Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

General Review Article

Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis

Author(s): Cristian Muresanu, Siva G. Somasundaram, Margarita E. Neganova, Elena V. Bovina, Sergey V. Vissarionov, Okom N.F.C. Ofodile, Vladimir P. Fisenko, Valentin Bragin, Nina N. Minyaeva, Vladimir N. Chubarev, Sergey G. Klochkov, Vadim V. Tarasov, Liudmila M. Mikhaleva, Cecil E. Kirkland and Gjumrakch Aliev*

Volume 21, Issue 6, 2020

Page: [464 - 477] Pages: 14

DOI: 10.2174/1389202921999200407082315

Price: $65

Abstract

Background: In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process.

Objective: We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases.

Method Proposal: We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1.

Preliminary Studies: A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed.

Conclusion: Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.

Keywords: Biology, biological transformations, genome, mitochondria, degenerative disc disease, neurology, seminal secretions.

« Previous
Graphical Abstract
[1]
Brunori, A.; De Caro, G.M.; Giuffrè, R. Surgery of lumbar disk hernia: historical perspective. Ann. Ital. Chir., 1998, 69(3), 285-293.
[PMID: 9835099]
[2]
Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1532), 2985-2990.
[http://dx.doi.org/10.1098/rstb.2009.0137] [PMID: 19770150]
[3]
Luo, X.; Pietrobon, R.; Sun, S.X.; Liu, G.G.; Hey, L. Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spine, 2004, 29(1), 79-86.
[http://dx.doi.org/10.1097/01.BRS.0000105527.13866.0F] [PMID: 14699281]
[4]
Walker, B.F.; Muller, R.; Grant, W.D. Low back pain in Australian adults: the economic burden. Asia Pac. J. Public Health, 2003, 15(2), 79-87.
[http://dx.doi.org/10.1177/101053950301500202] [PMID: 15038680]
[5]
Norlund, A.I.; Waddell, G. Neck and back pain: the scientific evidence of causes, diagnosis and treatment. in:Cost of back pain in some OECD countries; Nachemson, A.L.; Jonsson, E., Eds.; Lippincott, Williams & Wilkins: Philadelphia, 2000, pp. 421-425.
[6]
Maniadakis, N.; Gray, A. The economic burden of back pain in the UK. Pain, 2000, 84(1), 95-103.
[http://dx.doi.org/10.1016/S0304-3959(99)00187-6] [PMID: 10601677]
[7]
Muresanu, C.; Somasundaram, S.G. Biological Transformations Controlled by the Mind; AlphaGraphics Sugar Land: Texas,, 2013. pp. 8-14-95-96.
[8]
Jabłońska, R.; Ślusarz, R.; Królikowska, A.; Haor, B.; Antczak, A.; Szewczyk, M. Depression, social factors, and pain perception before and after surgery for lumbar and cervical degenerative vertebral disc disease. J. Pain Res., 2017, 10, 89-99.
[http://dx.doi.org/10.2147/JPR.S121328] [PMID: 28115868]
[9]
Marik, P.E.; Flemmer, M. The immune response to surgery and trauma: Implications for treatment. J. Trauma Acute Care Surg., 2012, 73(4), 801-808.
[http://dx.doi.org/10.1097/TA.0b013e318265cf87] [PMID: 22976420]
[10]
Ghoneim, M.M.; O’Hara, M.W. Depression and postoperative complications: an overview. BMC Surg., 2016, 16(5), 5.
[http://dx.doi.org/10.1186/s12893-016-0120-y] [PMID: 26830195]
[11]
Adogwa, O.; Parker, S.L.; Shau, D.N.; Mendenhall, S.K.; Aaronson, O.S.; Cheng, J.S.; Devin, C.J.; McGirt, M.J. Preoperative Zung Depression Scale predicts outcome after revision lumbar surgery for adjacent segment disease, recurrent stenosis, and pseudarthrosis. Spine J., 2012, 12(3), 179-185.
[http://dx.doi.org/10.1016/j.spinee.2011.08.014] [PMID: 21937282]
[12]
Ning, X.; Wen, Y.; Xiao-Jian, Y.; Bin, N.; De-Yu, C.; Jian-Ru, X.; Lian-Shun, J. Anterior cervical locking plate-related complications; prevention and treatment recommendations. Int. Orthop., 2008, 32(5), 649-655.
[http://dx.doi.org/10.1007/s00264-007-0369-y] [PMID: 17497150]
[13]
Lonstein, J.E.; Denis, F.; Perra, J.H.; Pinto, M.R.; Smith, M.D.; Winter, R.B. Complications associated with pedicle screws. J. Bone Joint Surg. Am., 1999, 81(11), 1519-1528.
[http://dx.doi.org/10.2106/00004623-199911000-00003] [PMID: 10565643]
[15]
Muftic, M.; Miladinovic, K. Therapeutic ultrasound and pain in degenerative diseases of musculoskeletal system. Acta Inform. Med., 2013, 21(3), 170-172.
[http://dx.doi.org/10.5455/aim.2013.21.170-172] [PMID: 24167385]
[16]
Pop, T.; Austrup, H.; Preuss, R.; Niedziałek, M.; Zaniewska, A.; Sobolewski, M.; Dobrowolski, T.; Zwolińska, J. Effect of TENS on pain relief in patients with degenerative disc disease in lumbosacral spine. Ortop. Traumatol. Rehabil., 2010, 12(4), 289-300.
[PMID: 20876922]
[17]
Wang, L.; Fan, W.; Yu, C.; Lang, M.; Sun, G. Clinical effects of electrical stimulation therapy on lumbar disc herniation-induced sciatica and its influence on peripheral ROS level. J. Musculoskelet. Neuronal Interact., 2018, 18(3), 393-398.
[PMID: 30179218]
[18]
Casserley-Feeney, S.N.; Phelan, M.; Duffy, F.; Roush, S.; Cairns, M.C.; Hurley, D.A. Patient satisfaction with private physiotherapy for musculoskeletal pain. BMC Musculoskelet. Disord., 2008, 9, 50.
[http://dx.doi.org/10.1186/1471-2474-9-50] [PMID: 18412974]
[19]
Anderson, L.; Delany, C. From persuasion to coercion: responding to the reluctant patient in rehabilitation. Phys. Ther., 2016, 96(8), 1234-1240.
[http://dx.doi.org/10.2522/ptj.20150586] [PMID: 26939602]
[20]
Lonnemann, M.E.; Foster, N.; Woodhouse, L.; Rivett, D.; Cook, C. Panel debate: Manual therapy is a questionable tool in the toolkit of treatments for low back pain. Man. Ther., 2016, 25, 29-30.
[http://dx.doi.org/10.1016/j.math.2016.05.023]
[21]
Menke, J.M. Do manual therapies help low back pain? A comparative effectiveness meta-analysis. Spine, 2014, 39(7), E463-E472.
[http://dx.doi.org/10.1097/BRS.0000000000000230] [PMID: 24480940]
[22]
Foster, N.E. Barriers and progress in the treatment of low back pain. BMC Med., 2011, 9, 108.
[http://dx.doi.org/10.1186/1741-7015-9-108] [PMID: 21943396]
[23]
Institute for Chronic Pain. Is Degenerative Disc Disease Inevitably Degenerative? Available from: https://www.instituteforchronicpain.org/blog/item/136-39is-degenerative-disc-disease-inevitably-degenerative.(accessed 2014)
[24]
Symmons, D.P.; van Hemert, A.M.; Vandenbroucke, J.P.; Valkenburg, H.A. A longitudinal study of back pain and radiological changes in the lumbar spines of middle aged women. II. Radiographic findings. Ann. Rheum. Dis., 1991, 50(3), 162-166.
[http://dx.doi.org/10.1136/ard.50.3.162] [PMID: 1826598]
[25]
Matsubara, Y.; Kato, F.; Mimatsu, K.; Kajino, G.; Nakamura, S.; Nitta, H. Serial changes on MRI in lumbar disc herniations treated conservatively. Neuroradiology, 1995, 37(5), 378-383.
[http://dx.doi.org/10.1007/BF00588017] [PMID: 7477838]
[26]
Hutton, M.J.; Bayer, J.H.; Powell, J.M. Modic vertebral body changes: the natural history as assessed by consecutive magnetic resonance imaging. Spine, 2011, 36(26), 2304-2307.
[http://dx.doi.org/10.1097/BRS.0b013e31821604b6] [PMID: 21358572]
[27]
Spine-Health Decreasing chronic inflammation in your body for better health. veritas health. available from, https://www.spine-health.com/blog/decreasing-chronic-inflammation-your-body-better-health
[28]
spine-health. potential risks and complications of nsaids. veritas health. available from: https://www.spine-health.com/treatment/pain-medication/potential-risks-and-complications-nsaids
[29]
spine-health. common risks and side effects of muscle relaxants. veritas health. available from: https://www.spine-health.com/treatment/pain-medication/common-risks-and-side-effects-muscle-relaxants
[30]
[31]
Cerner, M. chlorzoxazone. available from: https://www.drugs.com/mtm/chlorzoxazone.html (accessed 2018)
[32]
Bonaventure, C.; Nancey, S.; Pont, E.; Michalet, V.; Chevalier, M.; Vial, T.; Taieb, S.; Claudel, S.; Flourie, B.; Descos, L. Ketoprofen-induced acute hepatitis. Gastroenterol. Clin. Biol., 2001, 25(6-7), 716-717.
[PMID: 11673741]
[33]
Rambaud, S.; Nores, J.M.; Rémy, J.M. Jaundice related to the ingestion of ketoprofen. Ann. Med. Interne (Paris), 1990, 141(3), 278.
[PMID: 2369020]
[34]
González, E.; de la Cruz, C.; de Nicoläs, R.; Egido, J.; Herrero-Beaumont, G. Long-term effect of nonsteroidal anti-inflammatory drugs on the production of cytokines and other inflammatory mediators by blood cells of patients with osteoarthritis. Agents Actions, 1994, 41(3-4), 171-178.
[http://dx.doi.org/10.1007/BF02001912] [PMID: 7942325]
[35]
Feng, H.; Danfelter, M.; Strömqvist, B.; Heinegård, D. Extracellular matrix in disc degeneration. J. Bone Joint Surg. Am., 2006, 88(Suppl. 2), 25-29.
[PMID: 16595439]
[36]
David, G.; Ciurea, A.V.; Mitrica, M.; Mohan, A. Impact of changes in extracellular matrix in the lumbar degenerative disc. J. Med. Life, 2011, 4(3), 269-274.
[PMID: 22567050]
[37]
Goupille, P.; Jayson, M.I.; Valat, J.P.; Freemont, A.J. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine, 1998, 23(14), 1612-1626.
[http://dx.doi.org/10.1097/00007632-199807150-00021] [PMID: 9682320]
[38]
Folkman, J. Antiangiogenic activity of a matrix protein. Cancer Biol. Ther., 2003, 2(1), 53-54.
[http://dx.doi.org/10.4161/cbt.356] [PMID: 12673117]
[39]
Roberts, S.; Caterson, B.; Menage, J.; Evans, E.H.; Jaffray, D.C.; Eisenstein, S.M. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine, 2000, 25(23), 3005-3013.
[http://dx.doi.org/10.1097/00007632-200012010-00007] [PMID: 11145811]
[40]
Loreto, C.; Musumeci, G.; Castorina, A.; Loreto, C.; Martinez, G. Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann. Anat., 2011, 193(2), 156-162.
[http://dx.doi.org/10.1016/j.aanat.2010.12.001] [PMID: 21330123]
[41]
Ruan, Z.; Ma, H.; Li, J.; Liu, H.; Jia, H.; Li, F. The long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells. Exp. Biol. Med. (Maywood), 2018, 243(7), 595-600.
[http://dx.doi.org/10.1177/1535370218760774] [PMID: 29534600]
[42]
Liu, W.; Xia, P.; Feng, J.; Kang, L.; Huang, M.; Wang, K.; Song, Y.; Li, S.; Wu, X.; Yang, S.; Yang, C. MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp. Cell Res., 2017, 359(1), 39-49.
[http://dx.doi.org/10.1016/j.yexcr.2017.08.011] [PMID: 28793234]
[43]
Somasundaram, S.G.; Muresanu, C.; Schield, P.; Makhmutova, A.; Bovina, E.V.; Fisenko, V.P.; Hasanov, N.F.; Aliev, G. A novel non-invasive effective method for potential treatment of degenerative disc disease - a hypothesis. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(1), 1-7.
[PMID: 30332977]
[44]
MacLellan, W.R.; Brand, T.; Schneider, M.D. Transforming growth factor-beta in cardiac ontogeny and adaptation. Circ. Res., 1993, 73(5), 783-791.
[http://dx.doi.org/10.1161/01.RES.73.5.783] [PMID: 8403249]
[45]
Takegami, K.; An, H.S.; Kumano, F.; Chiba, K.; Thonar, E.J.; Singh, K.; Masuda, K. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J., 2005, 5(3), 231-238.
[http://dx.doi.org/10.1016/j.spinee.2004.11.001] [PMID: 15863076]
[46]
Mustoe, T.A.; Pierce, G.F.; Morishima, C.; Deuel, T.F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J. Clin. Invest., 1991, 87(2), 694-703.
[http://dx.doi.org/10.1172/JCI115048] [PMID: 1991853]
[47]
Pierce, G.F.; Mustoe, T.A.; Lingelbach, J.; Masakowski, V.R.; Griffin, G.L.; Senior, R.M.; Deuel, T.F. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J. Cell Biol., 1989, 109(1), 429-440.
[http://dx.doi.org/10.1083/jcb.109.1.429] [PMID: 2745556]
[48]
Wahl, S.M.; McCartney-Francis, N.; Mergenhagen, S.E. Inflammatory and immunomodulatory roles of TGF-beta. Immunol. Today, 1989, 10(8), 258-261.
[http://dx.doi.org/10.1016/0167-5699(89)90136-9] [PMID: 2478145]
[49]
Postlethwaite, A.E.; Keski-Oja, J.; Moses, H.L.; Kang, A.H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J. Exp. Med., 1987, 165(1), 251-256.
[http://dx.doi.org/10.1084/jem.165.1.251] [PMID: 3491869]
[50]
Van Obberghen-Schilling, E.; Roche, N.S.; Flanders, K.C.; Sporn, M.B.; Roberts, A.B. Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. J. Biol. Chem., 1988, 263(16), 7741-7746.
[PMID: 3259578]
[51]
Keski-Oja, J.; Raghow, R.; Sawdey, M.; Loskutoff, D.J.; Postlethwaite, A.E.; Kang, A.H.; Moses, H.L. Regulation of mRNAs for type-l plasminogen activator inhibitor, fibronectin and type I procollagen by transforming growth factor-β. J. Biol. Chem., 1988, 263(7), 3111-3115.
[PMID: 3125175]
[52]
Sanjabi, S.; Zenewicz, L.A.; Kamanaka, M.; Flavell, R.A. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr. Opin. Pharmacol., 2009, 9(4), 447-453.
[http://dx.doi.org/10.1016/j.coph.2009.04.008] [PMID: 19481975]
[53]
Li, M.O.; Flavell, R.A. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity, 2008, 28(4), 468-476.
[http://dx.doi.org/10.1016/j.immuni.2008.03.003] [PMID: 18400189]
[54]
Li, M.O.; Flavell, R.A. TGF-beta: a master of all T cell trades. Cell, 2008, 134(3), 392-404.
[http://dx.doi.org/10.1016/j.cell.2008.07.025] [PMID: 18692464]
[55]
Roberts, A.B.; Heine, U.I.; Flanders, K.C.; Sporn, M.B. TGF-β: Major role in regulation of extracellular matrix. Ann. N. Y. Acad. Sci., 1990, 580, 225-232.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb17931.x] [PMID: 2186691]
[56]
Roberts, A.B.; Flanders, K.C.; Kondaiah, P.; Thompson, N.L.; van Obberghen-Schilling, E.; Wakefield, L.; Rossi, P.; de Crom-Brugghe, B.; Heine, U.I.; Sporn, M.B. Growth factor β: biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. Recent Prog. Horm. Res., 1988, 44, 157-197.
[http://dx.doi.org/10.1016/b978-0-12-571144-9.50010-7]
[57]
gdf11 growth differentiation factor 11 [homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/10220
[58]
Loffredo, F.S.; Steinhauser, M.L.; Jay, S.M.; Gannon, J.; Pancoast, J.R.; Yalamanchi, P.; Sinha, M.; Dall’Osso, C.; Khong, D.; Shadrach, J.L.; Miller, C.M.; Singer, B.S.; Stewart, A.; Psychogios, N.; Gerszten, R.E.; Hartigan, A.J.; Kim, M.J.; Serwold, T.; Wagers, A.J.; Lee, R.T. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell, 2013, 153(4), 828-839.
[http://dx.doi.org/10.1016/j.cell.2013.04.015] [PMID: 23663781]
[59]
Harper, S.C.; Brack, A.; MacDonnell, S.; Franti, M.; Olwin, B.B.; Bailey, B.A.; Rudnicki, M.A.; Houser, S.R. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ. Res., 2016, 118(7), 1143-1150.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307962] [PMID: 27034276]
[60]
the human protein atlas. available from: https://www.proteinatlas.org/ENSG00000135414-GDF11/tissue
[61]
Pérez-Crespo, M.; Pericuesta, E.; Pérez-Cerezales, S.; Arenas, M.I.; Lobo, M.V.; Díaz-Gil, J.J.; Gutierrez-Adan, A. Effect of liver growth factor on both testicular regeneration and recovery of spermatogenesis in busulfan-treated mice. Reprod. Biol. Endocrinol., 2011, 9, 21.
[http://dx.doi.org/10.1186/1477-7827-9-21] [PMID: 21294894]
[62]
Salvatierra, J.C.; Yuan, T.Y.; Fernando, H.; Castillo, A.; Gu, W.Y.; Cheung, H.S.; Huant, C.Y. Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral Disc. Cell. Mol. Bioeng., 2011, 4(2), 302-310.
[http://dx.doi.org/10.1007/s12195-011-0164-0] [PMID: 21625336]
[63]
Gonzales, S.; Wang, C.; Levene, H.; Cheung, H.S.; Huang, C.C. ATP promotes extracellular matrix biosynthesis of intervertebral disc cells. Cell Tissue Res., 2015, 359(2), 635-642.
[http://dx.doi.org/10.1007/s00441-014-2042-2] [PMID: 25407524]
[64]
Owen, L.; Sunram-Lea, S.I. Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients, 2011, 3(8), 735-755.
[http://dx.doi.org/10.3390/nu3080735] [PMID: 22254121]
[65]
spine-health. step three of ddd management: improve nutrition. veritas health. available from: https://www.spine-health.com/conditions/degenerative-disc-disease/step-three-ddd-management-improve-nutrition
[67]
Cho, Y.M.; Kim, J.H.; Kim, M.; Park, S.J.; Koh, S.H.; Ahn, H.S.; Kang, G.H.; Lee, J.B.; Park, K.S.; Lee, H.K. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One, 2012, 7(3), e32778.
[http://dx.doi.org/10.1371/journal.pone.0032778] [PMID: 22412925]
[68]
Spees, J.L.; Olson, S.D.; Whitney, M.J.; Prockop, D.J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1283-1288.
[http://dx.doi.org/10.1073/pnas.0510511103] [PMID: 16432190]
[69]
The nobel prize in physiology or medicine. available from: https://www.nobelprize.org/prizes/medicine/2013/summary/. (accessed 2019).
[70]
Prockop, D.J. Mitochondria to the rescue. Nat. Med., 2012, 18(5), 653-654.
[http://dx.doi.org/10.1038/nm.2769] [PMID: 22561816]
[71]
Plotnikov, E.Y.; Khryapenkova, T.G.; Vasileva, A.K.; Marey, M.V.; Galkina, S.I.; Isaev, N.K.; Sheval, E.V.; Polyakov, V.Y.; Sukhikh, G.T.; Zorov, D.B. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell. Mol. Med., 2008, 12(5A), 1622-1631.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00205.x] [PMID: 18088382]
[72]
Acquistapace, A.; Bru, T.; Lesault, P.F.; Figeac, F.; Coudert, A.E.; le Coz, O.; Christov, C.; Baudin, X.; Auber, F.; Yiou, R.; Dubois-Randé, J.L.; Rodriguez, A.M. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 2011, 29(5), 812-824.
[http://dx.doi.org/10.1002/stem.632] [PMID: 21433223]
[73]
Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464(7285), 104-107.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[74]
Galluzzi, L.; Kepp, O.; Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(12), 780-788.
[http://dx.doi.org/10.1038/nrm3479] [PMID: 23175281]
[75]
West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; Kaech, S.M.; Smiley, J.R.; Means, R.E.; Iwasaki, A.; Shadel, G.S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520(7548), 553-557.
[http://dx.doi.org/10.1038/nature14156] [PMID: 25642965]
[76]
Torralba, D.; Baixauli, F.; Sánchez-Madrid, F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol., 2016, 4, 107.
[http://dx.doi.org/10.3389/fcell.2016.00107] [PMID: 27734015]
[77]
Ballana, E.; Mercader, J.M.; Fischel-Ghodsian, N.; Estivill, X. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene. BMC Med. Genet., 2007, 8, 81.
[http://dx.doi.org/10.1186/1471-2350-8-81] [PMID: 18154640]
[78]
Bykhovskaya, Y.; Mengesha, E.; Wang, D.; Yang, H.; Estivill, X.; Shohat, M.; Fischel-Ghodsian, N. Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol. Genet. Metab., 2004, 82(1), 27-32.
[http://dx.doi.org/10.1016/j.ymgme.2004.01.020] [PMID: 15110318]
[79]
Davidson, M.M.; Walker, W.F.; Hernandez-Rosa, E.; Nesti, C. Evidence for nuclear modifier gene in mitochondrial cardiomyopathy. J. Mol. Cell. Cardiol., 2009, 46(6), 936-942.
[http://dx.doi.org/10.1016/j.yjmcc.2009.02.011] [PMID: 19233192]
[80]
Deng, J.H.; Li, Y.; Park, J.S.; Wu, J.; Hu, P.; Lechleiter, J.; Bai, Y. Nuclear suppression of mitochondrial defects in cells without the ND6 subunit. Mol. Cell. Biol., 2006, 26(3), 1077-1086.
[http://dx.doi.org/10.1128/MCB.26.3.1077-1086.2006] [PMID: 16428459]
[81]
Hao, H.; Morrison, L.E.; Moraes, C.T. Suppression of a mitochondrial tRNA gene mutation phenotype associated with changes in the nuclear background. Hum. Mol. Genet., 1999, 8(6), 1117-1124.
[http://dx.doi.org/10.1093/hmg/8.6.1117] [PMID: 10332045]
[82]
Hudson, G.; Keers, S.; Yu-Wai-Man, P.; Griffiths, P.; Huoponen, K.; Savontaus, M.L.; Nikoskelainen, E.; Zeviani, M.; Carrara, F.; Horvath, R.; Karcagi, V.; Spruijt, L.; de Coo, I.F.; Smeets, H.J.; Chinnery, P.F. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am. J. Hum. Genet., 2005, 77(6), 1086-1091.
[http://dx.doi.org/10.1086/498176] [PMID: 16380918]
[83]
Johnson, K.R.; Zheng, Q.Y.; Bykhovskaya, Y.; Spirina, O.; Fischel-Ghodsian, N. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat. Genet., 2001, 27(2), 191-194.
[http://dx.doi.org/10.1038/84831] [PMID: 11175788]
[84]
Potluri, P.; Davila, A.; Ruiz-Pesini, E.; Mishmar, D.; O’Hearn, S.; Hancock, S.; Simon, M.; Scheffler, I.E.; Wallace, D.C.; Procaccio, V. A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol. Genet. Metab., 2009, 96(4), 189-195.
[http://dx.doi.org/10.1016/j.ymgme.2008.12.004] [PMID: 19185523]
[85]
Bonaïti, B.; Olsson, M.; Hellman, U.; Suhr, O.; Bonaïti-Pellié, C.; Planté-Bordeneuve, V. TTR familial amyloid polyneuropathy: does a mitochondrial polymorphism entirely explain the parent-of-origin difference in penetrance? Eur. J. Hum. Genet., 2010, 18(8), 948-952.
[http://dx.doi.org/10.1038/ejhg.2010.36] [PMID: 20234390]
[86]
Gershoni, M.; Levin, L.; Ovadia, O.; Toiw, Y.; Shani, N.; Dadon, S.; Barzilai, N.; Bergman, A.; Atzmon, G.; Wainstein, J.; Tsur, A.; Nijtmans, L.; Glaser, B.; Mishmar, D. Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol. Evol., 2014, 6(10), 2665-2680.
[http://dx.doi.org/10.1093/gbe/evu208] [PMID: 25245408]
[87]
Kim, A.; Chen, C.H.; Ursell, P.; Huang, T.T. Genetic modifier of mitochondrial superoxide dismutase-deficient mice delays heart failure and prolongs survival. Mamm. Genome, 2010, 21(11-12), 534-542.
[http://dx.doi.org/10.1007/s00335-010-9299-x] [PMID: 21069343]
[88]
Strauss, K.A.; DuBiner, L.; Simon, M.; Zaragoza, M.; Sengupta, P.P.; Li, P.; Narula, N.; Dreike, S.; Platt, J.; Procaccio, V.; Ortiz-González, X.R.; Puffenberger, E.G.; Kelley, R.I.; Morton, D.H.; Narula, J.; Wallace, D.C. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3453-3458.
[http://dx.doi.org/10.1073/pnas.1300690110] [PMID: 23401503]
[89]
Vartiainen, S.; Chen, S.; George, J.; Tuomela, T.; Luoto, K.R.; O’Dell, K.M.; Jacobs, H.T. Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease. Dis. Model. Mech., 2014, 7(6), 635-648.
[http://dx.doi.org/10.1242/dmm.016527] [PMID: 24812436]
[90]
Yan, Z.H.; Zhou, Y.Y.; Fu, J.; Jiao, F.; Zhao, L.W.; Guan, P.F.; Huang, S.Z.; Zeng, Y.T.; Zeng, F. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol., 2010, 10, 31.
[http://dx.doi.org/10.1186/1471-213X-10-31] [PMID: 20302653]
[91]
Yan, H.; Yan, Z.; Ma, Q.; Jiao, F.; Huang, S.; Zeng, F.; Zeng, Y. Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning. J. Genet. Genomics, 2011, 38(1), 21-28.
[http://dx.doi.org/10.1016/j.jcg.2010.12.003] [PMID: 21338949]
[92]
Morrow, E.H.; Reinhardt, K.; Wolff, J.N.; Dowling, D.K. Risks inherent to mitochondrial replacement. EMBO Rep., 2015, 16(5), 541-544.
[http://dx.doi.org/10.15252/embr.201439110] [PMID: 25807984]
[93]
Feng, C.; Liu, H.; Yang, M.; Zhang, Y.; Huang, B.; Zhou, Y. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways. Cell Cycle, 2016, 15(13), 1674-1684.
[http://dx.doi.org/10.1080/15384101.2016.1152433] [PMID: 27192096]
[94]
Zhang, X.U.; Yang, M.K.; Li, Z.; Liu, C.; Wu, J.S.; Wang, J. Expression and significance of telomerase in the nucleus pulposus tissues of degenerative lumbar discs. Biomed. Rep., 2015, 3(6), 813-817.
[http://dx.doi.org/10.3892/br.2015.516] [PMID: 26623021]
[95]
Zhao, C.Q.; Wang, L.M.; Jiang, L.S.; Dai, L.Y. The cell biology of intervertebral disc aging and degeneration. Ageing Res. Rev., 2007, 6(3), 247-261.
[http://dx.doi.org/10.1016/j.arr.2007.08.001] [PMID: 17870673]
[96]
Choudhary, B.; Karande, A.A.; Raghavan, S.C. Telomere and telomerase in stem cells: relevance in ageing and disease. Front. Biosci. (Schol. Ed.), 2012, 4, 16-30.
[http://dx.doi.org/10.2741/s248] [PMID: 22202040]
[98]
Fossel, M.B. The Telomerase Revolution; BenBella Books, Inc: Dallas, 2015, pp. 98-99.
[99]
Pennicooke, B.; Moriguchi, Y.; Hussain, I.; Bonssar, L.; Härtl, R.; Bonssar, L.; Härtl, R. Biological treatment approaches for degenerative disc disease: a review of clinical trials and future Directions. Cureus, 2016, 8(11), e892.
[http://dx.doi.org/10.7759/cureus.892] [PMID: 28018762]
[100]
Rosch, P.J. The newsletter of the American institute of stress, on the 2nd International Montreux Congress on Stress. Switzerland, 1989, 2(7), 1-7.
[101]
Sarno, J.E. Mind Over Back Pain: A Radically New Approach to the Diagnosis and Treatment of Back Pain, 1st ed; Berkley Books: New York, 1986.
[102]
Stacy, L. How chronic stress is harming our DNA, Elissa Epel is studying how personality, stress processes and environment affect our DNA - and how we might lessen damaging effects In: American Psychological Association2014, 9 (45), p. 28.
[103]
Epel, E.S.; Blackburn, E.H.; Lin, J.; Dhabhar, F.S.; Adler, N.E.; Morrow, J.D.; Cawthon, R.M. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 17312-17315.
[http://dx.doi.org/10.1073/pnas.0407162101] [PMID: 15574496]
[104]
Zhang, J.; Rane, G.; Dai, X.; Shanmugam, M.K.; Arfuso, F.; Samy, R.P.; Lai, M.K.; Kappei, D.; Kumar, A.P.; Sethi, G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res. Rev., 2016, 25, 55-69.
[http://dx.doi.org/10.1016/j.arr.2015.11.006] [PMID: 26616852]
[105]
Blackburn, E.H.; Epel, E.S. Telomeres and adversity: Too toxic to ignore. Nature, 2012, 490(7419), 169-171.
[http://dx.doi.org/10.1038/490169a] [PMID: 23060172]
[106]
Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett., 2017, 13(12), 20170463.
[http://dx.doi.org/10.1098/rsbl.2017.0463] [PMID: 29212750]
[107]
Lyon, D.E.; Starkweather, A.R.; Montpetit, A.; Menzies, V.; Jallo, N. A biobehavioral perspective on telomere length and the exposome. Biol. Res. Nurs., 2014, 16(4), 448-455.
[http://dx.doi.org/10.1177/1099800414522689] [PMID: 25199652]
[108]
Uchino, B.N.; Cawthon, R.M.; Smith, T.W.; Kent, R.G.; Bowen, K.; Light, K.C. A cross-sectional analysis of the association between perceived network social control and telomere length. Health Psychol., 2015, 34(5), 531-538.
[http://dx.doi.org/10.1037/hea0000148] [PMID: 25110842]
[109]
Schutte, N.S.; Malouff, J.M. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology, 2014, 42, 45-48.
[http://dx.doi.org/10.1016/j.psyneuen.2013.12.017] [PMID: 24636500]
[110]
Rajarajacholan, U.K.; Riabowol, K. Aging with ING: a comparative study of different forms of stress induced premature senescence. Oncotarget, 2015, 6(33), 34118-34127.
[http://dx.doi.org/10.18632/oncotarget.5947] [PMID: 26439691]
[111]
Tyrka, A.R.; Parade, S.H.; Price, L.H.; Kao, H.T.; Porton, B.; Philip, N.S.; Welch, E.S.; Carpenter, L.L. Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol. Psychiatry, 2016, 79(2), 78-86.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.025] [PMID: 25749099]
[112]
Révész, D.; Verhoeven, J.E.; Milaneschi, Y.; de Geus, E.J.; Wolkowitz, O.M.; Penninx, B.W. Dysregulated physiological stress systems and accelerated cellular aging. Neurobiol. Aging, 2014, 35(6), 1422-1430.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.12.027] [PMID: 24439483]
[113]
Schaakxs, R.; Wielaard, I.; Verhoeven, J.E.; Beekman, A.T.; Penninx, B.W.; Comijs, H.C. Early and recent psychosocial stress and telomere length in older adults. Int. Psychogeriatr., 2016, 28(3), 405-413.
[http://dx.doi.org/10.1017/S1041610215001155] [PMID: 26265356]
[114]
Keng, S.L.; Smoski, M.J.; Robins, C.J. Effects of mindfulness on psychological health: a review of empirical studies. Clin. Psychol. Rev., 2011, 31(6), 1041-1056.
[http://dx.doi.org/10.1016/j.cpr.2011.04.006] [PMID: 21802619]
[115]
Hayes, A.M.; Feldman, G. Clarifying the construct of mindfulness in the context of emotion regulation and the process of change in therapy. Clin. Psychol., 2004, 11(3), 255-260.
[http://dx.doi.org/10.1093/clipsy.bph080]
[116]
Kabat-Zinn, J. Full catastrophe living: How to cope with stress, pain and illness using mindfulness meditation; Bantam Dell: New York, 1990.
[117]
Germer, C.K.; Siegel, R.D.; Fulton, P.R. Mindfulness and psychotherapy; Guilford Press: New York, 2005.
[118]
Kabat-Zinn, J. Wherever you go there you are: Mindfulness meditation in everyday life; Hyperion: New York, 1994.
[119]
Baer, R.A. Mindfulness training as a clinical intervention: A conceptual and empirical review. Clin. Psychol., 2003, 10, 125-143.
[120]
Brown, K.W.; Ryan, R.M. The benefits of being present: mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol., 2003, 84(4), 822-848.
[http://dx.doi.org/10.1037/0022-3514.84.4.822] [PMID: 12703651]
[121]
Cardaciotto, L.; Herbert, J.D.; Forman, E.M.; Moitra, E.; Farrow, V. The assessment of present-moment awareness and acceptance: the Philadelphia Mindfulness Scale. Assessment, 2008, 15(2), 204-223.
[http://dx.doi.org/10.1177/1073191107311467] [PMID: 18187399]
[122]
Goyal, M.; Singh, S.; Sibinga, E.M.; Gould, N.F.; Rowland-Seymour, A.; Sharma, R.; Berger, Z.; Sleicher, D.; Maron, D.D.; Shihab, H.M.; Ranasinghe, P.D.; Linn, S.; Saha, S.; Bass, E.B.; Haythornthwaite, J.A. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern. Med., 2014, 174(3), 357-368.
[http://dx.doi.org/10.1001/jamainternmed.2013.13018] [PMID: 24395196]
[123]
Sharma, H. Meditation: process and effects. Ayu, 2015, 36(3), 233-237.
[http://dx.doi.org/10.4103/0974-8520.182756] [PMID: 27313408]
[124]
Spine-Health. Pain Management Techniques for Degenerative Disc Disease. Available from https://www.spine-health.com/conditions/degenerative-disc-disease/pain-management-techniques-degenerative-disc-disease
[126]
Asha, M.R.; Hithamani, G.; Rashmi, R.; Basavaraj, K.H.; Jagannath Rao, K.S.; Sathyanarayana Rao, T.S. History, mystery and chemistry of eroticism: Emphasis on sexual health and dysfunction. Indian J. Psychiatry, 2009, 51(2), 141-149.
[http://dx.doi.org/10.4103/0019-5545.49457] [PMID: 19823636]
[127]
Lawrentschuk, N.; Perera, M. Benign Prostate Disorders. Feingold, K.R.; Anawalt, B.; Boyce, A. Eds.: Endotext, MDText.com, Inc.: South Dartmouth (MA),, 2000.
[128]
Brower, V. Mind-body research moves towards the mainstream. EMBO Rep., 2006, 7(4), 358-361.
[http://dx.doi.org/10.1038/sj.embor.7400671] [PMID: 16585935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy