Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Amano Lipase PS from Burkholderia cepacia - Evaluation of the Effect of Substrates and Reaction Media on the Catalytic Activity

Author(s): Jacek Dulęba, Tomasz Siódmiak* and Michał Piotr Marszałł

Volume 24, Issue 7, 2020

Page: [798 - 807] Pages: 10

DOI: 10.2174/1385272824666200408092305

Price: $65

Abstract

Lipases in the native or immobilized form have commonly been used as catalysts in the chemical and pharmaceutical industry. One of the widely available enzyme catalysts on the market is lipase from Burkholderia cepacia (BCLs), previously called Pseudomonas cepacia (PCLs). This enzyme is applied, among others, in the stereoselective acylation of molecules to achieve chiral pure enantiomers of drugs or their building blocks. In this study, Amano lipase PS (APS-BCL), which is a commercial lipase from Burkholderia cepacia (BC) was tested. The lipolytic activity of APS-BCL by hydrolysis of vegetable oils and enantioselective activity of APS-BCL by the kinetic resolution of (R,S)-1-phenylethanol with using isopropenyl acetate as an acyl donor were evaluated. An effect of reaction media with different logP values (t-butyl methyl ether, dichloromethane, diisopropyl ether, toluene, cyclohexane, n-hexane, isooctane and n-heptane) on the enantioselective activity of lipase was also studied. The high value of the enantiomeric ratio (E =308.5) with the utilization of isopropenyl acetate was achieved. Whereas, the best reaction medium turned out to be diisopropyl ether, C =47.9%, eep =98%, ees =90%, after 24 h of incubation. Moreover, the influence of ω6/ω9 polyunsaturated fatty acids (PUFAs) ratio in commercial (peanut, camelina, rape, pumpkin seed, walnut, sesame, avocado, rice, corn, black cumin, hemp, safflower, grape seed) oils was investigated for the lipase activity. For the first time, the cut-off limit of ω6/ω9 ratio was proposed. The ratio equal to or higher than 2.3 allows achieving higher lipolytic activity.

Keywords: Lipase, Amano lipase PS from Burkholderia cepacia, (R, S)-1-phenylethanol, (R)-1-phenylethanol, isopropenyl acetate, ω- PUFAs, vegetable oil, the cut-off limit.

« Previous
Graphical Abstract
[1]
Zisis, T.; Freddolino, P.L.; Turunen, P.; van Teeseling, M.C.; Rowan, A.E.; Blank, K.G. Interfacial activation of Candida antarctica Lipase B: combined evidence from experiment and simulation. Biochemistry, 2015, 54(38), 5969-5979.
[http://dx.doi.org/10.1021/acs.biochem.5b00586] [PMID: 26346632]
[2]
Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. J. Lipid Res., 2015, 56(12), 2348-2358.
[http://dx.doi.org/10.1194/jlr.M063388] [PMID: 26447231]
[3]
Verger, R. “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol., 1997, 15, 32-38.
[http://dx.doi.org/10.1016/S0167-7799(96)10064-0]
[4]
Nascimento, M.D.; da Silva, J.M.R.; da Silva, J.C.; Alves, M.M. The use of organic solvents/ionic liquids mixtures in reactions catalyzed by lipase from Burkholderia cepacia immobilized in different supports. J. Mol. Catal., B Enzym., 2015, 112, 1-8.
[http://dx.doi.org/10.1016/j.molcatb.2014.11.013]
[5]
Jung, S.; Park, S. Dual-surface functionalization of metal-organic frameworks for enhancing the catalytic activity of Candida antarctica Lipase B in polar organic media. ACS Catal., 2017, 7, 438-442.
[http://dx.doi.org/10.1021/acscatal.6b03222]
[6]
Padilha, G.D.; Santana, J.C.C.; Alegre, R.M.; Tambourgi, E.B. Extraction of lipase from Burkholderia cepacia by PEG/phosphate ATPS and its biochemical characterization. Braz. Arch. Biol. Technol., 2012, 55, 7-19.
[http://dx.doi.org/10.1590/S1516-89132012000100002]
[7]
Mukherjee, J.; Gupta, M.N. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel. Biotechnol. Rep. (Amst.), 2016, 10, 38-43.
[http://dx.doi.org/10.1016/j.btre.2016.02.005] [PMID: 28352522]
[8]
Vázquez, L.; González, N.; Reglero, G.; Torres, C. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients. Front. Bioeng. Biotechnol., 2016, 4, 6.
[http://dx.doi.org/10.3389/fbioe.2016.00006] [PMID: 26904539]
[9]
Wang, L.; Zhang, Y.; Zhang, Y.; Zheng, L.; Huang, H.; Wang, Z. Synthesis of 2-ethylhexyl palmitate catalyzed by enzyme under microwave. Appl. Biochem. Biotechnol., 2018, 185(1), 347-356.
[http://dx.doi.org/10.1007/s12010-017-2666-2] [PMID: 29152693]
[10]
Bernal, C.; Escobar, S.; Wilson, L.; Illanes, A.; Mesa, M. Carbonaceous-siliceous composite materials as immobilization support for lipase from Alcaligenes sp.: application to the synthesis of antioxidants. Carbon, 2014, 74, 96-103.
[http://dx.doi.org/10.1016/j.carbon.2014.03.008]
[11]
Cazaban, D.; Wilson, L.; Betancor, L. Lipase immobilization on siliceous supports: application to synthetic reactions. Curr. Org. Chem., 2017, 21, 85-92.
[12]
Bezbradica, D.; Crovic, M.; Tanaskovic, S.J.; Lukovic, N.; Carevic, M.; Milivojevic, A.; Knezevic-Jugovic, Z. Enzymatic syntheses of esters - green chemistry for valuable food, fuel and fine chemicals. Curr. Org. Chem., 2017, 21, 104-138.
[http://dx.doi.org/10.2174/1385272821666161108123326]
[13]
Dudas, Z.; Almasy, L. Effect of the organic groups on the performance of hybrid silica based materials used as supports for biomolecules. Curr. Org. Chem., 2017, 21, 2760-2767.
[14]
Sánchez, D.M.; Iglesias, M.L.; Fernández, V.G. Hydrolases in organic chemistry. Recent achievements in the synthesis of pharmaceuticals. Curr. Org. Chem., 2016, 20, 1186-1203.
[http://dx.doi.org/10.2174/1385272819666150819190956]
[15]
Siódmiak, T.; Rumiński, J.K.; Marszałł, M.P. Application of lipases from Candida rugosa in the enantioselective esterification of (R,S)-. Ibuprofen. Curr. Org. Chem., 2012, 16, 972-977.
[http://dx.doi.org/10.2174/138527212800194728]
[16]
Siódmiak, T.; Borowska, M.Z.; Marszałł, M.P. Lipase-immobilized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen. J. Mol. Catal., B Enzym., 2013, 94, 7-14.
[http://dx.doi.org/10.1016/j.molcatb.2013.04.008]
[17]
Sundell, R.; Turcu, C.M.; Kanerva, T.L. Lipase-catalyzed dynamic combinatorial resolution and the synthesis of heteroaromatic cyanohydrin ester enantiomers. Curr. Org. Chem., 2013, 17, 672-681.
[http://dx.doi.org/10.2174/1385272811317070003]
[18]
Lee, S.Y.; Khoiroh, I.; Coutinho, J.A.P.; Show, P.L.; Ventura, S.P.M. Lipase production and purification by self-buffering ionic liquid-based aqueous biphasic systems. Process Biochem., 2017, 63, 221-228.
[http://dx.doi.org/10.1016/j.procbio.2017.08.020]
[19]
Manoel, E.A.; Ribeiro, M.F.P.; dos Santos, J.C.S.; Coelho, M.A.Z.; Simas, A.B.C.; Lafuente, R.F.; Freire, D.M.G. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: application to the kinetic resolution of myo-inositol derivatives. Process Biochem., 2015, 50, 1557-1564.
[http://dx.doi.org/10.1016/j.procbio.2015.06.023]
[20]
Sánchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnol. Bioeng., 2018, 115(1), 6-24.
[http://dx.doi.org/10.1002/bit.26458] [PMID: 28941272]
[21]
Marszałł, M.P.; Siódmiak, T. Immobilization of Candida rugosa lipase onto magnetic beads for kinetic resolution of (R,S)-ibuprofen. Catal. Commun., 2012, 24, 80-84.
[http://dx.doi.org/10.1016/j.catcom.2012.03.027]
[22]
Kersters, K.; Ludwig, W.; Vancanneyt, M.; De Vos, P.; Gillis, M.; Schleifer, K.H. Recent changes in the classification of the pseudomonads: an overview. Syst. Appl. Microbiol., 1996, 19, 465-47.
[http://dx.doi.org/10.1016/S0723-2020(96)80020-8]
[23]
Kawakami, K.; Ueno, M.; Takei, T.; Oda, Y.; Takahashi, R. Application of a Burkholderia cepacia lipase-immobilized silica monolith micro-bioreactor to continuous-flow kinetic resolution for transesterification of (R,S)-1-phenylethanol. Process Biochem., 2012, 47, 147-150.
[http://dx.doi.org/10.1016/j.procbio.2011.09.017]
[24]
de Oliveira, I.P.; Jara, G.E.; Martínez, L. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces. Phys. Chem. Chem. Phys., 2017, 19(46), 31499-31507.
[http://dx.doi.org/10.1039/C7CP04466F] [PMID: 29160871]
[25]
Hsieh, H.J.; Nair, G.R.; Wu, W.T. Production of ascorbyl palmitate by surfactant-coated lipase in organic media. J. Agric. Food Chem., 2006, 54(16), 5777-5781.
[http://dx.doi.org/10.1021/jf060089d] [PMID: 16881677]
[26]
Martin, B.D.; Ampofo, S.A.; Linhardt, R.J.; Dordick, J.S. Biocatalytic synthesis of sugar-containing polyacrylate-based hydrogels. Macromolecules, 2006, 25, 7081-7085.
[http://dx.doi.org/10.1021/ma00052a001]
[27]
Chew, P.L.; Annuar, M.S.M.; Show, P.L.; Ling, T.C. Extractive bioconversion of poly-ϵ-caprolactone by Burkholderia cepacia lipase in an aqueous two-phase system. Biochem. Eng. J., 2015, 101, 9-17.
[http://dx.doi.org/10.1016/j.bej.2015.04.015]
[28]
Taniguchi, I.; Nakano, S.; Nakamura, T.; El-Salmawy, A.; Miyamoto, M.; Kimura, Y. Mechanism of enzymatic hydrolysis of poly (butylene succinate) and poly (butylene succinate-co-L-lactate) with a lipase from Pseudomonas cepacia. Macromol. Biosci., 2002, 2, 447-455.
[http://dx.doi.org/10.1002/mabi.200290002]
[29]
Honda, N.; Taniguchi, I.; Miyamoto, M.; Kimura, Y. Reaction mechanism of enzymatic degradation of poly (butylene succinate-coterephthalate) (PBST) with a lipase originated from Pseudomonas cepacia. Macromol. Biosci., 2003, 3, 189-197.
[http://dx.doi.org/10.1002/mabi.200390023]
[30]
Hrydziuszko, Z.; Strub, D.J.; Labus, K.; Bryjak, J. Burkholderia cepacia lipase immobilization for hydrolytic reactions and the kinetic resolution of the non-equimolar mixtures of isomeric alcohols. Bioorg. Chem., 2019, 93102745
[http://dx.doi.org/10.1016/j.bioorg.2019.01.041] [PMID: 30691728]
[31]
Mathpati, A.C.; Bhanage, B.M. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. J. Biotechnol., 2018, 283, 70-80.
[http://dx.doi.org/10.1016/j.jbiotec.2018.07.024] [PMID: 30031094]
[32]
Wang, J.Y.; Ma, C.L.; Bao, Y.M.; Xu, P.S. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol. Enzyme Microb. Technol., 2012, 51(1), 40-46.
[http://dx.doi.org/10.1016/j.enzmictec.2012.03.011] [PMID: 22579389]
[33]
Li, X.; Liu, T.; Xu, L.; Gui, X.H.; Su, F.; Yan, Y.J. Resolution of racemic ketoprofen in organic solvents by lipase from Burkholderia cepacia G63. Biotechnol. Bioprocess Eng.; BBE, 2012, 17, 1147-1155.
[http://dx.doi.org/10.1007/s12257-012-0279-8]
[34]
Li, K.; Fan, Y.; He, Y.; Zeng, L.; Han, X.; Yan, Y. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Sci. Rep., 2017, 7(1), 16473.
[http://dx.doi.org/10.1038/s41598-017-16626-5] [PMID: 29184106]
[35]
Baron, A.M.; Barouh, N.; Barea, B.; Villeneuve, P.; Mitchell, D.A.; Krieger, N. Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel, 2014, 117, 458-462.
[http://dx.doi.org/10.1016/j.fuel.2013.09.065]
[36]
Liu, Y.; Chen, D.; Yan, Y.; Peng, C.; Xu, L. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour. Technol., 2011, 102(22), 10414-10418.
[http://dx.doi.org/10.1016/j.biortech.2011.08.056] [PMID: 21955878]
[37]
Oliveira, M.V.S.; Da Ros, P.C.M.; Mattedi, S.; de Castro, H.F.; Soares, C.M.F.; Lima, A.S. Transesterification of babassu oil catalyzed by Burkholderia cepacia encapsulated in sol-gel matrix employing protic ionic liquid as an additive. Acta Sci. Technol., 2014, 36, 445-451.
[http://dx.doi.org/10.4025/actascitechnol.v36i3.19871]
[38]
Mello Bueno, P.R.; de Oliveira, T.F.; Castiglioni, G.L.; Soares Júnior, M.S.; Ulhoa, C.J. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent. Water Sci. Technol., 2015, 71(7), 957-964.
[http://dx.doi.org/10.2166/wst.2015.037] [PMID: 25860696]
[39]
You, Q.; Yin, X.; Zhao, Y.; Zhang, Y. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresour. Technol., 2013, 148, 202-207.
[http://dx.doi.org/10.1016/j.biortech.2013.08.143] [PMID: 24055964]
[40]
Kumari, V.; Shah, S.; Gupta, M.N. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels, 2007, 21, 368-372.
[http://dx.doi.org/10.1021/ef0602168]
[41]
Chen, Y.; Cao, H.; Sun, D.; Lin, C.; Wang, L.; Huang, M.; Jiang, H.; Zhang, Z.; Jin, D.; Zhang, B. Bai1, X. Endogenous production of N-3 polyunsaturated fatty acids promotes fracture healing in mice. J. Healthc. Eng., 2017, 1-6.
[42]
Eastwood, L.; Leterme, P.; Beaulieu, A.D. Body fat mobilization during lactation in high-producing sows fed varied omega-6 to omega-3 fatty acid ratios. Can. J. Anim. Sci., 2016, 96, 69-78.
[http://dx.doi.org/10.1139/cjas-2015-0082]
[43]
Chang, W.H.; Ting, H.C.; Chen, W.W.; Chan, J.F.; Hsu, Y.H.H. Omega-3 and omega-6 fatty acid differentially impact cardiolipin remodeling in activated macrophage. Lipids Health Dis., 2018, 17(1), 201.
[http://dx.doi.org/10.1186/s12944-018-0845-y] [PMID: 30153842]
[44]
Sande, D.; Colen, G.; Dos Santos, G.F.; Ferraz, V.P.; Takahashi, J.A. Production of omega 3, 6, and 9 fatty acids from hydrolysis of vegetable oils and animal fat with Colletotrichum gloeosporioides lipase. Food Sci. Biotechnol., 2017, 27(2), 537-545.
[http://dx.doi.org/10.1007/s10068-017-0249-1] [PMID: 30263778]
[45]
Castejón, N.; Pérez, , S.M.;; Silveira,, E.A.;; Lorente, , G.F.; ; Guisán,, J.M.; Señoráns, F.J. Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem., 2019, 271, 433-439.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.215] [PMID: 30236698]
[46]
Fernandez-Lorente, G.; Betancor, L.; Carrascosa, A.V.; Guisan, J.M. Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. J. Am. Oil Chem. Soc., 2011, 88, 1173-1178.
[http://dx.doi.org/10.1007/s11746-011-1776-1]
[47]
He, K. Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease--eat fish or take fish oil supplement? Prog. Cardiovasc. Dis., 2009, 52(2), 95-114.
[http://dx.doi.org/10.1016/j.pcad.2009.06.003] [PMID: 19732603]
[48]
Moreno-Perez, S.; Luna, P.; Señorans, F.J.; Guisan, J.M.; Lorente, G.F. Enzymatic synthesis of triacylglycerols of docosahexaenoic acid: transesterification of its ethyl esters with glycerol. Food Chem., 2015, 187, 225-229.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.095] [PMID: 25977020]
[49]
Ruxton, C.; Reed, S.; Simpson, M.; Millington, K. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet., 2007, 20(3), 275-285.
[http://dx.doi.org/10.1111/j.1365-277X.2007.00770.x] [PMID: 17539883]
[50]
Metcalf, R.G.; James, M.J.; Gibson, R.A.; Edwards, J.R.; Stubberfield, J.; Stuklis, R.; Roberts-Thomson, K.; Young, G.D.; Cleland, L.G. Effects of fish-oil supplementation on myocardial fatty acids in humans. Am. J. Clin. Nutr., 2007, 85(5), 1222-1228.
[http://dx.doi.org/10.1093/ajcn/85.5.1222] [PMID: 17490956]
[51]
Kamal, M.Z.; Barrow, C.J.; Rao, N.M. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols. Food Chem., 2015, 173, 1030-1036.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.124] [PMID: 25466121]
[52]
Li, X.; Xu, L.; Wang, G.L.; Zhang, H.J.; Yan, Y.J. Conformation studies on Burkholderia cenocepacia lipase via resolution of racemic 1-phenylethanol in non-aqueous medium and its process optimization. Process Biochem., 2013, 48, 1905-1913.
[http://dx.doi.org/10.1016/j.procbio.2013.09.001]
[53]
Li, X.; Huang, S.; Xu, L.; Yan, Y. Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1- phenylethanol in non-aqueous medium. BMC Biotechnol., 2013, 13, 92.
[http://dx.doi.org/10.1186/1472-6750-13-92] [PMID: 24168516]
[54]
Melais, N.; Zouioueche, L.A.; Riant, O. The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. C. R. Chim., 2016, 19, 971-977.
[http://dx.doi.org/10.1016/j.crci.2016.05.002]
[55]
Xie, C.; Wu, B.; Qin, S.; He, B. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess Biosyst. Eng., 2016, 39(1), 59-66.
[http://dx.doi.org/10.1007/s00449-015-1489-1] [PMID: 26497492]
[56]
Shivaprasad, P.; Jones, M.D.; Patterson, D.A.; Emanuelsson, E.A.C. Kinetic resolution of 1-phenylethanol in the spinning mesh disc reactor: investigating the reactor performance using immobilised lipase catalyst. Chem. Eng. Process., 2018, 132, 56-64.
[http://dx.doi.org/10.1016/j.cep.2018.08.012]
[57]
Chua, L.S.; Sarmidi, M. Roji. Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. J. Mol. Catal., B Enzym., 2004, 28, 111-119.
[http://dx.doi.org/10.1016/j.molcatb.2004.02.004]
[58]
Kirilin, A.; Sahin, S.; Maki-Arvela, P.; Warna, J.; Salmi, T.; Murzin, D.Y. Kinetics and modeling of (R,S)-1-phenylethanol acylation over lipase. Int. J. Chem. Kinet., 2010, 42, 629-639.
[http://dx.doi.org/10.1002/kin.20504]
[59]
Silva Dias, G.; Bandeira, P.T.; Jaerger, S.; Piovan, L.; Mitchell, D.A.; Wypych, F.; Krieger, N. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme Microb. Technol., 2019, 130109365
[http://dx.doi.org/10.1016/j.enzmictec.2019.109365] [PMID: 31421722]
[60]
Li, M.; Shan, H.; Zhou, L.; Yin, Y.; Li, Z. Novel bioreactor for resolution of (R,S)-1-phenylethanol using the functional conducting polymer and ionic liquid with excellent catalytic activity and stability. J. Chem. Technol. Biotechnol., 2013, 88, 2091-2097.
[http://dx.doi.org/10.1002/jctb.4077]
[61]
de Miranda, A.S. de M. Silva, M.V.; Dias, F.C.; de Souza, S.P.; Leao, R.A.C.; de Souza, R.O.M.A. Continuous flow dynamic kinetic resolution of rac-1-phenylethanol using a single packed-bed containing immobilized CAL-B lipase and VOSO4 as racemization catalyst. React. Chem. Eng., 2017, 2, 375-381.
[http://dx.doi.org/10.1039/C7RE00003K]
[62]
Cao, Y.; Zhuang, Y.; Yao, C.; Wu, B.; He, B. Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R,S)-1-phenylethanol. Biochem. Eng. J., 2012, 64, 55-60.
[http://dx.doi.org/10.1016/j.bej.2012.03.004]
[63]
Habulin, M.; Knez, Z. Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. J. Mol. Catal., B Enzym., 2009, 58, 24-28.
[http://dx.doi.org/10.1016/j.molcatb.2008.10.007]
[64]
Yan, H.D.; Wang, Z.; Qian, J.Q. Efficient kinetic resolution of (RS)-1-phenylethanol by a mycelium-bound lipase from a wild-type Aspergillus oryzae strain. Biotechnol. Appl. Biochem., 2017, 64(2), 251-258.
[http://dx.doi.org/10.1002/bab.1484] [PMID: 26854002]
[65]
Siódmiak, T.; Mangelings, D.; Heyden, Y.V.;; Borowska, M.Z.;; Marszałł, M.P. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase. Appl. Biochem. Biotechnol., 2015, 175(5), 2769-2785.
[http://dx.doi.org/10.1007/s12010-014-1455-4] [PMID: 25561056]
[66]
Gocen, T.; Bayari, S.H.; Guven, M.H. Effects of chemical structures of omega-6 fatty acids on the molecular parameters and quantum chemical descriptors. J. Mol. Struct., 2018, 1174, 142-150.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.075]
[67]
Ma, G.J.; Dai, L.M.; Liu, D.H.; Du, W. Lipase-mediated selective methanolysis of fish oil for biodiesel production and polyunsaturated fatty acid enrichment. Energy Fuels, 2018, 32, 7630-7635.
[http://dx.doi.org/10.1021/acs.energyfuels.8b00749]
[68]
Godoy, L.C.;; Meunchan, M.; Cot, M.; Duquesne, S.; Bordes, F.; Marty, A. Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester. J. Biotechnol., 2014, 180, 30-36.
[http://dx.doi.org/10.1016/j.jbiotec.2014.03.018] [PMID: 24657346]
[69]
Akanbi, T.O.; Barrow, C.J. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chem., 2017, 229, 509-516.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.099] [PMID: 28372209]
[70]
U.S. National Library of Medicine. National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/linolenic_acid# section=3D-Conformer (Accessed December 05, 2019).
[71]
U.S. National Library of Medicine. National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/linoleic_acid# section=3D-Conformer (Accessed December 05, 2019).
[72]
U.S. National Library of Medicine. National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-acid#section=3D-Conformer (Accessed December 05, 2019).
[73]
Sikora, A.; Chelminiak-Dudkiewicz, D.; Ziegler-Borowska, M.; Marszall, M.P. Enantioseparation of (R,S)-atenolol with the use of lipases immobilized onto new-synthesized magnetic nanoparticles. Tetrahedron Asymmetry, 2017, 28, 374-380.
[http://dx.doi.org/10.1016/j.tetasy.2017.01.012]
[74]
Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative-analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc., 1982, 104, 7294-7299.
[http://dx.doi.org/10.1021/ja00389a064]
[75]
Sun, J.; Jiang, Y.; Zhou, L.; Gao, J. Immobilization of Candida antarctica lipase B by adsorption in organic medium. N. Biotechnol., 2010, 27(1), 53-58.
[http://dx.doi.org/10.1016/j.nbt.2009.12.001] [PMID: 20004754]
[76]
Nicoletti, G.; Cipolatti, E.P.; Valério, A.; Carbonera, N.G.; Soares, N.S.; Theilacker, E.; Ninow, J.L.; de Oliveira, D. Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst. Eng., 2015, 38(9), 1739-1748.
[http://dx.doi.org/10.1007/s00449-015-1415-6] [PMID: 26037641]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy