Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Study of Cobalt Doped GdAlO3 for Electrochemical Application

Author(s): Jisha P. Kunhan, Prashantha S. Chandrappa, C.R. Ravikumar, Nagabhushana Hanumantharayappa, Ramachandra Naik*, Ramyakrishna Pothu, Rajender Boddula* and Ahmed Al Otaibi

Volume 17, Issue 5, 2021

Published on: 10 April, 2020

Page: [662 - 667] Pages: 6

DOI: 10.2174/1573411016666200410090148

Price: $65

Abstract

Background: Nano perovskite-type structures as denoted by ABO3 (A= RE) have been popular targets of fundamental investigations since they exhibit a wide variety of physical properties depending upon the chemical composition, defects and small changes in atomic arrangements.

Methods: GdAlO3: Co2+ (1, 3 &9 mol %) was synthesized using the solution combustion method by using stoichiometric quantities of gadolinium nitrate [Gd (NO3)3], aluminium nitrate (Al (NO3)2, and cobalt nitrate Co(NO3)2.

Results: The morphology, structure and particle size of the prepared GdAlO3: Co2+ sample were characterized by transmission electron microscope (TEM) image. The Fourier transform infrared (FT-IR) spectral analysis confirmed that the as-prepared powder was in pure state. Electrochemical impedance measurements (EIS) of different GdAlO3: Co2+ samples were measured vs. Ag/AgCl in the frequency range of 1 Hz to 1 MHz with AC amplitude of 5 mV at steady-state which clearly indicated that Co2+ dopant is a successful doping material for the fabrication of supercapacitors.

Conclusion: Electrochemical impedance measurements (EIS) of different GdAlO3: Co2+ samples were measured vs. Ag/AgCl in the frequency range of 1 Hz to 1 MHz with AC amplitude of 5 mV at steady-state which clearly indicated that Co2+ dopant is a successful doping material for the fabrication of supercapacitors. From a future perspective, we believe that GdAlO3: Co2+ composite material could be a promising electrode material for the fabrication of various sensors, supercapacitors and solar cells.

Keywords: Cyclic Electrochemical Impedance Spectroscopy (EIS), FT-IR, TEM, Nano perovskite-type structure, chemical composition, supercapacitors.

Graphical Abstract
[1]
Interrante, L.V.; Hampden-Smith, M.J. Chemistry of Advanced Materials: An Overview; Wiley VCH: New York, 1998.
[2]
Zhu, H.; Jin, D.; Zhu, L.; Yang, H.; Yao, K. Xi., Z.; A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln=Y,La-Yb). J. Alloys Compd., 2008, 464, 508-513.
[http://dx.doi.org/10.1016/j.jallcom.2007.10.024]
[3]
Qu, X.; Dai, J.; Tian, J.; Huang, X.; Liu, Z.; Shen, Z.; Wang, P. Syntheses of Nd2O3 nanowires through sol-gel process assisted with porous anodic aluminum oxide (AAO) template. J. Alloys Compd., 2009, 469, 332-335.
[http://dx.doi.org/10.1016/j.jallcom.2008.01.110]
[4]
Qian, L.; Gui, Y.; Guo, S.; Gong, Q.; Qian, X. Controlled synthesis of light rare-earth hydroxide nanorods via a simple solution route. J. Phys. Chem. Solids, 2009, 70, 688-693.
[http://dx.doi.org/10.1016/j.jpcs.2009.02.005]
[5]
Bazzi, R.; Flores-Gonzalez, M.A.; Catherine Louis, K.; Lebbou, C.; Dujardin, A.; Brenier, W. Zhang, Olivier, T.; Bernstein, E.; Pascal, P. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J. Lumin., 2003, 102, 445-450.
[6]
Dedov, A.G.; Loktev, A.S.; Moiseev, I.I.; Aboukais, A.; Lamonier, J.F.; Filimonov, I.N. Oxidative coupling of methane catalyzed by rare earth oxides: Unexpected synergistic effect of the oxide mixtures. Appl. Catal.A, 2003, 245(2), 209-220.
[http://dx.doi.org/10.1016/S0926-860X(02)00641-5]
[7]
Raju, G.S.R.; Park, J.Y.; Jung, H.C.; Yang, H.K.; Moon, B.K.; Jeong, J.H.; Kim, J.H. Synthesis and luminescent properties of low concentration Dy3+: GAP nanophosphors. Opt. Mater., 2009, 31(8), 1210-1214.
[http://dx.doi.org/10.1016/j.optmat.2008.12.015]
[8]
Tamrakar, R.K.; Upadhyay, K.; Bisen, D.P. Variation in luminescence behavior of Yb3+ doped GdAlO3 phosphor with gradual increase in Yb3+ concentration. Infra. Phy. Techn, 2016, 75, 160-167.
[9]
Zhang, G.; Liu, M. Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. J. Mater. Sci., 1999, 34(13), 3213-3219.
[http://dx.doi.org/10.1023/A:1004685907751]
[10]
Cheng, B.; Russell, J.M.; Shi, W.; Zhang, L.; Samulski, E.T. Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. J. Am. Chem. Soc., 2004, 126(19), 5972-5973.
[http://dx.doi.org/10.1021/ja0493244] [PMID: 15137755]
[11]
Wang, Y.; Jiang, X.; Xia, Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc., 2003, 125(52), 16176-16177.
[http://dx.doi.org/10.1021/ja037743f] [PMID: 14692744]
[12]
Prashantha, S.C.; Lakshminarasappa, B.N. Ionoluminescence studies of combustion synthesized Dy3+ doped nano crystalline forsterite Fouran Singh. Curr. Appl. Phys., 2011, 11, 1274-1277.
[http://dx.doi.org/10.1016/j.cap.2011.03.055]
[13]
Meyers, R.A., Ed.; Coates; J., Interpretation of Infrared Spectra: A Practical Approach, Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd., 2000.
[14]
Shen, L.; Hu, C.; Sakka, Y.; Huang, Q. Study of phase transformation behaviour of alumina through precipitation method. J. Phys. D Appl. Phys., 2012, 45(21)215302
[http://dx.doi.org/10.1088/0022-3727/45/21/215302]]
[15]
Umesh, B.; Eraiah, B.; Nagabhushana, H.; Sharma, S.C.; Sunitha, D.V.; Nagabhushana, B.M.; Chakradhar, R.P.S. Structural characterization, thermoluminescence and EPR studies of Nd2O3: Co2+ nanophosphors. Mater. Res. Bull., 2013, 48(2), 180-187.
[http://dx.doi.org/10.1016/j.materresbull.2012.09.004]
[16]
Djebaili, K.; Mekhalif, Z.; Boumaza, A.; Djelloul, A. X. P. S. XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy J. Spectrosc, 2015, 2015.
[17]
Faulkner, L.R.; Che, J. Edu., 1983, 60, 262.
[18]
Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem., 2009, 81(6), 2378-2382.
[http://dx.doi.org/10.1021/ac802193c] [PMID: 19227979]
[19]
Ting, S.W.; Periasamy, A.P.; Chen, S.M.; Saraswathi, R. Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci., 2011, 6, 4438-4453.
[20]
Liu, S.Y.; Xie, J.; Pan, Q.; Wu, C.Y.; Cao, G.S.; Zhu, T.J.; Zhao, X.B. Graphene anchored with nanocrystal Fe2O3 with improved electrochemical Li-storage properties. Int. J. Electrochem. Sci., 2012, 7, 354-362.
[21]
Aravinda; L. S., Nagaraja; K. K., Nagaraja; H. S., Bhat; K. U., Bhat; B. R. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim. Acta, 2013, 95, 119-124.
[http://dx.doi.org/10.1016/j.electacta.2013.02.027]
[22]
Wang, J.; Gao, Z.; Li, Z.; Wang, B.; Yan, Y.; Liu, Q.; Jiang, Z. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem., 2011, 184(6), 1421-1427.
[http://dx.doi.org/10.1016/j.jssc.2011.03.006]
[23]
Wu; Y., Liu; S., Wang; H., Wang;X., Zhang;X., Jin; G. A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim. Acta, 2013, 90, 210-218.
[http://dx.doi.org/10.1016/j.electacta.2012.11.124]
[24]
Deng, L.; Hao, Z.; Wang, J.; Zhu, G.; Kang, L.; Liu, Z.H.; Wang, Z. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta, 2013, 89, 191-198.
[http://dx.doi.org/10.1016/j.electacta.2012.10.106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy