Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Research Progress of the UPR Mechanism and its Effect on Improving Foreign Protein Expression

Author(s): Bao-Chen Wang, Si-Tong Zhang* and Guang Chen*

Volume 27 , Issue 9 , 2020

Page: [831 - 840] Pages: 10

DOI: 10.2174/0929866527666200407113549

Price: $65

Abstract

The unfolded protein response (UPR) is a protective mechanism against endoplasmic reticulum (ER) stress that induces a series of signal transduction pathways to eliminate misfolded proteins. The UPR mechanism is highly conserved in fungi, higher organisms, plants and mammals. The UPR pathway is activated to stabilize ER functions when there are too many unfolded proteins or misfolded proteins in the ER. However, stress continues when ER proteins are stimulated by toxic substances that affect the balance of the UPR pathway, which causes changes in the structure and function of the ER and other organelles. These ultimately disrupt homeostasis in the body and cause pathological reactions that can be fatal. The UPR mechanism has clear effects on stabilizing the protein-folding environment. Dysfunction or disruption of the UPR mechanism is associated with numerous disorders, including neurodegenerative diseases, loss of control of protein secretion, cerebral ischemia and epilepsy, neuropsychiatric diseases, eye diseases, skin diseases, metabolic and inflammatory diseases, atherosclerosis, and heart disease. Thus, characterization of UPR function and its dysfunction has significant importance and has broad application prospects, which make research into the UPR a research hotspot.

Keywords: Endoplasmic reticulum stress, unfolded protein response, gene expression regulation, misfolded proteins, UPR pathway, homeostasis.

Graphical Abstract
[1]
Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature, 1992, 355(6355), 33-45.
[http://dx.doi.org/10.1038/355033a0] [PMID: 1731198]
[2]
Mori, K.; Sant, A.; Kohno, K.; Normington, K.; Gething, M.J.; Sambrook, J.F.A. 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J., 1992, 11(7), 2583-2593.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05323.x] [PMID: 1628622]
[3]
Smith, H.L.; Mallucci, G.R. The unfolded protein response: Mechanisms and therapy of neurodegeneration. Brain, 2016, 139(Pt 8), 2113-2121.
[http://dx.doi.org/10.1093/brain/aww101] [PMID: 27190028]
[4]
Meusser, B.; Hirsch, C.; Jarosch, E.; Sommer, T. ERAD: The long road to destruction. Nat. Cell Biol., 2005, 7(8), 766-772.
[http://dx.doi.org/10.1038/ncb0805-766] [PMID: 16056268]
[5]
Hetz, C.; Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci., 2014, 15(4), 233-249.
[http://dx.doi.org/10.1038/nrn3689] [PMID: 24619348]
[6]
Fox, R.M.; Andrew, D.J. Transcriptional regulation of secretory capacity by bZip transcription factors. Front. Biol. (Beijing), 2015, 10(1), 28-51.
[http://dx.doi.org/10.1007/s11515-014-1338-7] [PMID: 25821458]
[7]
Hebert, D.N.; Molinari, M. In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiol. Rev., 2007, 87(4), 1377-1408.
[http://dx.doi.org/10.1152/physrev.00050.2006] [PMID: 17928587]
[8]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[9]
Cunard, R. Endoplasmic reticulum stress in the diabetic kidney, the good, the bad and the ugly J. Clin. Med., 2015, 4(4), 715-740.
[http://dx.doi.org/10.3390/jcm4040715] [PMID: 26239352]
[10]
Wang, P.; Li, J.; Tao, J.; Sha, B. The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J. Biol. Chem., 2018, 293(11), 4110-4121.
[http://dx.doi.org/10.1074/jbc.RA117.001294] [PMID: 29386355]
[11]
Amin-Wetzel, N.; Saunders, R.A.; Kamphuis, M.J.; Rato, C.; Preissler, S.; Harding, H.P.; Ron, D. A J-Protein Co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell, 2017, 171(7), 1625-1637.
[http://dx.doi.org/10.1016/j.cell.2017.10.040] [PMID: 29198525]
[12]
Pincus, D.; Chevalier, M.W.; Aragón, T.; van Anken, E.; Vidal, S.E.; El-Samad, H.; Walter, P. BiP binding to the ER-stress sensor Ire1 tunes the hom BiP binding to the eostatic behavior of the unfolded protein response. PLoS Biol, 2010, 8(7), e1000415.
[http://dx.doi.org/10.1371/journal.pbio.1000415] [PMID: 20625545]
[13]
Peñaranda Fajardo, N.M.; Meijer, C.; Kruyt, F.A. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochem. Pharmacol., 2016, 118, 1-8.
[http://dx.doi.org/10.1016/j.bcp.2016.04.008] [PMID: 27106078]
[14]
Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999, 397(6716), 271-274.
[http://dx.doi.org/10.1038/16729] [PMID: 9930704]
[15]
Krokowski, D.; Guan, B.J.; Wu, J.; Zheng, Y.; Pattabiraman, P.P.; Jobava, R.; Gao, X.H.; Di, X.J.; Snider, M.D.; Mu, T.W.; Liu, S.; Storrie, B.; Pearlman, E.; Blumental-Perry, A.; Hatzoglou, M. GADD34 function in protein trafficking promotes adaptation to hyperosmotic stress in human corneal cells. Cell Rep., 2017, 21(10), 2895-2910.
[http://dx.doi.org/10.1016/j.celrep.2017.11.027] [PMID: 29212034]
[16]
Colla, E.; Coune, P.; Liu, Y.; Pletnikova, O.; Troncoso, J.C.; Iwatsubo, T.; Schneider, B.L.; Lee, M.K. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J. Neurosci., 2012, 32(10), 3306-3320.
[http://dx.doi.org/10.1523/JNEUROSCI.5367-11.2012] [PMID: 22399753]
[17]
Tsuru, A.; Imai, Y.; Saito, M.; Kohno, K. Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep., 2016, 6, 24217.
[http://dx.doi.org/10.1038/srep24217] [PMID: 27052593]
[18]
Pandey, V.K.; Mathur, A.; Kakkar, P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci., 2019, 216, 246-258.
[http://dx.doi.org/10.1016/j.lfs.2018.11.041] [PMID: 30471281]
[19]
Hetz, C.; Martinon, F.; Rodriguez, D.; Glimcher, L.H. The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiol. Rev., 2011, 91(4), 1219-1243.
[http://dx.doi.org/10.1152/physrev.00001.2011] [PMID: 22013210]
[20]
Hetz, C.; Glimcher, L.H. Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Mol. Cell, 2009, 35(5), 551-561.
[http://dx.doi.org/10.1016/j.molcel.2009.08.021] [PMID: 19748352]
[21]
Chen, Y.; Brandizzi, F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol., 2013, 23(11), 547-555.
[http://dx.doi.org/10.1016/j.tcb.2013.06.005] [PMID: 23880584]
[22]
Zhou, J.; Liu, C.Y.; Back, S.H.; Clark, R.L.; Peisach, D.; Xu, Z.; Kaufman, R.J. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14343-14348.
[http://dx.doi.org/10.1073/pnas.0606480103] [PMID: 16973740]
[23]
Han, D.; Lerner, A.G.; Vande Walle, L.; Upton, J.P.; Xu, W.; Hagen, A.; Backes, B.J.; Oakes, S.A.; Papa, F.R. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell, 2009, 138(3), 562-575.
[http://dx.doi.org/10.1016/j.cell.2009.07.017] [PMID: 19665977]
[24]
Martínez, G.; Vidal, R.L.; Mardones, P.; Serrano, F.G.; Ardiles, A.O.; Wirth, C.; Valdés, P.; Thielen, P.; Schneider, B.L.; Kerr, B.; Valdés, J.L.; Palacios, A.G.; Inestrosa, N.C.; Glimcher, L.H.; Hetz, C. Regulation of memory formation by the transcription factor XBP1. Cell Rep., 2016, 14(6), 1382-1394.
[http://dx.doi.org/10.1016/j.celrep.2016.01.028] [PMID: 26854229]
[25]
Placzek, A.N.; Prisco, G.V.D.; Khatiwada, S.; Sgritta, M.; Huang, W.; Krnjević, K.; Kaufman, R.J.; Dani, J.A.; Walter, P.; Costa-Mattioli, M. eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. eLife, 2016, 5e, 17517.
[http://dx.doi.org/10.7554/eLife.17517] [PMID: 27960077]
[26]
Shamu, C.E.; Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J., 1996, 15(12), 3028-3039.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00666.x] [PMID: 8670804]
[27]
Rubio, C.; Pincus, D.; Korennykh, A.; Schuck, S.; El-Samad, H.; Walter, P. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J. Cell Biol., 2011, 193(1), 171-184.
[http://dx.doi.org/10.1083/jcb.201007077] [PMID: 21444684]
[28]
Chawla, A.; Chakrabarti, S.; Ghosh, G.; Niwa, M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J. Cell Biol., 2011, 193(1), 41-50.
[http://dx.doi.org/10.1083/jcb.201008071] [PMID: 21444691]
[29]
Iwawaki, T.; Akai, R.; Yamanaka, S.; Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl. Acad. Sci. USA, 2009, 106(39), 16657-16662.
[http://dx.doi.org/10.1073/pnas.0903775106] [PMID: 19805353]
[30]
Tsuru, A.; Fujimoto, N.; Takahashi, S.; Saito, M.; Nakamura, D.; Iwano, M.; Iwawaki, T.; Kadokura, H.; Ron, D.; Kohno, K. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 2864-2869.
[http://dx.doi.org/10.1073/pnas.1212484110] [PMID: 23386727]
[31]
Lindholm, D.; Korhonen, L.; Eriksson, O.; Kõks, S. Recent insights into the role of unfolded protein response in ER stress in health and disease. Front. Cell Dev. Biol., 2017, 5, 48.
[http://dx.doi.org/10.3389/fcell.2017.00048] [PMID: 28540288]
[32]
Schindler, A.J.; Schekman, R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17775-17780.
[http://dx.doi.org/10.1073/pnas.0910342106] [PMID: 19822759]
[33]
Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell, 1999, 10(11), 3787-3799.
[http://dx.doi.org/10.1091/mbc.10.11.3787] [PMID: 10564271]
[34]
Lin, J.H.; Lavail, M.M. Misfolded proteins and retinal dystrophies. Adv. Exp. Med. Biol., 2010, 664, 115-121.
[http://dx.doi.org/10.1007/978-1-4419-1399-9_14] [PMID: 20238009]
[35]
Tam, A.B.; Roberts, L.S.; Chandra, V.; Rivera, I.G.; Nomura, D.K.; Forbes, D.J.; Niwa, M. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell, 2018, 46(3), 327-343.
[http://dx.doi.org/10.1016/j.devcel.2018.04.023] [PMID: 30086303]
[36]
Yang, H.; Niemeijer, M.; van de Water, B.; Beltman, J.B. ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response. ISCIENCE, 2020, 23(2), 100860.
[http://dx.doi.org/10.1016/j.isci.2020.100860]
[37]
Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science, 2011, 334(6059), 1081-1086.
[http://dx.doi.org/10.1126/science.1209038] [PMID: 22116877]
[38]
Malhotra, J.D.; Kaufman, R.J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol., 2007, 18(6), 716-731.
[http://dx.doi.org/10.1016/j.semcdb.2007.09.003] [PMID: 18023214]
[39]
Gardarin, A.; Chédin, S.; Lagniel, G.; Aude, J.C.; Godat, E.; Catty, P.; Labarre, J. Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol. Microbiol., 2010, 76(4), 1034-1048.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07166.x] [PMID: 20444096]
[40]
Zhou, C.Y.; Li, T.B.; Wang, Y.T.; Zhu, X.S.; Kang, J. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger. J. Gen. Appl. Microbiol., 2016, 62(2), 83-89.
[http://dx.doi.org/10.2323/jgam.62.83] [PMID: 27118076]
[41]
Yin, Y.R.; Hu, Q.W.; Xian, W.D.; Zhang, F.; Zhou, E.M.; Ming, H.; Xiao, M.; Zhi, X.Y.; Li, W.J. Characterization of a neutral recombinant xylanase from Thermoactinospora rubra YIM 77501T. Antonie van Leeuwenhoek, 2017, 110(3), 429-436.
[http://dx.doi.org/10.1007/s10482-016-0798-y] [PMID: 27866295]
[42]
Gonzalez, T.N.; Sidrauski, C.; Dörfler, S.; Walter, P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J., 1999, 18(11), 3119-3132.
[http://dx.doi.org/10.1093/emboj/18.11.3119] [PMID: 10357823]
[43]
Xia, X. Translation Control of HAC1 by Regulation of splicing in Saccharomyces cerevisiae. Int. J. Mol. Sci, 2019, 20(12), 2860.
[http://dx.doi.org/10.3390/ijms20122860] [PMID: 31212749]
[44]
Niwa, M.; Patil, C.K.; DeRisi, J.; Walter, P. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol, 2005, 6(1), R3.
[http://dx.doi.org/10.1186/gb-2004-6-1-r3] [PMID: 15642095]
[45]
Frand, A.R.; Kaiser, C.A. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell, 1999, 4(4), 469-477.
[http://dx.doi.org/10.1016/S1097-2765(00)80198-7] [PMID: 10549279]
[46]
Guerfal, M.; Ryckaert, S.; Jacobs, P.P.; Ameloot, P.; Van Craenenbroeck, K.; Derycke, R.; Callewaert, N. The HAC1 gene from Pichia pastoris: Characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb. Cell Fact., 2010, 9(1), 49.
[http://dx.doi.org/10.1186/1475-2859-9-49] [PMID: 20591165]
[47]
Sevier, C.S.; Qu, H.; Heldman, N.; Gross, E.; Fass, D.; Kaiser, C.A. Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell, 2007, 129(2), 333-344.
[http://dx.doi.org/10.1016/j.cell.2007.02.039] [PMID: 17448992]
[48]
Zito, E. ERO1: A protein disulfide oxidase and H2O2 producer. Free Radic. Biol. Med, 2015, 83, 299-304.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.011] [PMID: 25651816]
[49]
Chakravarthi, S.; Bulleid, N.J. Glutathione is required to regulate the formation of native disulfide bonds within proteins entering the secretory pathway. J. Biol. Chem, 2004, 279(38), 39872-39879.
[http://dx.doi.org/10.1074/jbc.M406912200] [PMID: 15254031]
[50]
Ameri, K.; Harris, A.L. Activating transcription factor 4. Int. J. Biochem. Cell Biol., 2008, 40(1), 14-21.
[http://dx.doi.org/10.1016/j.biocel.2007.01.020] [PMID: 17466566]
[51]
Herzog, B. A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts. J. Mol. Biol., 2011, 405(4), 1-925.
[52]
Harding, H.P.; Zhang, Y.; Zeng, H.; Novoa, I.; Lu, P.D.; Calfon, M.; Sadri, N.; Yun, C.; Popko, B.; Paules, R.; Stojdl, D.F.; Bell, J.C.; Hettmann, T.; Leiden, J.M.; Ron, D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell, 2003, 11(3), 619-633.
[http://dx.doi.org/10.1016/S1097-2765(03)00105-9] [PMID: 12667446]
[53]
Kaneko, M.; Ishiguro, M.; Niinuma, Y.; Uesugi, M.; Nomura, Y. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett., 2002, 532(1-2), 147-152.
[http://dx.doi.org/10.1016/S0014-5793(02)03660-8] [PMID: 12459480]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy