Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Recent Advances in the Synthesis and Development of Nitroaromatics as Anti-Infective Drugs

Author(s): Christina Kannigadu and David. D. N'Da*

Volume 26, Issue 36, 2020

Page: [4658 - 4674] Pages: 17

DOI: 10.2174/1381612826666200331091853

Price: $65

conference banner
Abstract

Infectious diseases commonly occur in tropical and sub-tropical countries. The pathogens of such diseases are able to multiply in human hosts, warranting their continual survival. Infections that are commonplace include malaria, chagas, trypanosomiasis, giardiasis, amoebiasis, toxoplasmosis and leishmaniasis. Malaria is known to cause symptoms, such as high fever, chills, nausea and vomiting, whereas chagas disease causes enlarged lymph glands, muscle pain, swelling and chest pain. People suffering from African trypanosomiasis may experience severe headaches, irritability, extreme fatigue and swollen lymph nodes. As an infectious disease progresses, the human host may also experience personality changes and neurologic problems. If left untreated, most of these diseases can lead to death.

Parasites, microbes and bacteria are increasingly adapting and generating strains that are resistant to current clinical drugs. Drug resistance creates an urgency for the development of new drugs to treat these infections. Nitro containing drugs, such as chloramphenicol, metronidazole, tinidazole and secnidazole had been banned for use as antiparasitic agents due to their toxicity. However, recent discoveries of nitrocontaining anti-tuberculosis drugs, i.e. delamanid and pretonamid, and the repurposing of flexinidazole for use in combination with eflornithine for the treatment of human trypanosomiasis, have ignited interest in nitroaromatic scaffolds as viable sources of potential anti-infective agents.

This review highlights the differences between old and new nitration methodologies. It furthermore offers insights into recent advances in the development of nitroaromatics as anti-infective drugs.

Keywords: Infectious diseases, nitration, nitroaromatic, nitrophenyl, nitrofuran, nitroimidazole.

[1]
Song LR, Fan Z, Zhang A. Recent advances in transition metal-catalyzed C(sp2)-H nitration. Org Biomol Chem 2019; 17(6): 1351-61.
[http://dx.doi.org/10.1039/C8OB02750A ] [PMID: 30644943]
[2]
Manna S, Maity S, Rana S, Agasti S, Maiti D. ipso-Nitration of arylboronic acids with bismuth nitrate and perdisulfate. Org Lett 2012; 14(7): 1736-9.
[http://dx.doi.org/10.1021/ol300325t ] [PMID: 22409632]
[3]
Ju K-S, Parales RE. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 2010; 74(2): 250-72.
[http://dx.doi.org/10.1128/MMBR.00006-10 ] [PMID: 20508249]
[4]
Yan G, Yang M. Recent advances in the synthesis of aromatic nitro compounds. Org Biomol Chem 2013; 11(16): 2554-66.
[http://dx.doi.org/10.1039/c3ob27354g ] [PMID: 23443836]
[5]
Juárez-Ornelas KA, Jiménez-Halla JOC, Kato T, Solorio-Alvarado CR, Maruoka K. Iodine(III)-catalyzed electrophilic nitration of phenols via non-Bronsted acidic NO2 (+) generation. Org Lett 2019; 21(5): 1315-9.
[http://dx.doi.org/10.1021/acs.orglett.8b04141 ] [PMID: 30746948]
[6]
Sreedhar I, Singh M, Raghavan K. Scientific advances in sulfuric acid free toluene nitration. Catal Sci 2013; 3: 2499-508.
[http://dx.doi.org/10.1039/c3cy00337j]
[7]
Badgujar M, Talawar M, Asthana S, Mahulikar P. Environmentally benign synthesis of aromatic nitro compounds using silica supported inorganic nitrates. J Sci Ind Res (India) 2007; 66: 250-1.
[8]
Shen G, Zhao L, Liu W, Huang X, Song H, Zhang T. Convenient, metal-free ipso-nitration of arylboronic acids using nitric acid and trifluoroacetic acid. Synth Commun 2017; 47: 10-4.
[http://dx.doi.org/10.1080/00397911.2016.1244690]
[9]
Haouas M, Kogelbauer A, Prins R. The effect of flexible lattice aluminium in zeolite beta during the nitration of toluene with nitric acid and acetic anhydride. Catal Lett 2000; 70: 61-5.
[http://dx.doi.org/10.1023/A:1019015216483]
[10]
Kilpatrick B, Heller M, Arns S. Chemoselective nitration of aromatic sulfonamides with tert-butyl nitrite. Chem Commun (Camb) 2013; 49(5): 514-6.
[http://dx.doi.org/10.1039/C2CC37481A ] [PMID: 23198284]
[11]
Taniguchi T, Yajima A, Ishibashi H. Oxidative nitration of alkenes with tert-butyl nitrite and oxygen. Adv Synth Catal 2011; 353: 2643-7.
[http://dx.doi.org/10.1002/adsc.201100315]
[12]
Guo F, Ji M-Z, Zhang P, Guo Z-X. Facile nitration of aromatic compounds using Bi(NO3)3•5H2O/MgSO4 under mechanochemical conditions. Green Process Synth 2017; 7: 1-8.
[13]
Tajik H, Zolfigol MA, Albadi J, Eslami R. Nitration of some aromatic compounds by sodium nitrate in the presence of benzyltriphenylphosphonium peroxodisulfate. Synth Commun 2007; 37: 2771-6.
[http://dx.doi.org/10.1080/00397910701481179]
[14]
Yang X, Xi C, Jiang Y. Regioselective nitration of N,N-dialkylanilines using cerium(IV) ammonium nitrate in acetonitrile. Tetrahedron Lett 2005; 46: 8781-3.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.028]
[15]
Rajagopal R, Srinivasan KV. Regio-selective mono nitration of phenols with ferric nitrate in room temperature ionic liquid. Synth Commun 2003; 33: 961-6.
[http://dx.doi.org/10.1081/SCC-120016360]
[16]
Mukhopadhyay S, Batra S. Applications of sodium nitrite in organic synthesis. Eur J Org Chem 2019; 6424-51.
[http://dx.doi.org/10.1002/ejoc.201900951]
[17]
Karimi Zarchi MA, Rahmani F. An efficient method for nitration of aromatic compounds over solid acid and polymer-supported sodium nitrite. J Appl Polym 2011; 121: 582-8.
[http://dx.doi.org/10.1002/app.33679]
[18]
Kumar MS, Sriram YH, Venkateswarlu M, et al. Silica-supported perchloric acid and potassium bisulfate as reusable green catalysts for nitration of aromatics under solvent-free microwave conditions. Synth Commun 2018; 48: 59-67.
[http://dx.doi.org/10.1080/00397911.2017.1387923]
[19]
Bose AK, Ganguly SN, Manhas MS, et al. Microwave promoted rapid nitration of phenolic compounds with calcium nitrate. Tetrahedron Lett 2006; 47: 1885-8.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.094]
[20]
Morozov IV, Karpova EV, Palamarchuk DM, Gavrilova AY, Troyanov SI, Oxonitrates VO. NO3)3 and MoO2(NO3)2 and nitronium and nitrosonium nitratometallates as nitrating agents. Russ J Inorgy 2009; 54: 1902.
[http://dx.doi.org/10.1134/S0036023609120109]
[21]
Hosseini-Sarvari M, Tavakolian M, Ashenagar S. Nitration of aromatic compounds using alumina sulfuric acid (ASA) as a novel heterogeneous system and Mg (NO3)2.6H2O as nitrating agent in water. Iran J Sci Technol A 2010; 34: 215-25.
[22]
Nemati F. Kiani, Yaser Saeidi Hayeniaz H. Cellulose-supported Ni(NO3)2 • 6H2O/2,4,6-trichloro-1,3,5-triazine (TCT) as a mild, selective, and biodegradable system for nitration of phenols. Synth Commun 2011; 41: 2985-92.
[http://dx.doi.org/10.1080/00397911.2010.516054]
[23]
Yadav U, Mande H, Ghalsasi P. Nitration of phenols using Cu(NO3)2: Green chemistry laboratory experiment. J Chem Educ 2011; 89: 268-70.
[http://dx.doi.org/10.1021/ed100957v]
[24]
Wąsińska M, Korczewska A, Giurg M, Skarzewski J. Improved protocol for mononitration of phenols with Bismuth(III) and Iron(III) Nitrates. Synth Commun 2015; 45: 143-50.
[http://dx.doi.org/10.1080/00397911.2014.954730]
[25]
Jacoway J, Narayana Kumar GGKS, Laali K. Aromatic nitration with bismuth nitrate in ionic liquids and in molecular solvents: a comparative study of Bi(NO3)3•5H2O/[bmim][PF6] and Bi(NO3)3•5H2O/1,2-DCE systems. Tetrahedron Lett 2012; 53: 6782-5.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.137]
[26]
Xie D-X, Yu H-J, Liu H, Xue W-C, Qin Y-S, Shao G. Sodium persulfate-promoted site-selective synthesis of mononitroarylamines under transition-metal-free conditions. Tetrahedron 2019; 75: 1157-65.
[http://dx.doi.org/10.1016/j.tet.2019.01.011]
[27]
Laali KK, Gettwert VJ. Electrophilic nitration of aromatics in ionic liquid solvents. J Org Chem 2001; 66(1): 35-40.
[http://dx.doi.org/10.1021/jo000523p ] [PMID: 11429927]
[28]
Kamatala CR. Quinolinium bound chromium(VI) reagents for efficient electrophilic aromatic nitration and thiocyanation reactions using sodium nitrate and ammonium thiocyanate. Asian J Green Chem 2018; 3: 70-84.
[http://dx.doi.org/10.22631/ajgc.2017.101557.1031]
[29]
Emmons WD. The Oxidation of amines with peracetic acid. J Am Chem Soc 1957; 79: 5528-30.
[http://dx.doi.org/10.1021/ja01577a053]
[30]
Stojiljković A, Andrejević V, Mihailovi ML. The reaction of lead tetraacetate with primary and secondary amines containing an α-methylene group. Tetrahedron 1967; 23: 721-32.
[http://dx.doi.org/10.1016/0040-4020(67)85017-8]
[31]
Laha S, Luthy RG. Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ Sci Technol Lett 1990; 24: 363-73.
[http://dx.doi.org/10.1021/es00073a012]
[32]
Firouzabadi H, Amani K. Tungstophosphoric acid catalyzed oxidation of aromatic amines to nitro compounds with sodium perborate in micellar media. Green Chem 2001; 3: 131-2.
[http://dx.doi.org/10.1039/b100955i]
[33]
Calvo R, Zhang K, Passera A, Katayev D. Facile access to nitroarenes and nitroheteroarenes using N-nitrosaccharin. Nat Commun 2019; 10(1): 3410-8.
[http://dx.doi.org/10.1038/s41467-019-11419-y ] [PMID: 31363083]
[34]
Gontier S, Tuel A. Oxidation of aniline over TS-1, the titanium substituted silicalite-1. Appl Catal, A 1994; 118 : 173-86.
[35]
Bordoloi A, Halligudi SB. Tungsten and molybdenum-based coordination polymer-catalyzed N-oxidation of primary aromatic amines with aqueous hydrogen peroxide. Adv Synth Catal 2007; 349: 2085-8.
[http://dx.doi.org/10.1002/adsc.200700224]
[36]
Carmeli M, Rozen S. Oxidation of azides by the HOF.CH3CN: a novel synthesis of nitro compounds. J Org Chem 2006; 71(12): 4585-9.
[http://dx.doi.org/10.1021/jo060440u ] [PMID: 16749792]
[37]
K Surya Prakash G. Etzkorn M. Direct oxidation of azides to nitro compounds. Angew Chem Int Ed 2004; 43: 26-8.
[http://dx.doi.org/10.1002/anie.200301710]
[38]
Reddy KR, Maheswari CU, Venkateshwar M, Kantam ML. Selective oxidation of aromatic amines to nitro derivatives using potassium iodide-tert-butyl hydroperoxide catalytic system. Adv Synth Catal 2009; 351: 93-6.
[http://dx.doi.org/10.1002/adsc.200800641]
[39]
Voutyritsa E, Theodorou A, Kokotou MG, Kokotos CG. Organocatalytic oxidation of substituted anilines to azoxybenzenes and nitro compounds: mechanistic studies excluding the involvement of a dioxirane intermediate. Green Chem 2017; 19: 1291-8.
[http://dx.doi.org/10.1039/C6GC03174A]
[40]
Tressler CM, Stonehouse P, Kyler KS. Calcium tungstate: a convenient recoverable catalyst for hydrogen peroxide oxidation. Green Chem 2016; 18: 4875-8.
[http://dx.doi.org/10.1039/C6GC00725B]
[41]
Meenakshi R, Shakeela K. kutti rani S, Gangavarapu RR. Oxidation of aniline to nitrobenzene catalysed by 1-butyl-3-methyl imidazolium phosphotungstate hybrid material Using m-chloroperbenzoic acid as an oxidant. Catal Lett 2017; 148: 246-57.
[42]
Bozorov K, Zhao J-YA, Aisa H. Recent advances in ipso-nitration reactions. ARKIVOC 2017; 2017: 41-66.
[http://dx.doi.org/10.24820/ark.5550190.p009.852]
[43]
Prakash GKS, Mathew T. ipso-Nitration of arenes. Angew Chem Int Ed Engl 2010; 49(10): 1726-8.
[http://dx.doi.org/10.1002/anie.200906940 ] [PMID: 20146295]
[44]
Fors BP, Buchwald SL. Pd-catalyzed conversion of aryl chlorides, triflates, and nonaflates to nitroaromatics. J Am Chem Soc 2009; 131(36): 12898-9.
[http://dx.doi.org/10.1021/ja905768k ] [PMID: 19737014]
[45]
Amal Joseph PJ, Priyadarshini S, Lakshmi Kantam M, Maheswaran H. Copper catalyzed ipso-nitration of iodoarenes, bromoarenes and heterocyclic haloarenes under ligand-free conditions. Tetrahedron Lett 2012; 53: 1511-3.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.056]
[46]
Sarkar R, Maji K, Haldar D. An efficient one pot ipso-nitration: structural transformation of a dipeptide by N-terminus modification. RSC Advances 2015; 5: 59570-5.
[http://dx.doi.org/10.1039/C5RA09789D]
[47]
Lockner JW, Dixon DD, Risgaard R, Baran PS. Practical radical cyclizations with arylboronic acids and trifluoroborates. Org Lett 2011; 13(20): 5628-31.
[http://dx.doi.org/10.1021/ol2023505 ] [PMID: 21923108]
[48]
Seiple IB, Su S, Rodriguez RA, et al. Direct C-H arylation of electron-deficient heterocycles with arylboronic acids. J Am Chem Soc 2010; 132(38): 13194-6.
[http://dx.doi.org/10.1021/ja1066459 ] [PMID: 20812741]
[49]
Lee G-A, Lin H-C, Lee H-Y, Chen C-H, Huang H-Y. Ipso Nitration of 2-Halothiophenes with Silver Nitrate. Asian J Org Chem 2017; 6: 1733-6.
[http://dx.doi.org/10.1002/ajoc.201700392]
[50]
Zhou L, Ishizaki H, Spitzer M, et al. ALDH2 mediates 5-nitrofuran activity in multiple species. Chem Biol 2012; 19(7): 883-92.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.017 ] [PMID: 22840776]
[51]
Sriram D, Yogeeswari P, Dhakla P, Senthilkumar P, Banerjee D, Manjashetty TH. 5-Nitrofuran-2-yl derivatives: synthesis and inhibitory activities against growing and dormant mycobacterium species. Bioorg Med Chem Lett 2009; 19(4): 1152-4.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.088 ] [PMID: 19131245]
[52]
Raether W, Hänel H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 2003; 90(Suppl. 1): S19-39.
[http://dx.doi.org/10.1007/s00436-002-0754-9 ] [PMID: 12811546]
[53]
Patterson S, Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol 2014; 30(6): 289-98.
[http://dx.doi.org/10.1016/j.pt.2014.04.003 ] [PMID: 24776300]
[54]
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32(3): 474-500.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00107.x ] [PMID: 18355273]
[55]
Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58.
[http://dx.doi.org/10.2147/IDR.S173867 ] [PMID: 30349322]
[56]
De Rycker M, Baragaña B, Duce SL, Gilbert IH. Challenges and recent progress in drug discovery for tropical diseases. Nature 2018; 559(7715): 498-506.
[http://dx.doi.org/10.1038/s41586-018-0327-4 ] [PMID: 30046073]
[57]
Wilkinson SR, Bot C, Kelly JM, Hall BS. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr Top Med Chem 2011; 11(16): 2072-84.
[http://dx.doi.org/10.2174/156802611796575894 ] [PMID: 21619510]
[58]
Rossignol JF, Kabil SM, El-Gohary Y, Elfert A, Keeffe EB. Clinical trial: randomized, double-blind, placebo-controlled study of nitazoxanide monotherapy for the treatment of patients with chronic hepatitis C genotype 4. Aliment Pharmacol Ther 2008; 28(5): 574-80.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03781.x ] [PMID: 18616643]
[59]
Nepali K, Lee H-Y, Liou J-P. Nitro-group-containing drugs. J Med Chem 2019; 62(6): 2851-93.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147 ] [PMID: 30295477]
[60]
Clayden J, Greeves N, Warren S, Wothers P. Organic chemistry. New York: Oxford University Press Inc 2001.
[61]
arys A, Pokharkar O, Queiroz A. Chloramphenicol risk assesment . 2016.
[62]
Shaw WV. Bacterial resistance to chloramphenicol. Br Med Bull 1984; 40(1): 36-41.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a071945 ] [PMID: 6398727]
[63]
Fernández M, Conde S, de la Torre J, Molina-Santiago C, Ramos J-L, Duque E. Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob Agents Chemother 2012; 56(2): 1001-9.
[http://dx.doi.org/10.1128/AAC.05398-11 ] [PMID: 22143519]
[64]
Jones MJ. Organic Chemistry. W.W. Norton $ Company, Inc . 1997.
[65]
Fan X, Xu J, Files M, et al. Dual activity of niclosamide to suppress replication of integrated HIV-1 and Mycobacterium tuberculosis (Beijing). Tuberculosis (Edinb) 2019; 116S: S28-33.
[http://dx.doi.org/10.1016/j.tube.2019.04.008 ] [PMID: 31080089]
[66]
Dai JR, Li YZ, Wang W, Xing YT, Qu GL, Liang YS. Resistance to niclosamide in Oncomelania hupensis, the intermediate host of Schistosoma japonicum: should we be worried? Parasitology 2015; 142(2): 332-40.
[http://dx.doi.org/10.1017/S0031182014000870 ] [PMID: 25003984]
[67]
Olender D, Żwawiak J, Zaprutko L. Multidirectional efficacy of biologically active nitro compounds included in medicines. Pharmaceuticals 2018; 11: 54.
[http://dx.doi.org/10.3390/ph11020054.]]
[68]
Valentim CL, Cioli D, Chevalier FD, et al. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 2013; 342(6164): 1385-9.
[http://dx.doi.org/10.1126/science.1243106 ] [PMID: 24263136]
[69]
Kresken M, Körber-Irrgang B. In vitro activity of nitroxoline against Escherichia coli urine isolates from outpatient departments in Germany. Antimicrob Agents Chemother 2014; 58(11): 7019-20.
[http://dx.doi.org/10.1128/AAC.03946-14 ] [PMID: 25182654]
[70]
Ryan A, Kaplan E, Laurieri N, Lowe E, Sim E. Activation of nitrofurazone by azoreductases: multiple activities in one enzyme. Sci Rep 2011; 1: 63.
[http://dx.doi.org/10.1038/srep00063 ] [PMID: 22355582]
[71]
Eady EA, Coates P, Ross JI, Ratyal AH, Cove JH. Antibiotic resistance patterns of aerobic coryneforms and furazolidone-resistant Gram-positive cocci from the skin surface of the human axilla and fourth toe cleft. J Antimicrob Chemother 2000; 46(2): 205-13.
[http://dx.doi.org/10.1093/jac/46.2.205 ] [PMID: 10933642]
[72]
Smith HW, Tucker JF, Lovell M. Furazolidone resistance in Salmonella gallinarum: the relationship between in vitro and in vivo determinations of resistance. J Hyg (Lond) 1981; 87(1): 71-81.
[http://dx.doi.org/10.1017/S0022172400069254 ] [PMID: 7252139]
[73]
Zamani M, Rahbar A, Shokri-Shirvani J. Resistance of Helicobacter pylori to furazolidone and levofloxacin: A viewpoint. World J Gastroenterol 2017; 23(37): 6920-2.
[http://dx.doi.org/10.3748/wjg.v23.i37.6920 ] [PMID: 29085236]
[74]
Martínez-Puchol S, Gomes C, Pons MJ, et al. Development and analysis of furazolidone-resistant Escherichia coli mutants. APMIS 2015; 123(8): 676-81.
[http://dx.doi.org/10.1111/apm.12401 ] [PMID: 26011027]
[75]
Mendling W, Poli A, Magnani P. Clinical effects of nifuratel in vulvovaginal infections. A meta-analysis of metronidazole-controlled trials. Arzneimittelforschung 2002; 52(10): 725-30.
[PMID: 12442634]
[76]
Fransen F, Melchers MJB, Meletiadis J, Mouton JW. Pharmacodynamics and differential activity of nitrofurantoin against ESBL-positive pathogens involved in urinary tract infections. J Antimicrob Chemother 2016; 71(10): 2883-9.
[http://dx.doi.org/10.1093/jac/dkw212 ] [PMID: 27278898]
[77]
Leonard F, Andremont A, Tancrede C. In vivo activity of nifurzide and nifuroxazide in intestinal bacteria in man and gnotobiotic mice. J Appl Bacteriol 1985; 58(6): 545-53.
[http://dx.doi.org/10.1111/j.1365-2672.1985.tb01710.x ] [PMID: 4030525]
[78]
Löfmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 2010; 50(Suppl. 1): S16-23.
[http://dx.doi.org/10.1086/647939 ] [PMID: 20067388]
[79]
Campos MCO, Leon LL, Taylor MC, Kelly JM. Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol 2014; 193(1): 17-9.
[http://dx.doi.org/10.1016/j.molbiopara.2014.01.002 ] [PMID: 24462750]
[80]
Thompson AM, Bonnet M, Lee HH, et al. Antitubercular nitroimidazoles revisited: synthesis and activity of the authentic 3-nitro isomer of pretomanid. ACS Med Chem Lett 2017; 8(12): 1275-80.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00356 ] [PMID: 29259747]
[81]
Lewis JM, Sloan DJ. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 2015; 11: 779-91.
[PMID: 25999726]
[82]
Xavier AS, Lakshmanan M. Delamanid: A new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother 2014; 5(3): 222-4.
[http://dx.doi.org/10.4103/0976-500X.136121 ] [PMID: 25210407]
[83]
Kamal A, Hussaini SM, Sucharitha ML, Poornachandra Y, Sultana F, Ganesh Kumar C. Synthesis and antimicrobial potential of nitrofuran-triazole congeners. Org Biomol Chem 2015; 13(36): 9388-97.
[http://dx.doi.org/10.1039/C5OB01353D ] [PMID: 26238045]
[84]
Rakesh, Bruhn DF, Scherman MS, et al . Pentacyclic nitrofurans with in vivo efficacy and activity against nonreplicating mycobacterium tuberculosis. PLoS One 2014; 9: 1-11.
[85]
Poorrajab F, Ardestani SK, Emami S, Behrouzi-Fardmoghadam M, Shafiee A, Foroumadi A. Nitroimidazolyl-1,3,4-thiadiazole-based anti-leishmanial agents: synthesis and in vitro biological evaluation. Eur J Med Chem 2009; 44(4): 1758-62.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.039 ] [PMID: 18485538]
[86]
Foroumadi A, Pournourmohammadi S, Soltani F, et al. Synthesis and in vitro leishmanicidal activity of 2-(5-nitro-2-furyl) and 2-(5-nitro-2-thienyl)-5-substituted-1,3,4-thiadiazoles. Bioorg Med Chem Lett 2005; 15(8): 1983-5.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.073 ] [PMID: 15808452]
[87]
Adibi H, Foroumadi A, Heidari O, Aliabadi A, Ardestani SK. Synthesis and in vitro anti-leishmanial evaluation of 1-(5-halo-2-thienyl)-2-[5-(5-nitroheteroaryl)]-1,3,4-thiadiazol-2-ylthio)ethanone derivatives. J Rep Pharm Sci 2012; 1: 81-6.
[88]
Mukherjee A, Dutta S, Chashoo G, Bhagat M, Saxena AK, Sanyal U. Evaluation of fluoren-NU as a novel antitumor agent. Oncol Res 2009; 17(9): 387-96.
[http://dx.doi.org/10.3727/096504009788912516 ] [PMID: 19718945]
[89]
Reddy YT, Sekhar KR, Sasi N, Reddy PN, Freeman ML, Crooks PA. Novel substituted (Z)-5-((N-benzyl-1H-indol-3-yl)methylene) imidazolidine-2,4-diones and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones as potent radio-sensitizing agents. Bioorg Med Chem Lett 2010; 20(2): 600-2.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.082 ] [PMID: 20005706]
[90]
Yeo S-J, Jin C, Kim S, Park H. In vitro and in vivo effects of nitrofurantoin on experimental toxoplasmosis. Korean J Parasitol 2016; 54(2): 155-61.
[http://dx.doi.org/10.3347/kjp.2016.54.2.155 ] [PMID: 27180573]
[91]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. Eur J Med Chem 2016; 117: 179-86.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.010 ] [PMID: 27092415]
[92]
ElSawy AN, Alawadi DY, Saadeh HA, et al. Metronidazole derivatives as a new class of Antiparasitic agents, molecular properties prediction, synthesis and biological testing. Med Chem Res 2015; 24: 1196-209.
[93]
Makarov VA, Sedov AL, Nemeryuk MP, Solov’eva NP, Anisimova OS, Safonova TS. Investigation of bisheteryl derivatives of piperazine and its analogs. 2. Synthesis and properties of bis(dialkyldithiocarbamoyl-5-nitro-4-pyrimidyl)piperazines. Chem Heterocycl Compd 1995; 31: 180-2.
[http://dx.doi.org/10.1007/BF01169676]
[94]
Schmidtke M, Riabova O, Dahse HM, Stelzner A, Makarov V. Synthesis, cytotoxicity and antiviral activity of N,N′-bis-5-nitropyrimidyl derivatives of dispirotripiperazine. Antiviral Res 2002; 55(1): 117-27.
[http://dx.doi.org/10.1016/S0166-3542(02)00014-1 ] [PMID: 12076756]
[95]
Stachulski AV, Pidathala C, Row EC, et al. Thiazolides as novel antiviral agents. 1. Inhibition of hepatitis B virus replication. J Med Chem 2011; 54(12): 4119-32.
[http://dx.doi.org/10.1021/jm200153p ] [PMID: 21553812]
[96]
Stachulski AV, Santoro MG, Piacentini S, et al. Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus. Future Med Chem 2018; 10(8): 851-62.
[http://dx.doi.org/10.4155/fmc-2017-0217 ] [PMID: 29629834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy