyperthermia and MRI, as well as 131I to enable SPECT imaging and radionuclide therapy.

Methods: A glucuronide derivative of thymoquinone (TQG) was enzymatically synthesized and conjugated with the synthesized MNP and then radioiodinated with 131I. New Zealand white rabbits were used in SPECT and MRI studies, while tumor modeling studies were performed on 6–7- week-old nude mice utilized with bioluminescence imaging.

Results: Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectra confirmed the expected structures of TQG. The dimensions of nanoparticles were below 10 nm and they had rather polyhedral shapes. Nanoparticles were radioiodinated with 131I with over 95% yield. In imaging studies, in xenograft models, tumor volume was significantly reduced in TQGMNP-treated mice but not in non-treated mice. Among mice treated intravenously with TQGMNP, xenograft tumor models disappeared after 10 and 15 days, respectively.

Conclusion: Our findings suggest that TQGMNP in solid, semi-solid and liquid formulations can be developed using different radiolabeling nuclides for applications in multimodality imaging (SPECT and MRI). By altering the characteristics of radionuclides, TQGMNP may ultimately be used not only for diagnosis but also for the treatment of various cancers as an in vitro diagnostic kit for the diagnosis of beta glucuronidase-rich cancers.

Keywords: Thymoquinone, thymoquinone glucuronide, magnetic nanoparticles, lung cancer, iodine-131, SPECT, MRI, theranostics.

Graphical Abstract
Hirsch, F.R.; Franklin, W.A.; Gazdar, A.F.; Bunn, P.A., Jr Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res., 2001, 7(1), 5-22.
[PMID: 11205917]
Sohail, M.F.; Rehman, M.; Sarwar, H.S.; Naveed, S.; Salman, O.; Bukhari, N.I.; Hussain, I.; Webster, T.J.; Shahnaz, G. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int. J. Nanomedicine, 2018, 13, 3145-3161.
[] [PMID: 29922053]
Lin, L.; Wong, H. Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models. Pharmaceutics, 2017, 9(4), 41.
[] [PMID: 28954416]
Li, K.; Nejadnik, H.; Daldrup-Link, H.E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today, 2017, 22(9), 1421-1429.
[] [PMID: 28454771]
Häfeli, U.O.; Sweeney, S.M.; Beresford, B.A.; Humm, J.L.; Macklis, R.M. Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl. Med. Biol., 1995, 22(2), 147-155.
[] [PMID: 7767307]
Ince, I.; Müftüler, Z.B.; Medine, E.İ.; Güldü, K.O.; Tekin, V.; Aktar, S.; Göker, E.; Unak, P. Synthesis of Radioiodinated Thymoquinone Glucuronide Conjugated Magnetic Nanoparticle (125I-TQG-Fe3O4) and its Cytotoxicity and in vitro Affinity. Acta Pharm. Sci., 2018, 56(2), 7-26.
Briley-Saebo, K.; Bjørnerud, A.; Grant, D.; Ahlstrom, H.; Berg, T.; Kindberg, G.M. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res., 2004, 316(3), 315-323.
[] [PMID: 15103550]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[] [PMID: 18817471]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. in vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[] [PMID: 26390044]
Mirković, M.; Radović, M.; Stanković, D.; Milanović, Z.; Janković, D.; Matović, M.; Jeremić, M.; Antić, B.; Vranješ-Đurić, S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. Mater. Sci. Eng. C, 2019, 102, 124-133.
[] [PMID: 31146983]
Medine, I.E.; Unak, P.; Sakarya, S.; Toksöz, F. Enzymatic synthesis of uracil glucuronide, labeling with 125/131I, and in vitro evaluation on adenocarcinoma cells. Cancer Biother. Radiopharm., 2010, 25(3), 335-344.
[] [PMID: 20578839]
Bekis, R.; Biber, Z.; Dagdeviren, K.; Ertay, T.; Unak, P. Effect of I-131 labelled magnetic iron particles in breast tumor. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(S2), S400-S400.
Dagdeviren, K.; Unak, P.; Bekis, R.; Biber, F.Z.; Akdurak, S.; Ulker, O.; Ergur, B.; Ertay, T.; Durak, H. Radioiodinated magnetic targeted carriers (I-131-MTC). J. Radioanal. Nucl. Chem., 2007, 273(3), 635-639.
Ozkaya, F.; Unak, P.; Medine, E.I.; Sakarya, S.; Unak, G.; Timur, S. (18)FDG conjugated magnetic nanoparticle probes: synthesis and in vitro investigations on MCF-7 breast cancer cells. J. Radioanal. Nucl. Chem., 2013, 295(3), 1789-1796.
Shanehsazzadeh, S.; Gruettner, C.; Yousefnia, H.; Lahooti, A.; Gholami, A.; Nosrati, S.; Zolghadri, S.; Anijdan, S.H.M.; Lotfabadi, A.; Varnamkhasti, B.S. Development of Lu-177-DTPA-SPIO conjugates for potential use as a dual contrast SPECT/MRI imaging agent. Radiochim. Acta, 2016, 104(5), 337-344.
Jordan, C.D.; Han, M.; Kondapavulur, S.; Vera, D.B.; Neumann, K.D.; Moore, T.; Stillson, C.; Krug, R.; Behr, S.; Seo, Y.; VanBrocklin, H.F.; Larson, P.E.Z.; Wilson, M.; Martin, A.J.; Hetts, S.W. Quantification of 89 Zr-Iron oxide nanoparticle biodistribution using PET-MR and ultrashort TE sequences. J. Magn. Reson. Imaging, 2018, 48(6), 1717-1720.
[] [PMID: 29761624]
Wu, Y.; Briley-Saebo, K.; Xie, J.; Zhang, R.; Wang, Z.; He, C.; Tang, C.Y.; Tao, X. Inflammatory bowel disease: MR- and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model--pilot study. Radiology, 2014, 271(2), 400-407.
[] [PMID: 24475849]
Unak, P. Radionuclide Labeled Glucuronide Prodrugs for Imaging and Targeting Therapy of Cancer.Neuro-Oncology And Cancer Targeted Therapy; Gutierrez, L.M., Ed.; Cancer Etiology Diagnosis and Treatments, 2010, pp. 239-248.
Sperker, B.; Backman, J.T.; Kroemer, H.K. The role of beta-glucuronidase in drug disposition and drug targeting in humans. Clin. Pharmacokinet., 1997, 33(1), 18-31.
[] [PMID: 9250421]
Su, Y.C.; Cheng, T.C.; Leu, Y.L.; Roffler, S.R.; Wang, J.Y.; Chuang, C.H.; Kao, C.H.; Chen, K.C.; Wang, H.E.; Cheng, T.L. PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy. Mol. Cancer Ther., 2014, 13(12), 2852-2863.
[] [PMID: 25277385]
Martin, V. Overview of paclitaxel (TAXOL). Semin. Oncol. Nurs., 1993, 9(4)(Suppl. 2), 2-5.
[] [PMID: 7904376]
Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 2012, 83(4), 443-451.
[] [PMID: 22005518]
Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P.A.; Kucuk, O.; Sarkar, F.H.; Mohammad, R.M. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr. Cancer, 2010, 62(7), 938-946.
[] [PMID: 20924969]
Worthen, D.R.; Ghosheh, O.A.; Crooks, P.A. The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa L. Anticancer Res., 1998, 18(3A), 1527-1532.
[PMID: 9673365]
Ediz, M.; Avcıbaşı, U.; Unak, P.; Muftuler, F.Z.B.; Medine, E.I.; Kılcar, A.Y.; Demiroglu, H.; Gumuser, F.G.; Sakarya, S. Investigation Of Therapeutic Efficiency Of Bleomycin (BLM) And Bleomycin-Glucuronide (BLMG) Labeled With Radioactive (131)I On The Cancer Cell Lines. Cancer Biother. Radiopharm., 2013, 28(4), 310-319.
[] [PMID: 23350895]
Zhang, L.; Li, Z.G.; Huang, R.Q. Wang. Q.S. Lipophilicity determination of N- (benzothiazol-2-yl) -α-amino alkyl phosphonic diesters by RP-HPLC and RP-HPTLC. Chin. J. Chem., 2000, 18(6), 872-876.
Sperker, B.; Werner, U.; Mürdter, T.E.; Tekkaya, C.; Fritz, P.; Wacke, R.; Adam, U.; Gerken, M.; Drewelow, B.; Kroemer, H.K. Expression and function of beta-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(2), 110-115.
[] [PMID: 10961372]
Stevenson, D.E. Optimization UDP-glucuronyl transferase-catalysed synthesis of testosterone-β-D-glucuronide by inhibition of contaminating β-glucuronidase. Biotechnol. Tech., 1999, 13, 17-21.
Chen, X.; Wu, B.; Wang, P.G. Glucuronides in anti-cancer therapy. Curr. Med. Chem. Anticancer Agents, 2003, 3(2), 139-150.
[] [PMID: 12678908]
Arroo, R.R.J.; Alfa, H.H. Chemical properties of thymoquinone, a monoterpene isolated from the seeds of Nigella sativa Linn. Pharmacol. Res., 2018, 133, 151.
[] [PMID: 29777758]
Ulasli, S.S.; Celik, S.; Gunay, E.; Ozdemir, M.; Hazman, O.; Ozyurek, A.; Koyuncu, T.; Unlu, M. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac. J. Cancer Prev., 2013, 14(10), 6159-6164.
[] [PMID: 24289642]
Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol., 2013, 27(5), 557-569.
[] [PMID: 22788741]
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
[] [PMID: 20880395]
Nagi, M.N.; Mansour, M.A. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol. Res., 2000, 41(3), 283-289.
[] [PMID: 10675279]
Shoieb, A.M.; Elgayyar, M.; Dudrick, P.S.; Bell, J.L.; Tithof, P.K. in vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol., 2003, 22(1), 107-113.
[] [PMID: 12469192]
Al-Qubaisi, M.S.; Rasedee, A.; Flaifel, M.H.; Eid, E.E.M.; Hussein-Al-Ali, S.; Alhassan, F.H.; Salih, A.M.; Hussein, M.Z.; Zainal, Z.; Sani, D.; Aljumaily, A.H.; Saeed, M.I. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. Eur. J. Pharm. Sci., 2019, 133, 167-182.
[] [PMID: 30902654]
Lübbe, A.S.; Alexiou, C.; Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res., 2001, 95(2), 200-206.
[] [PMID: 11162046]
Unak, P.; Cetinkaya, B. Absorbed dose estimates at the cellular level for 131I. Appl. Radiat. Isot., 2005, 62(6), 861-869.
[] [PMID: 15799863]
Matsumoto, S.; Tanaka, F.; Sato, K.; Kimura, S.; Maekawa, T.; Hasegawa, S.; Wada, H. Monitoring with a non-invasive bioluminescent in vivo imaging system of pleural metastasis of lung carcinoma. Lung Cancer, 2009, 66(1), 75-79.
[] [PMID: 19178977]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy