Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment

Author(s): Ahmed El-Hussein*, Sello L. Manoto, Saturnin Ombinda-Lemboumba, Ziya A. Alrowaili and Patience Mthunzi-Kufa

Volume 21 , Issue 2 , 2021

Published on: 03 April, 2020

Page: [149 - 161] Pages: 13

DOI: 10.2174/1871520620666200403144945

Price: $65

Abstract

Cancer is among the leading causes of mortality and morbidity worldwide. Among the different types of cancers, lung cancer is considered to be the leading cause of death related to cancer and the most commonly diagnosed form of such disease. Chemotherapy remains a dominant treatment modality for many types of cancers at different stages. However, in many cases, cancer cells develop drug resistance and become nonresponsive to chemotherapy, thus, necessitating the exploration of alternative and /or complementary treatment modalities. Photodynamic Therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and tumors. In PDT, the photochemical interaction of light, Photosensitizer (PS) and molecular oxygen produces Reactive Oxygen Species (ROS), which induces cell death. Combination therapy, by using PDT and chemotherapy, can promote synergistic effect against this fatal disease with the elimination of drug resistance, and enhancement of the efficacy of cancer eradication. In this review, we give an overview of chemotherapeutic modalities, PDT, and the different types of drugs associated with each therapy. Furthermore, we also explored the combined use of chemotherapy and PDT in the course of lung cancer treatment and how this approach could be the last resort for thousands of patients that have been diagnosed by this fatal disease.

Keywords: Chemotherapy, chemotherapeutic agents, cancer, lung cancer, photodynamic therapy, nanomaterial, photosensitizer.

Graphical Abstract
[1]
Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033]] [PMID: 31226287]
[2]
Zago, G.; Muller, M.; van den Heuvel, M.; Baas, P. New targeted treatments for non-small-cell lung cancer - role of nivolumab. Biologics, 2016, 10, 103-117.
[PMID: 27536062]
[3]
Alberg, A. J. Cancer: Epidemiology of lung cancer. Encycl. Hum. Nutr., 2012, 1-4, 259-264.
[4]
Vendrell, J.A.; Mau-Them, F.T.; Béganton, B.; Godreuil, S.; Coopman, P.; Solassol, J. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int. J. Mol. Sci., 2017, 18(2), 18.
[http://dx.doi.org/10.3390/ijms18020264] [PMID: 28146051]
[5]
DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[6]
Klanl, M.H.; Ahmad, M.; Masood, M.I. Through Chemotherapy : a Historical Review, 2016.
[7]
Estanqueiro, M.; Amaral, M.H.; Conceição, J.; Sousa , Lobo J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B Biointerfaces, 2015, 126, 631-648.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.041] [PMID: 25591851]
[8]
Colvin, M.; Hait, W.N. Alkylating Agents and Platinum Antitumor Compounds.In: Holland Frei Cancer Medicine; BC Decker: Canada, 2010.
[9]
Chaplin, D.J.; Hill, S.A.; Bell, K.M.; Tozer, G.M. Modification of tumor blood flow: Current status and future directions. Semin. Radiat. Oncol., 1998, 8(3), 151-163.
[http://dx.doi.org/10.1016/S1053-4296(98)80041-6] [PMID: 9634492]
[10]
Ruiter, G.A.; Verheij, M.; Zerp, S.F.; van Blitterswijk, W.J. Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys., 2001, 49(2), 415-419.
[http://dx.doi.org/10.1016/S0360-3016(00)01476-0]] [PMID: 11173135]
[11]
Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev., 2001, 53(3), 285-305.
[http://dx.doi.org/10.1016/S0169-409X(01)00233-2] [PMID: 11744173]
[12]
Rosière, R.; Berghmans, T.; De Vuyst, P.; Amighi, K.; Wauthoz, N. The position of inhaled chemotherapy in the care of patients with lung tumors: Clinical feasibility and indications according to recent pharmaceutical progresses. Cancers (Basel), 2019, 11(3), 11.
[http://dx.doi.org/10.3390/cancers11030329] [PMID: 30866545]
[13]
Paz-Ares, L.; Corral, J. Treatment for early-stage lung cancer: What next? Lancet, 2014, 383(9928), 1528-1530.
[http://dx.doi.org/10.1016/S0140-6736(14)60002-7] [PMID: 24576775]
[14]
Morgensztern, D.; Du, L.; Waqar, S.N.; Patel, A.; Samson, P.; Devarakonda, S.; Gao, F.; Robinson, C.G.; Bradley, J.; Baggstrom, M.; Masood, A.; Govindan, R.; Puri, V. Adjuvant chemotherapy for patients with T2N0M0 NSCLC. J. Thorac. Oncol., 2016, 11(10), 1729-1735.
[http://dx.doi.org/10.1016/j.jtho.2016.05.022] [PMID: 27287414]
[15]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[16]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[17]
Ardizzoni, A.; Boni, L.; Tiseo, M.; Fossella, F.V.; Schiller, J.H.; Paesmans, M.; Radosavljevic, D.; Paccagnella, A.; Zatloukal, P.; Mazzanti, P.; Bisset, D.; Rosell, R. CISCA (CISplatin versus CArboplatin) Meta-analysis Group. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J. Natl. Cancer Inst., 2007, 99(11), 847-857.
[http://dx.doi.org/10.1093/jnci/djk196] [PMID: 17551145]
[18]
Müller, M.; Strand, S.; Hug, H.; Heinemann, E.M.; Walczak, H.; Hofmann, W.J.; Stremmel, W.; Krammer, P.H.; Galle, P.R. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest., 1997, 99(3), 403-413.
[http://dx.doi.org/10.1172/JCI119174] [PMID: 9022073]
[19]
Otterson, G.A.; Villalona-Calero, M.A.; Hicks, W.; Pan, X.; Ellerton, J.A.; Gettinger, S.N.; Murren, J.R. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer. Clin. Cancer Res., 2010, 16(8), 2466-2473.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-3015] [PMID: 20371682]
[20]
Gagnadoux, F.; Hureaux, J.; Vecellio, L.; Urban, T.; Le Pape, A.; Valo, I.; Montharu, J.; Leblond, V.; Boisdron-Celle, M.; Lerondel, S.; Majoral, C.; Diot, P.; Racineux, J.L.; Lemarie, E. Aerosolized chemotherapy. J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(1), 61-70.
[http://dx.doi.org/10.1089/jamp.2007.0656] [PMID: 18518832]
[21]
Tatsumura, T.; Koyama, S.; Tsujimoto, M.; Kitagawa, M.; Kagamimori, S. Further study of nebulisation chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas: Fundamental and clinical. Br. J. Cancer, 1993, 68(6), 1146-1149.
[http://dx.doi.org/10.1038/bjc.1993.495] [PMID: 8260366]
[22]
Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol. Sin., 2017, 38(6), 782-797.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[23]
Roa, W.H.; Azarmi, S.; Al-Hallak, M.H.; Finlay, W.H.; Magliocco, A.M.; Löbenberg, R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release, 2011, 150(1), 49-55.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.035] [PMID: 21059378]
[24]
Hellmann, M.D.; Li, B.T.; Chaft, J.E.; Kris, M.G. Chemotherapy remains an essential element of personalized care for persons with lung cancers. Ann. Oncol., 2016, 27(10), 1829-1835.
[http://dx.doi.org/10.1093/annonc/mdw271] [PMID: 27456296]
[25]
Kou, J.; Dou, D.; Yang, L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 2017, 8(46), 81591-81603.
[http://dx.doi.org/10.18632/oncotarget.20189] [PMID: 29113417]
[26]
Huang, L.; Wang, M.; Huang, Y.Y.; El-Hussein, A.; Wolf, L.M.; Chiang, L.Y.; Hamblin, M.R. Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochem. Photobiol. Sci., 2018, 17(5), 638-651.
[http://dx.doi.org/10.1039/C7PP00389G] [PMID: 29701222]
[27]
Kadish, K.M.; Smith, K.M.; Guilard, R. Handbook of Porphyrin Science (Volumes 6 – 10). World Scientific: Singapore,. , 2010.
[29]
Ma, J.; Jiang, L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative. Free Radic. Res., 2001, 35(6), 767-777.
[http://dx.doi.org/10.1080/10715760100301271] [PMID: 11811528]
[30]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther., 2004, 1(4), 279-293.
[http://dx.doi.org/10.1016/S1572-1000(05)00007-4] [PMID: 25048432]
[31]
Dos Santos, A.F.; De Almeida, D.R.Q.; Terra, L.F.; Baptista, M.S.; Labriola, L. Photodynamic therapy in cancer treatment - an update review. J. Cancer Metastasis Treat., 2019, 5, 25.
[http://dx.doi.org/10.20517/2394-4722.2018.83]
[32]
Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M.R. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel), 2011, 3(2), 2516-2539.
[http://dx.doi.org/10.3390/cancers3022516] [PMID: 23914299]
[33]
Ojha, N.K.; Nematian-Ardestani, E.; Neugebauer, S.; Borowski, B.; El-Hussein, A.; Hoshi, T.; Leipold, E.; Heinemann, S.H. Sodium channels as gateable non-photonic sensors for membrane-delimited reactive species. Biochim. Biophys. Acta, 2014, 1838(5), 1412-1419.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.031] [PMID: 24513256]
[34]
Moan, J.; Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol., 1991, 53(4), 549-553.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03669.x]
[35]
Raab, O. Uber die wirkung Fluorescirender Stoffe auf Infusorien; Ztg. Biol, 1900.
[36]
Tappeiner, V.H. Therapeutische Versuche mit fluoreszierenden Stoffen. Munch. Med. Wochenschr., 1903, 1, 2042-2044.
[37]
El-Hussein, A.; Lam, S.S.K.; Raker, J.; Chen, W.R.; Hamblin, M.R. N-dihydrogalactochitosan as a potent immune activator for dendritic cells. J. Biomed. Mater. Res. - Part A, 2017, 105(4), 963-972.
[38]
El-Hussein, A.; Hamblin, M.R. ROS generation and DNA damage with photoinactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol., 2017, 11(2), 173-178.
[39]
Bellnier, D.A.; Greco, W.R.; Loewen, G.M.; Nava, H.; Oseroff, A.R.; Dougherty, T.J. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX. Lasers Surg. Med., 2006, 38(5), 439-444.
[http://dx.doi.org/10.1002/lsm.20340] [PMID: 16634075]
[40]
Calin, M.A.; Parasca, S.V. Photodynamic therapy in oncology. Expert Opin. Pharmacother., 2001, 2(6), 917-927.
[http://dx.doi.org/10.1517/14656566.2.6.917]
[41]
Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B, 2018, 8(2), 137-146.
[http://dx.doi.org/10.1016/j.apsb.2017.09.003] [PMID: 29719775]
[42]
Senge, M.O. mTHPC--a drug on its way from second to third generation photosensitizer? Photodiagn. Photodyn. Ther., 2012, 9(2), 170-179.
[http://dx.doi.org/10.1016/j.pdpdt.2011.10.001] [PMID: 22594988]
[43]
Tseng, S.J.; Liao, Z.X.; Kao, S.H.; Zeng, Y.F.; Huang, K.Y.; Li, H.J.; Yang, C.L.; Deng, Y.F.; Huang, C.F.; Yang, S.C.; Yang, P.C.; Kempson, I.M. Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nat. Commun., 2015, 6, 6456.
[http://dx.doi.org/10.1038/ncomms7456] [PMID: 25739372]
[44]
Broekgaarden, M.; Weijer, R.; van Gulik, T.M.; Hamblin, M.R.; Heger, M. Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev., 2015, 34(4), 643-690.
[http://dx.doi.org/10.1007/s10555-015-9588-7] [PMID: 26516076]
[45]
Mirmalek, S.A.; Azizi, M.A.; Jangholi, E.; Yadollah-Damavandi, S.; Javidi, M.A.; Parsa, Y.; Parsa, T.; Salimi-Tabatabaee, S.A.; Ghasemzadeh Kolagar, H.; Alizadeh-Navaei, R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell Int., 2016, 16, 3.
[http://dx.doi.org/10.1186/s12935-016-0279-4] [PMID: 26865836]
[46]
Domagala, A.; Stachura, J.; Gabrysiak, M.; Muchowicz, A.; Zagozdzon, R.; Golab, J.; Firczuk, M. Inhibition of autophagy sensitizes cancer cells to Photofrin-based photodynamic therapy. BMC Cancer, 2018, 18(1), 210.
[http://dx.doi.org/10.1186/s12885-018-4126-y] [PMID: 29463237]
[47]
Lai, X.; Ning, F.; Xia, X.; Wang, D.; Tang, L.; Hu, J.; Wu, J.; Liu, J.; Li, X. HMME combined with green light-emitting diode irradiation results in efficient apoptosis on human tongue squamous cell carcinoma. Lasers Med. Sci., 2015, 30(7), 1941-1948.
[http://dx.doi.org/10.1007/s10103-015-1774-x] [PMID: 26210547]
[48]
Fang, C.Y.; Chen, P.Y.; Ho, D.C.; Tsai, L.L.; Hsieh, P.L.; Lu, M.Y.; Yu, C.C.; Yu, C.H. miR-145 mediates the anti-cancer stemness effect of photodynamic therapy with 5-aminolevulinic acid (ALA) in oral cancer cells. J. Formos. Med. Assoc., 2018, 117(8), 738-742.
[http://dx.doi.org/10.1016/j.jfma.2018.05.018] [PMID: 29936107]
[49]
Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D.O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z.; Niu, G.; Wang, W.; Chen, X. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014, 4(3), 229-239.
[http://dx.doi.org/10.7150/thno.8070] [PMID: 24505232]
[50]
Chen, H.; Tian, J.; He, W.; Guo, Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc., 2015, 137(4), 1539-1547.
[http://dx.doi.org/10.1021/ja511420n] [PMID: 25574812]
[51]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[52]
El-Hussein, A.; Mfouo-Tynga, I.; Abdel-Harith, M.; Abrahamse, H. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J. Photochem. Photobiol. Bol. Biol., 2015, 153, 67-75.
[53]
Park, D.J. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 1219-1227.
[http://dx.doi.org/10.1039/C5TB02338F]
[54]
Yu, Y.; Ramena, G.; Elble, R.C. The role of cancer stem cells in relapse of solid tumors. Front. Biosci. -. Elite, 2012, 4, 1528-1541.
[55]
Han, Y.; Bu, J.; Zhang, Y.; Tong, W.; Gao, C. Encapsulation of photosensitizer into multilayer microcapsules by combination of spontaneous deposition and heat-induced shrinkage for photodynamic therapy. Macromol. Biosci., 2012, 12(10), 1436-1442.
[http://dx.doi.org/10.1002/mabi.201200191] [PMID: 22965874]
[56]
Lei, Y.M.K.; Lekha, N.; Alegre, M-L. HHS Public Access. Clin. Res. Hepatol. Gastroenterol., 2015, 39, 9-19.
[http://dx.doi.org/10.1016/j.clinre.2014.10.008] [PMID: 25481240]
[57]
Fan, H.Y.; Yu, X.H.; Wang, K.; Yin, Y.J.; Tang, Y.J.; Tang, Y.L.; Liang, X.H. Graphene Quantum Dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem., 2019, 182111620
[http://dx.doi.org/10.1016/j.ejmech.2019.111620]] [PMID: 31470307]
[58]
Barras, A. Improved photodynamic effect through encapsulation of two photosensitizers in lipid nanocapsules. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 5949-5963.
[http://dx.doi.org/10.1039/C8TB01759J]
[59]
Ma, Z.; Hu, P.; Guo, C.; Wang, D.; Zhang, X.; Chen, M.; Wang, Q.; Sun, M.; Zeng, P.; Lu, F.; Sun, L.; She, L.; Zhang, H.; Yao, J.; Yang, F. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy. Int. J. Nanomedicine, 2019, 14, 5527-5540.
[http://dx.doi.org/10.2147/IJN.S208649] [PMID: 31413561]
[60]
Makhadmeh, G.N.; Abdul Aziz, A.; Abdul Razak, K.; Abu Noqta, O. Encapsulation efficacy of natural and synthetic photosensitizers by silica nanoparticles for photodynamic applications. IET Nanobiotechnol., 2015, 9(6), 381-385.
[http://dx.doi.org/10.1049/iet-nbt.2015.0003] [PMID: 26647815]
[61]
El-fattah, A.A. Photosensitizer-loaded nanoparticles: Characterization and encapsulation effeciency. Bioins., Biomimetic. Nanobiomater., 2018, 7(2), 100-108.
[62]
Roh, Y.J.; Kim, J.H.; Kim, I.W.; Na, K.; Park, J.M.; Choi, M.G. Photodynamic therapy using photosensitizer-encapsulated polymeric nanoparticle to overcome ATP-binding cassette transporter subfamily G2 function in pancreatic cancer. Mol. Cancer Ther., 2017, 16(8), 1487-1496.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0642] [PMID: 28416605]
[63]
Hung, H.I. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro., Sci. Rep, 2016, 6, 0-13..
[http://dx.doi.org/10.1038/srep33234]
[64]
Zhang, D.; Markoulides, M.S.; Stepanovs, D.; Rydzik, A.M.; El-Hussein, A.; Bon, C.; Kamps, J.J.A.G.; Umland, K.D.; Collins, P.M.; Cahill, S.T.; Wang, D.Y.; von Delft, F.; Brem, J.; McDonough, M.A.; Schofield, C.J. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg. Med. Chem., 2018, 26(11), 2928-2936.
[http://dx.doi.org/10.1016/j.bmc.2018.02.043] [PMID: 29655609]
[65]
Kotagiri, N.; Sudlow, G.P.; Akers, W.J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol., 2015, 10(4), 370-379.
[http://dx.doi.org/10.1038/nnano.2015.17] [PMID: 25751304]
[66]
Osakada, Y.; Pratx, G.; Sun, C.; Sakamoto, M.; Ahmad, M.; Volotskova, O.; Ong, Q.; Teranishi, T.; Harada, Y.; Xing, L.; Cui, B. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chem. Commun. (Camb.), 2014, 50(27), 3549-3551.
[http://dx.doi.org/10.1039/C3CC48661C] [PMID: 24463467]
[67]
Allemani, C. 2018 The Lancet-Cancer statisitics from 2000-2014. Lancet, 2018, 14.
[68]
Diaz-Jiménez, J.P.; Martínez-Ballarín, J.E.; Llunell, A.; Farrero, E.; Rodríguez, A.; Castro, M.J. Efficacy and safety of photodynamic therapy versus Nd-YAG laser resection in NSCLC with airway obstruction. Eur. Respir. J., 1999, 14(4), 800-805.
[http://dx.doi.org/10.1034/j.1399-3003.1999.14d13.x] [PMID: 10573224]
[69]
Kubota, K.; Furuse, K.; Kawaguchi, T.; Kawahara, M.; Ogawara, M.; Yamamoto, S. A case of long-term survival with stage IV small cell lung cancer and early-stage central-type squamous cell lung cancer treated by photodynamic therapy. Jpn. J. Clin. Oncol., 1999, 29(1), 45-48.
[http://dx.doi.org/10.1093/jjco/29.1.45] [PMID: 10073151]
[70]
Lee, J.E.; Park, H.S.; Jung, S.S.; Kim, S.Y.; Kim, J.O. A case of small cell lung cancer treated with chemoradiotherapy followed by photodynamic therapy. Thorax, 2009, 64(7), 637-639.
[http://dx.doi.org/10.1136/thx.2008.112912] [PMID: 19561284]
[71]
Simone, C.B., II; Friedberg, J.S.; Glatstein, E.; Stevenson, J.P.; Sterman, D.H.; Hahn, S.M.; Cengel, K.A. Photodynamic therapy for the treatment of non-small cell lung cancer. J. Thorac. Dis., 2012, 4(1), 63-75.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2011.11.05] [PMID: 22295169]
[72]
van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers (Basel), 2017, 9(2), 1-54.
[http://dx.doi.org/10.3390/cancers9020019] [PMID: 28218708]
[73]
Shafirstein, G.; Battoo, A.; Harris, K.; Baumann, H.; Gollnick, S.O.; Lindenmann, J.; Nwogu, C.E. Photodynamic therapy of non-small cell lung cancer narrative review and future directions. Ann. Am. Thorac. Soc., 2016, 13(2), 265-275.
[http://dx.doi.org/10.1513/AnnalsATS.201509-650FR] [PMID: 26646726]
[74]
Li, J.H. Photodynamic therapy in the treatment of malignant tumours: An analysis of 540 cases. J. Photochem. Photobiol. Bol. Biol., 1990, 6(1-2), 149-155.
[75]
Wile, A.G.; Coffey, J.; Nahabedian, M.Y.; Baghdassarian, R.; Mason, G.R.; Berns, M.W. Laser photoradiation therapy of cancer: an update of the experience at the University of California, Irvine. Lasers Surg. Med., 1984, 4(1), 5-12.
[http://dx.doi.org/10.1002/lsm.1900040103] [PMID: 6235416]
[76]
Sutedja, T.; Baas, P.; Stewart, F.; van Zandwijk, N. A pilot study of photodynamic therapy in patients with inoperable non-small cell lung cancer. Eur. J. Cancer, 1992, 28A(8-9), 1370-1373.
[http://dx.doi.org/10.1016/0959-8049(92)90522-4] [PMID: 1325174]
[77]
Ono, R.; Egawa, S.; Ikeda, S. Combined treatment of endoscopic laser irradiation and radiotherapy in lung cancer., Gan To Kagaku Ryoho, 1989, 16(4 Pt 2-2), 1418-1424..
[PMID: 2525002]
[78]
Sanfilippo, N.J.; Hsi, A.; DeNittis, A.S.; Ginsberg, G.G.; Kochman, M.L.; Friedberg, J.S.; Hahn, S.M. Toxicity of photodynamic therapy after combined external beam radiotherapy and intraluminal brachytherapy for carcinoma of the upper aerodigestive tract. Lasers Surg. Med., 2001, 28(3), 278-281.
[http://dx.doi.org/10.1002/lsm.1051] [PMID: 11295765]
[79]
Fujimura, S.; Sakurada, A.; Sagawa, M.; Saito, Y.; Takahashi, H.; Tanita, T.; Ono, S.; Matsumura, S.; Kondo, T.; Sato, M. A therapeutic approach to roentgenographically occult squamous cell carcinoma of the lung. Cancer, 2000, 89(11)(Suppl.), 2445-2448.
[http://dx.doi.org/10.1002/1097-0142(20001201)89:11+<2445:AID-CNCR19>3.0.CO;2-V] [PMID: 11147623]
[80]
Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L. International Association for the Study of Lung Cancer International Staging Committee. Participating Institutions. The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J. Thorac. Oncol., 2007, 2(8), 706-714.
[http://dx.doi.org/10.1097/JTO.0b013e31812f3c1a] [PMID: 17762336]
[81]
Saito, M.; Kato, H.; Konaka, C.; Okunaka, T.; Furukawa, K.; Sakai, H.; Nakamura, H.; Ebihara, Y. Synchronous quadruple lung cancer treated curatively by photodynamic therapy. Diagn. Ther. Endosc., 1996, 3(2), 115-119.
[http://dx.doi.org/10.1155/DTE.3.115] [PMID: 18493426]
[82]
Okunaka, T.; Kato, H.; Konaka, C.; Kawate, N.; Bonaminio, A.; Yamamoto, H.; Ikeda, N.; Tolentino, M.; Eckhauser, M.L.; Hayata, Y. Photodynamic therapy for multiple primary bronchogenic carcinoma. Cancer, 1991, 68(2), 253-258.
[http://dx.doi.org/10.1002/1097-0142(19910715)68:2<253:AID-CNCR2820680206>3.0.CO;2-F] [PMID: 1648993]
[83]
Simone, C.B., II; Cengel, K.A. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin. Oncol., 2014, 41(6), 820-830.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.017] [PMID: 25499640]
[84]
Furukawa, K.; Kato, H.; Konaka, C.; Okunaka, T.; Usuda, J.; Ebihara, Y. Locally recurrent central-type early stage lung cancer <1.0cm in diameter after complete remission by photodynamic therapy. Chest, 2005, 128(5), 3269-3275.
[http://dx.doi.org/10.1378/chest.128.5.3269] [PMID: 16306036]
[85]
Corti, L.; Toniolo, L.; Boso, C.; Colaut, F.; Fiore, D.; Muzzio, P.C.; Koukourakis, M.I.; Mazzarotto, R.; Pignataro, M.; Loreggian, L.; Sotti, G. Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg. Med., 2007, 39(5), 394-402.
[http://dx.doi.org/10.1002/lsm.20513] [PMID: 17565719]
[86]
Usuda, J.; Tsutsui, H.; Honda, H.; Ichinose, S.; Ishizumi, T.; Hirata, T.; Inoue, T.; Ohtani, K.; Maehara, S.; Imai, K.; Tsunoda, Y.; Kubota, M.; Ikeda, N.; Furukawa, K.; Okunaka, T.; Kato, H. Photodynamic therapy for lung cancers based on novel photodynamic diagnosis using talaporfin sodium (NPe6) and autofluorescence bronchoscopy. Lung Cancer, 2007, 58(3), 317-323.
[http://dx.doi.org/10.1016/j.lungcan.2007.06.026] [PMID: 17698240]
[87]
Moghissi, K.; Dixon, K.; Thorpe, J.A.C.; Stringer, M.; Oxtoby, C. Photodynamic Therapy (PDT) in early central lung cancer: a treatment option for patients ineligible for surgical resection. Thorax, 2007, 62(5), 391-395.
[http://dx.doi.org/10.1136/thx.2006.061143] [PMID: 17090572]
[88]
Endo, C.; Miyamoto, A.; Sakurada, A.; Aikawa, H.; Sagawa, M.; Sato, M.; Saito, Y.; Kondo, T. Results of long-term follow-up of photodynamic therapy for roentgenographically occult bronchogenic squamous cell carcinoma. Chest, 2009, 136(2), 369-375.
[http://dx.doi.org/10.1378/chest.08-2237] [PMID: 19318660]
[89]
Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Honda, H.; Kajiwara, N.; Uchida, O.; Tsutsui, H.; Ohira, T.; Kato, H.; Ikeda, N. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0cm in diameter. Clin. Cancer Res., 2010, 16(7), 2198-2204.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2520] [PMID: 20332318]
[90]
Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Kajiwara, N.; Uchida, O.; Tsutsui, H.; Ohira, T.; Kato, H.; Ikeda, N. Management of multiple primary lung cancer in patients with centrally located early cancer lesions. J. Thorac. Oncol., 2010, 5(1), 62-68.
[http://dx.doi.org/10.1097/JTO.0b013e3181c42287] [PMID: 19952800]
[91]
Ji, W.; Yoo, J. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater., 2017, 29(12)1605357
[92]
Huang, Y.; Sadée, W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett., 2006, 239(2), 168-182.
[http://dx.doi.org/10.1016/j.canlet.2005.07.032] [PMID: 16169662]
[93]
Lee, H.; Han, J.; Shin, H.; Han, H.; Na, K.; Kim, H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Control. Release, 2018, 283, 190-199.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.008] [PMID: 29885415]
[94]
Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv. Funct. Mater., 2016, 26, 4722-4732.
[http://dx.doi.org/10.1002/adfm.201600722]
[95]
Kimura, M.; Miyajima, K.; Kojika, M.; Kono, T.; Kato, H. Photodynamic Therapy (PDT) with chemotherapy for advanced lung cancer with airway stenosis. Int. J. Mol. Sci., 2015, 16(10), 25466-25475.
[http://dx.doi.org/10.3390/ijms161025466] [PMID: 26512656]
[96]
Nonaka, Y.; Nanashima, A.; Nonaka, T.; Uehara, M.; Isomoto, H.; Abo, T.; Nagayasu, T. Synergic effect of photodynamic therapy using talaporfin sodium with conventional anticancer chemotherapy for the treatment of bile duct carcinoma. J. Surg. Res., 2013, 181(2), 234-241.
[http://dx.doi.org/10.1016/j.jss.2012.06.047] [PMID: 22835954]
[97]
Wang, Y.; Wei, G.; Zhang, X.; Xu, F.; Xiong, X.; Zhou, S. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater., 2017, 29(12), 29.
[http://dx.doi.org/10.1002/adma.201605357] [PMID: 28128876]
[98]
Rao, V.; Han, H.S.; Lee, H.; Nguyen, V.Q.; Jeon, S.; Jung, D.W.; Lee, J.; Yi, G.R.; Park, J.H. ROS-responsive mesoporous silica nanoparticles for MR imaging-guided photodynamically maneuvered chemotherapy. Nanoscale, 2018, 10(20), 9616-9627.
[http://dx.doi.org/10.1039/C8NR00888D] [PMID: 29756137]
[99]
Khdair, A.; Chen, D.; Patil, Y.; Ma, L.; Dou, Q.P.; Shekhar, M.P.; Panyam, J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J. Control. Release, 2010, 141(2), 137-144.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.004] [PMID: 19751777]
[100]
Lee, C.S.; Na, K. Photochemically triggered cytosolic drug delivery using pH-responsive hyaluronic acid nanoparticles for light-induced cancer therapy. Biomacromolecules, 2014, 15(11), 4228-4238.
[http://dx.doi.org/10.1021/bm501258s] [PMID: 25251731]
[101]
Wu, J.; Hu, X.; Liu, R.; Zhang, J.; Song, A.; Luan, Y. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J. Colloid Interface Sci., 2019, 547, 30-39.
[http://dx.doi.org/10.1016/j.jcis.2019.03.087] [PMID: 30933691]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy