Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Development of Stem Cell-Based Treatment for Acute Ischemic Cerebral Injury

Author(s): Xiaojie Bai, Jun Xu, Tiantian Zhu, Yuanyuan He and Hong Zhang*

Volume 15, Issue 6, 2020

Page: [509 - 521] Pages: 13

DOI: 10.2174/1574888X15666200331135227

Price: $65

Abstract

Acute ischemic brain injury is a serious disease that severely endangers the life safety of patients. Such disease is hard to predict and highly lethal with very limited effective treatments currently. Although currently, there exist treatments like drug therapy, hyperbaric oxygen therapy, rehabilitation therapy and other treatments in clinical practice, these are not significantly effective for patients when the situation is severe. Thus scientists must explore more effective treatments. Stem cells are undifferentiated cells with a strong potential of self-renewal and differentiate into various types of tissues and organs. Their emergence has brought new hopes for overcoming difficult diseases, further improving medical technology and promoting the development of modern medicine. Some combining therapies and genetically modified stem cell therapy have also been proven to produce obvious neuroprotective function for acute ischemic brain injury. This review is an introduction to the current research findings and discusses the definition, origin and classification of stem cells, as well as the future prospects of the stem cell-based treatment for acute ischemic cerebral injury.

Keywords: Acute ischemia, cerebral injury, stem cells, treatment, gene therapy, neuroprotective agent.

[1]
Ruslan R, Grönnert L, Gantner C, et al. A targeted therapy promotes vascular repair and functional recovery fol-lowing stroke. Proc Natl Acad Sci USA 2019.
[http://dx.doi.org/10.1073/pnas.1905309116]
[2]
Chen YC, Ma NX, Pei ZF, et al. LeeG, Minier-Toribio A, Hu Y, Bai YT, Lee K, Quirk GJ, Chen G.A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther 2019.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.003] [PMID: 31551137]
[3]
Shen F, Wen L, Yang X, Liu W. The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 2007; 30(4): 291-8.
[http://dx.doi.org/10.1007/s10143-007-0094-4] [PMID: 17687574]
[4]
da Silva SC, Feres O, da Silva Beggiora P, et al. Hyperbaric oxygen therapy reduces astrogliosis and helps to recovery brain damage in hydrocephalic young rats. Childs Nerv Syst 2018; 34(6): 1125-34.
[http://dx.doi.org/10.1007/s00381-018-3803-0] [PMID: 29671042]
[5]
Li HZ, Chen JF, Liu M, Shen J. Effect of hyperbaric oxygen on the permeability of the blood-brain barrier in rats with global cerebral ischemia/reperfusion injury. Biomed Pharmacother 2018; 108: 1725-30.
[http://dx.doi.org/10.1016/j.biopha.2018.10.025] [PMID: 30372875]
[6]
Bradt J, Magee WL, Dileo C, Wheeler BL, McGilloway E. Music therapy for acquired brain injury. Cochrane Database Syst Rev 2010; (7): CD006787
[http://dx.doi.org/10.1002/14651858.CD006787.pub2] [PMID: 20614449]
[7]
Liu X, Wen S, Zhao S, et al. Mild Therapeutic Hypothermia Protects the Brain from Ischemia/Reperfusion Injury through Upregulation of iASPP. Aging Dis 2018; 9(3): 401-11.
[http://dx.doi.org/10.14336/AD.2017.0703] [PMID: 29896428]
[8]
Edward A. Copelan, M.D.Hematopoietic Stem-Cell Transplanta-tion. N Engl J Med 2006.
[http://dx.doi.org/10.1056/NEJMra052638]
[9]
Guan J-L, Simon AK, Prescott M, et al. Autophagy in stem cells. Autophagy 2013; 9(6): 830-49.
[http://dx.doi.org/10.4161/auto.24132] [PMID: 23486312]
[10]
Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013; 85(1): 3-10.
[http://dx.doi.org/10.1159/000345615] [PMID: 23257690]
[11]
Chung D-J, Choi C-B, Lee S-H, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res 2009; 87(16): 3554-67.
[http://dx.doi.org/10.1002/jnr.22162] [PMID: 19642203]
[12]
Evan T. Nudi, Justin Jacqmain, Kelsey Dubbs, Katalin Geeck, Garrick Salois, Madeleine A. Searles, Jeffrey S. Smith. Combin-ing Enriched Environment, Progesterone, and Embryonic Neural Stem Cell Therapy Improves Recovery after Brain Injury. J Neurotrauma 2015.
[http://dx.doi.org/10.1089/neu.2014.3618]
[13]
Courtney A. McDonald, Zlatikha Djuliannisaa, Maria Petraki, Madison C. B. Paton, Tayla R.Penny, Amy E. Sutherland, Margie Castillo-Melendez, Iona Novak, Graham Jenkin, Michael C. Fahey andSuzanne L. Miller.Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic–Ischemic Brain Injury. Int J Mol Sci 2019.
[http://dx.doi.org/10.3390/ijms20102449]
[14]
He H, Zeng Q, Huang G, et al. Bone marrow mesenchymal stem cell transplantation exerts neuroprotective effects following cerebral ischemia/reperfusion injury by inhibiting autophagy via the PI3K/Akt pathway. Brain Res 2019; 1707: 124-32.
[http://dx.doi.org/10.1016/j.brainres.2018.11.018] [PMID: 30448444]
[15]
He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 2019; 311: 15-32.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.006] [PMID: 30213506]
[16]
Li F, Zhang K, Liu H, Yang T, Xiao DJ, Wang YS. The neuropro-tective effect of mesenchymal stem cells is mediated through in-hibition of apoptosis in hypoxic ischemic injury. World J Pediatr 2019.
[http://dx.doi.org/10.1007/s12519-019-00310-x] [PMID: 31535281]
[17]
Braccioli L, Heijnen CJ, Coffer PJ, Nijboer CH. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatr Res 2017; 81(1): 127-35.
[18]
McDonald CA, Djuliannisaa Z, Petraki M, et al. Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic−Ischemic Brain Injury. Int J Mol Sci 2019; 20(10) E2449
[http://dx.doi.org/10.3390/ijms20102449] [PMID: 31108944]
[19]
Amit K. Srivastava, Karthik S Prabhakara, Daniel J Kota, Su-pinder S Bedi, Fabio Triolo, Katherine S Brown, Matthew L Skiles, Heather L Brown, Charles S Cox & Scott D Olson. Hu-man umbilical cord blood cells restore vascular integrity in in-jured rat brain and modulate inflammation in vitro. Regen Med 2019.
[http://dx.doi.org/10.2217/rme-2018-0106]
[20]
Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 2019; 123: 74-80.
[http://dx.doi.org/10.1016/j.mvr.2019.01.001] [PMID: 30611747]
[21]
Li Jingang. Preterm umbilical cord blood derived mesenchymal stem/stromal cells protect preterm white matter brain development against hy-poxia-ischemia. Exp Neurol 2018; 308: 120.
[22]
Nobuyasu Baba I, Wang F. Michiro Iizuka, Yuan Shen, Tatsuyuki Yamashita, Kimiko Takaishi, Emi Tsuru, Sachio Matsushi-ma, Mitsuhiko Miyamura, Mikiya Fujieda, Masayuki Tsu-da, YusukeSagara, Nagamasa Maeda.Induction of regional chem-okine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemiareperfusion brain injury model. PLoS One 2019.
[http://dx.doi.org/10.1371/journal.pone.0221111]
[23]
Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA 1997; 94(11): 5709-12.
[http://dx.doi.org/10.1073/pnas.94.11.5709] [PMID: 9159137]
[24]
Nagy A, Gócza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110(3): 815-21.
[PMID: 2088722]
[25]
Mulas C, Kalkan T, von Meyenn F, Leitch HG, Nichols J, Smith A. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 2019; 146(6) dev173146
[http://dx.doi.org/10.1242/dev.173146] [PMID: 30914406]
[26]
Etoc F, Brivanlou A. A boost towards totipotency for stem cells. Nat Cell Biol 2019; 21(6): 671-3.
[http://dx.doi.org/10.1038/s41556-019-0340-3] [PMID: 31160707]
[27]
Ikeda R, Kurokawa MS, Chiba S, et al. Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol Dis 2005; 20(1): 38-48.
[http://dx.doi.org/10.1016/j.nbd.2005.01.031] [PMID: 16137565]
[28]
Hayashi J, Takagi Y, Fukuda H, et al. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab 2006; 26(7): 906-14.
[http://dx.doi.org/10.1038/sj.jcbfm.9600247] [PMID: 16395293]
[29]
Hawkins KE, Corcelli M, Dowding K, et al. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain. Stem Cells Transl Med 2018; 7(5): 439-49.
[http://dx.doi.org/10.1002/sctm.17-0260] [PMID: 29489062]
[30]
Cohen CB. Ethical and policy issues surrounding the donation of cryopreserved and fresh embryos for human embryonic stem cell research. Stem Cell Rev Rep 2009.
[http://dx.doi.org/10.1007/s12015-009-9060-6]
[31]
Bond AM, Ming GL, Song H. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell 2015; 17(4): 385-95.
[http://dx.doi.org/10.1016/j.stem.2015.09.003] [PMID: 26431181]
[32]
Tang Y, Wang J, Lin X, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab 2014; 34(7): 1138-47.
[http://dx.doi.org/10.1038/jcbfm.2014.61] [PMID: 24714034]
[33]
Yan Y, Kong L, Xia Y, et al. Osthole promotes endogenous neural stem cell proliferation and improved neurological function through Notch signaling pathway in mice acute mechanical brain injury. Brain Behav Immun 2018; 67: 118-29.
[http://dx.doi.org/10.1016/j.bbi.2017.08.011] [PMID: 28823624]
[34]
Di Stefano B, Ueda M, Sabri S, et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods 2018; 15(9): 732-40.
[http://dx.doi.org/10.1038/s41592-018-0104-1] [PMID: 30127506]
[35]
Webb RL, Kaiser EE, Scoville SL, et al. Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. Transl Stroke Res 2018; 9(5): 530-9.
[http://dx.doi.org/10.1007/s12975-017-0599-2] [PMID: 29285679]
[36]
Zhu JD, Wang JJ, Ge G, Kang CS. Effects of Noggin-Transfected Neural Stem Cells on Neural Functional Recovery and Underlying Mechanism in Rats with Cerebral Ischemia Reperfusion Injury. J Stroke Cerebrovasc Dis 2017; 26(7): 1547-59.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.02.034] [PMID: 28478981]
[37]
Zhang T, Yang X, Liu T, et al. Adjudin-preconditioned neural stem cells enhance neuroprotection after ischemia reperfusion in mice. Stem Cell Res Ther 2017; 8(1): 248.
[http://dx.doi.org/10.1186/s13287-017-0677-0] [PMID: 29115993]
[38]
Tian L, Zhu W, Liu Y, et al. Neural Stem Cells Transfected with Leukemia Inhibitory Factor Promote Neuroprotection a Rat Model of Cerebral Ischemia 2019.
[http://dx.doi.org/10.1007/s12264-019-00405-5]
[39]
The Skeletal Research Center. Orthopaedic Research. Department of Biology, Case Western Reserve University, Cleve-land, Ohio, USAMesenchymal. Stem Cells 1991.
[40]
Lindolfo da Silva M, Chagastelles PC, Nardi NB. Mesenchymal stemcells reside in virtually all post-natal organs and tissues. J Cell Sci 2006.
[http://dx.doi.org/10.1242/jcs.02932]
[41]
Sammali E, Alia C, Vegliante G, et al. Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Sci Rep 2017; 7(1): 6962.
[http://dx.doi.org/10.1038/s41598-017-07274-w] [PMID: 28761170]
[42]
Tsai MJ, Tsai SK, Hu BR, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 2014; 21: 5.
[http://dx.doi.org/10.1186/1423-0127-21-5] [PMID: 24447306]
[43]
Doeppner TR, Herz J, Görgens A, et al. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 2015; 4(10): 1131-43.
[http://dx.doi.org/10.5966/sctm.2015-0078] [PMID: 26339036]
[44]
Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia. Stem Cells Transl Med 2016; 5(6): 754-63.
[http://dx.doi.org/10.5966/sctm.2015-0197] [PMID: 27160705]
[45]
Lee JY, Kim E, Choi SM, et al. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep 2016; 6: 33038.
[http://dx.doi.org/10.1038/srep33038] [PMID: 27609711]
[46]
Cameron SH, Alwakeel AJ, Goddard L, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci 2015; 68: 56-72.
[http://dx.doi.org/10.1016/j.mcn.2015.03.019] [PMID: 25828540]
[47]
Zhang YX, Yuan MZ, Cheng L, et al. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci 2015; 16: 56.
[http://dx.doi.org/10.1186/s12868-015-0196-9] [PMID: 26342636]
[48]
Wang JW, Qiu YR, Fu Y, Liu J, He ZJ, Huang ZT. Transplantation with hypoxia-preconditioned mesenchymal stem cells suppresses brain injury caused by cardiac arrest-induced global cerebral ischemia in rats. J Neurosci Res 2017; 95(10): 2059-70.
[http://dx.doi.org/10.1002/jnr.24025] [PMID: 28186348]
[49]
Ahn SY, Chang YS, Sung DK, Sung SI, Park WS. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy. Sci Rep 2018; 8(1): 7665.
[http://dx.doi.org/10.1038/s41598-018-25902-x] [PMID: 29769612]
[50]
Herz J, Köster C, Reinboth BS, et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury. Brain Behav Immun 2018; 70: 118-30.
[http://dx.doi.org/10.1016/j.bbi.2018.02.006] [PMID: 29454023]
[51]
Zhang S, Chen L, Zhang G, Zhang B. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 2020; 11(1): 39.
[http://dx.doi.org/10.1186/s13287-020-1561-x] [PMID: 31992364]
[52]
Feng X, Liu J, Xu Y, et al. Molecular mechanism underlying the difference in proliferation between placenta-derived and umbilical cord-derived mesenchymal stem cells. J Cell Physiol 2020.
[http://dx.doi.org/10.1002/jcp.29572] [PMID: 31990045]
[53]
Malhotra A, Castillo-Melendez M, Allison BJ, et al. Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs: UCBCs for perinatal brain injury. Stem Cell Res Ther 2020; 11(1): 17.
[http://dx.doi.org/10.1186/s13287-019-1526-0] [PMID: 31915068]
[54]
Allan DS. Using umbilical cord blood for regenerative therapy: Proof or promise? Stem Cells 2020.
[http://dx.doi.org/10.1002/stem.3150]
[55]
Lin W, Hsuan YC, Lin MT, et al. Human Umbilical Cord Mesenchymal Stem Cells Preserve Adult Newborn Neurons and Reduce Neurological Injury after Cerebral Ischemia by Reducing the Number of Hypertrophic Microglia/Macrophages. Cell Transplant 2017; 26(11): 1798-810.
[http://dx.doi.org/10.1177/0963689717728936] [PMID: 29338384]
[56]
Zhu LH, Bai X, Zhang N, Wang SY, Li W, Jiang L. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 2014; 1563: 13-21.
[http://dx.doi.org/10.1016/j.brainres.2014.03.030] [PMID: 24680746]
[57]
Xu J, Feng Z, Wang X, et al. hUC-MSCs Exert a Neuroprotective Effect via Anti-apoptotic Mechanisms in a Neonatal HIE Rat Model. Cell Transplant 2019; 28(12): 1552-9.
[http://dx.doi.org/10.1177/0963689719874769] [PMID: 31512502]
[58]
Maple L Shia, Ce Yuan, Andrew T. Crane, Joseph P. Voth, Mario Juliano, Laura L. Hocum Stone, Zhenghong Nan, Ying Zhang, Nicole Kuzmin-Nichols, Paul R. Sanberg, Andrew W. Grande, and Walter C. Low.Immunomodulation with Human Umbilical Cord Blood Stem Cells Ameliorates Ischemic Brain In-jury – A Brain Transcriptome Profiling Analysis. Cell Transplant 2019..
[http://dx.doi.org/10.1177/0963689719836763]
[59]
Li D, Zhang M, Zhang Q, Wang Y, Song X, Zhang Q. Functional recovery after acute intravenous administration of human umbilical cord mesenchymal stem cells in rats with cerebral ischemia-reperfusion injury. Intractable Rare Dis Res 2015; 4(2): 98-104.
[http://dx.doi.org/10.5582/irdr.2015.01010] [PMID: 25984429]
[60]
Huang X, Zhang S, Li F, et al. Effects of hUCB-MSCs on recovery of neurological function and TERT expression in brain tissue of rats with cerebral ischemia-reperfusion injury. Exp Ther Med 2017; 14(6): 5843-6.
[http://dx.doi.org/10.3892/etm.2017.5274] [PMID: 29285130]
[61]
Grandvuillemin I, Garrigue P, Ramdani A, et al. Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells Transl Med 2017; 6(11): 1987-96.
[http://dx.doi.org/10.1002/sctm.17-0074] [PMID: 28980775]
[62]
Park HW, Kim Y, Chang JW, et al. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats. Exp Neurobiol 2017; 26(1): 55-65.
[http://dx.doi.org/10.5607/en.2017.26.1.55] [PMID: 28243167]
[63]
Tayla R. Penny, Amy E Sutherland, Jamie G Mihelakis, et al. Human Umbilical Cord Therapy Improves Long-Term Behavior-al Outcomes Following Neonatal Hypoxic Ischemic Brain Injury. Original Research 2019.
[64]
Steven B, Powell MD, Jean M, Silvestri MD. Safety of Intratracheal Administration of Human Umbilical Cord Blood Derived Mesen-chymal Stromal Cells in Extremely Low Birth Weight Preterm In-fants. J Pediatr 2019; 210: 209-5.
[http://dx.doi.org/10.1016/j.jpeds.2019.02.029] [PMID: 30992220]
[65]
Rogers I, Casper RF. Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol 2004; 18(6): 893-908.
[http://dx.doi.org/10.1016/j.bpobgyn.2004.06.004] [PMID: 15582545]
[66]
Zhou L, Chen X, Liu T, et al. SIRT1-dependent anti-senescence ef-fects ofcell-deposited matrix on human umbilical cord mesen-chymal stem cells. Tissue Eng Regen Med 2018; 12(2): e1008-21.
[http://dx.doi.org/10.1002/term.2422] [PMID: 28107614]
[67]
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 2012; 12(5): 574-91.
[http://dx.doi.org/10.2174/156652412800619950] [PMID: 22515979]
[68]
Rocha V, Wagner JE Jr, Sobocinski KA, et al. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. N Engl J Med 2000; 342(25): 1846-54.
[http://dx.doi.org/10.1056/NEJM200006223422501] [PMID: 10861319]
[69]
Jellema RK, Ophelders DR, Zwanenburg A, et al. Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain. J Neuroinflammation 2015; 12: 241.
[http://dx.doi.org/10.1186/s12974-015-0459-5] [PMID: 26700169]
[70]
Li Y, Chang S, Li W, et al. cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther 2018; 9(1): 139.
[http://dx.doi.org/10.1186/s13287-018-0865-6] [PMID: 29751775]
[71]
Zhang R, Xie X, Yu Q, et al. Constitutive Expression of Adiponectin in Endothelial Progenitor Cells Protects a Rat Model of Cerebral Ischemia. Neural Plast 2017. 20176809745
[http://dx.doi.org/10.1155/2017/6809745] [PMID: 29201467]
[72]
Anghileri E, Marconi S, Pignatelli A, et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 2008; 17(5): 909-16.
[http://dx.doi.org/10.1089/scd.2007.0197] [PMID: 18564036]
[73]
Gong B, Dong Y, He C, et al. Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Rat Brain From Ischemia-Induced Damage. J Stroke Cerebrovasc Dis 2019; 28(3): 595-603.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.10.037] [PMID: 30482485]
[74]
Nito C, Sowa K, Nakajima M, et al. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother 2018; 108: 1005-14.
[http://dx.doi.org/10.1016/j.biopha.2018.09.084] [PMID: 30372800]
[75]
Sanches EF, Valentim L, de Almeida Sassi F, et al. Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochem Res 2018; 43(12): 2268-76.
[http://dx.doi.org/10.1007/s11064-018-2647-z] [PMID: 30255215]
[76]
Sowa K, Nito C, Nakajima M, et al. Impact of Dental Pulp Stem Cells Overexpressing Hepatocyte Growth Factor after Cerebral Ischemia/Reperfusion in Rats. Mol Ther Methods Clin Dev 2018; 10: 281-90.
[http://dx.doi.org/10.1016/j.omtm.2018.07.009] [PMID: 30151417]
[77]
Nazarinia D, Aboutaleb N, Gholamzadeh R, Nasseri Maleki S, Mokhtari B, Nikougoftar M. Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. J Chem Neuroanat 2019. 102101707
[http://dx.doi.org/10.1016/j.jchemneu.2019.101707] [PMID: 31672459]
[78]
Sibov TT, Pavon LF, Cabral FR, et al. Intravenous Grafts of Human Amniotic Fluid-Derived Stem Cells Reduce Behavioral Deficits in Experimental Ischemic Stroke. Cell Transplant 2019; 28(9-10): 1306-20.
[http://dx.doi.org/10.1177/0963689719854342] [PMID: 31161782]
[79]
Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem 2018.
[http://dx.doi.org/10.1002/jcb.27519] [PMID: 30191592]
[80]
Michael Cotten C. MD, Amy P. Murtha, MD, Ronald N. Goldberg, MD, Chad A. Grotegut, MD.P. Brian Smith, MD, Ricki F. Gold-stein, MD, Kimberley A. Fisher, PhD, Kathryn E. Gustafson, PhD, Barbara Waters-Pick, BS, MT(ASCP), Geeta K. Swamy, MD, Benjamin Rattray, MD, Siddhartha Tan, MD, and Joanne Kurtzberg, MD.Feasibility of Autologous Cord Blood Cells for Infants with Hypoxic-Ischemic Encephalopathy. J Pediatr 2013.
[http://dx.doi.org/10.1016/j.jpeds.2013.11.036]
[81]
Taguchi A, Sakai C, Soma T, et al. Intravenous Autologous Bone Marrow Mononuclear Cell Transplantation for Stroke: Phase1/2a Clinical Trial in a Homogeneous Group of Stroke Patients. Stem Cells Dev 2015; 24(19): 2207-18.
[http://dx.doi.org/10.1089/scd.2015.0160] [PMID: 26176265]
[82]
Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of mul-tipotent adult progenitor cells in acute ischaemic stroke (MAS-TERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16: 335-2.
[83]
Laskowitz DT, Bennett ER, Durham RJ, et al. Allogeneic Um-bilical Cord Blood Infusion for Adults with Ischemic Stroke:Clinical Outcomes from a PhaseISafetyStudy. Stem Cells Transl Med 2018.
[http://dx.doi.org/10.1002/sctm.18-0008]
[84]
Deng L, Peng Q, Wang H, et al. Intrathecal Injection of Allogenic Bone Marrow-Derived Mesenchymal Stromal Cells in Treatment of Patients with Severe Ischemic Stroke: Study Protocol for a Randomized Controlled Observer-Blinded Trial. Transl Stroke Res 2019; 10(2): 170-7.
[http://dx.doi.org/10.1007/s12975-018-0634-y] [PMID: 29796934]
[85]
Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P, et al. Reparative therapy for acute ischemic stroke with alloge-neic mesenchymal stem cells from adipose tissue: A safety assessment a Phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 2014; 23(10): 2694-700.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis]
[86]
Moniche F, Escudero I, Zapata-Arriaza E, et al. Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int J Stroke 2015; 10(7): 1149-52.
[http://dx.doi.org/10.1111/ijs.12520] [PMID: 26044701]
[87]
Shichinohe H, Kawabori M, Iijima H, et al. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol 2017; 17(1): 179.
[http://dx.doi.org/10.1186/s12883-017-0955-6] [PMID: 28886699]
[88]
Sean I. Savitz, Dileep Yavagal, George. A Phase 2 ran-domized, sham-controlled trial of internal carotid artery infu-sion of autologous bone marrow–derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-Stroke). Circulation 2019.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030659]
[89]
Jauch EC, Saver JL, Adams HP Jr, et al. American Heart Asso-ciation Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Car-diology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Associa-tion. Stroke 2013; 44(3): 870-947.
[http://dx.doi.org/10.1161/STR.0b013e318284056a] [PMID: 23370205]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy