Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide

Author(s): Marcel L. Almeida, Maria C.V.A. Oliveira, Ivan R. Pitta and Marina G.R. Pitta *

Volume 17, Issue 4, 2020

Page: [252 - 270] Pages: 19

DOI: 10.2174/1570179417666200325124712

Price: $65

Abstract

Phthalimide derivatives have been presenting several promising biological activities in the literature, such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological activities of these derivatives found in the literature. Therefore, this review describes the chemical and therapeutic aspects of phthalimide derivatives.

Keywords: Phthalimide, thalidomide, medicinal chemistry, anti-tumor, anti-inflammatory, antimicrobial.

Graphical Abstract
[1]
Lamie, P.F.; Phillopes, J.N.; El-Gendy, A.O.; Rarova, L.; Gruz, J. Design, synthesis and evaluation of novel phthalimide derivatives as in vitro anti-microbial, anti-oxidant and anti-inflammatory agents. Molecules, 2015, 20(9), 16620-16642.
[http://dx.doi.org/10.3390/molecules200916620] [PMID: 26389864]
[2]
Ahmed, H.E.A.; Abdel-Salam, H.A.; Shaker, M.A. Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives. Bioorg. Chem., 2016, 66, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.003] [PMID: 26986635]
[3]
Sharma, U.; Kumar, P.; Kumar, N.; Singh, B. Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev. Med. Chem., 2010, 10(8), 678-704.
[http://dx.doi.org/10.2174/138955710791572442] [PMID: 20402635]
[4]
Elumalai, K.; Ali, M.A.; Elumalai, M.; Eluri, K.; Srinivasan, S.; Sivannan, S.; Mohanthi, S.K. Synthesis, characterization and biological evaluation of acetazolamide, cycloserine and isoniazid condensed some novel phthalimide derivatives. Int. J. Chem. Anal. Sci., 2013, 4, 57-61.
[http://dx.doi.org/10.1016/j.ijcas.2013.04.004]
[5]
Coelho, L.C.D.; Cardoso, M.V.O.; Moreira, D.R.M.; Gomes, P.A.T.M.; Cavalcanti, S.M.T.; Oliveira, A.R.; Filho, G.B.O.; Siqueira, L.R.P.; Barbosa, M.O.; Borba, E.F.O.; Silva, T.G.; Kaskow, B.; Karimi, M.; Abrahamd, L.J.; Leite, A.C.L. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5, 758-765.
[http://dx.doi.org/10.1039/C4MD00070F]
[6]
Chidan Kumar, C.S.; Loh, W-S.; Chandraju, S.; Win, Y-F.; Tan, W.K.; Quah, C.K.; Fun, H-K. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters. PLoS One, 2015, 10(3)e0119440
[http://dx.doi.org/10.1371/journal.pone.0119440] [PMID: 25742494]
[7]
Cai, Y-H. Solvent-free synthesis of phthalimide under microwave irradiation and modification of talc with synthesized phthalimide. Asian J. Chem., 2012, 24, 481-484.
[8]
Fhid, O.; Zeglam, T.H.; Saad, S.E.A.; Elmoug, T.; Eswayah, A.; Zitouni, M.; Sdera, W.; Edeep, A.A.; Ebzabez, A. Synthesis, characterization and pharmacological activity of some new phthalimide derivatives. Der Pharma Chem., 2014, 6, 234-238.
[9]
Fhid, O.; Doma, A.M.; Zeglam, T.H.; Baki, J.; Zitouni, M.; Sdera, W. Synthesis, characterization and antimicrobial activity of some new phthalimide derivatives. Der Pharma Chem., 2015, 7, 240-242.
[10]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.H.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A-M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.039] [PMID: 25549551]
[11]
Noguchi, T.; Shimazawa, R.; Nagasawa, K.; Hashimoto, Y. Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(7), 1043-1046.
[http://dx.doi.org/10.1016/S0960-894X(02)00084-7] [PMID: 11909713]
[12]
Sano, H.; Noguchi, T.; Tanatani, A.; Miyachi, H.; Hashimoto, Y. N-phenylphthalimide-type cyclooxygenase (COX) inhibitors derived from thalidomide: substituent effects on subtype selectivity. Chem. Pharm. Bull. (Tokyo), 2004, 52(8), 1021-1022.
[http://dx.doi.org/10.1248/cpb.52.1021] [PMID: 15305008]
[13]
Labib, M.B.; Sharkawi, S.M.Z.; El-Daly, M. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: Anti-inflammatory, analgesic activities and docking study. Bioorg. Chem., 2018, 80, 70-80.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.018] [PMID: 30005203]
[14]
de-Blanco, E.J.; Pandit, B.; Hu, Z.; Shi, J.; Lewis, A.; Li, P-K. Inhibitors of NF-kappaB derived from thalidomide. Bioorg. Med. Chem. Lett., 2007, 17(21), 6031-6035.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.088] [PMID: 17845850]
[15]
Lima, L.M.; Castro, P.; Machado, A.L.; Fraga, C.A.M.; Lugnier, C.; de Moraes, V.L.G.; Barreiro, E.J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem., 2002, 10(9), 3067-3073.
[http://dx.doi.org/10.1016/S0968-0896(02)00152-9] [PMID: 12110331]
[16]
Muller, G.W.; Chen, R.; Huang, S-Y.; Corral, L.G.; Wong, L.M.; Patterson, R.T.; Chen, Y.; Kaplan, G.; Stirling, D.I. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg. Med. Chem. Lett., 1999, 9(11), 1625-1630.
[http://dx.doi.org/10.1016/S0960-894X(99)00250-4] [PMID: 10386948]
[17]
Machado, A.L.; Lima, L.M.; Araújo, J.X., Jr; Fraga, C.A.M.; Koatz, V.L.G.; Barreiro, E.J. Design, synthesis and antiinflammatory activity of novel phthalimide derivatives, structurally related to thalidomide. Bioorg. Med. Chem. Lett., 2005, 15(4), 1169-1172.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.012] [PMID: 15686935]
[18]
Assis, S.P.O.; da Silva, M.T.; de Oliveira, R.N.; Lima, V.L.M. Synthesis and anti-inflammatory activity of new alkyl-substituted phthalimide 1H-1,2,3-triazole derivatives. ScientificWorldJournal, 2012, 2012925925
[http://dx.doi.org/10.1100/2012/925925] [PMID: 23304092]
[19]
Pophale, R.A.; Deodhar, M.N. Synthesis and evaluation of novel phthalimide derivatives as analgesic and antiinflammatory agents. Der Pharma Chem., 2010, 2(1), 185-193.
[20]
Bach, D-H.; Liu, J-Y.; Kim, W.K.; Hong, J-Y.; Park, S.H.; Kim, D.; Qin, S-N.; Luu, T-T-T.; Park, H.J.; Xu, Y-N.; Lee, S.K. Synthesis and biological activity of new phthalimides as potential anti-inflammatory agents. Bioorg. Med. Chem., 2017, 25(13), 3396-3405.
[http://dx.doi.org/10.1016/j.bmc.2017.04.027] [PMID: 28478865]
[21]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.S.; Yu, M.W.Y.; Cheung, F.; Tang, J.C.; Chan, A.S.C. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005] [PMID: 18295491]
[22]
Zahran, M.A.H.; Abdin, Y.G.; Osman, A.M.A.; Gamal-Eldeen, A.M.; Talaat, R.M.; Pedersen, E.B. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents. Arch. Pharm. (Weinheim), 2014, 347(9), 642-649.
[http://dx.doi.org/10.1002/ardp.201400073] [PMID: 24943104]
[23]
Ferreira, P.M.P.; Da Costa, P.M.; Costa, Ade.M.; Lima, D.J.B.; Drumond, R.R.; Silva, Jdo.N.; Moreira, D.R.M.; De Oliveira Filho, G.B.; Ferreira, J.M.; De Queiroz, M.G.; Leite, A.C.L.; Pessoa, C. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells. An. Acad. Bras. Cienc., 2015, 87(1), 313-330.
[http://dx.doi.org/10.1590/0001-3765201520130345] [PMID: 25651156]
[24]
Saravanan, K.; Elancheran, R.; Divakar, S.; Anand, S.A.; Ramanathan, M.; Kotoky, J.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(4-phenylthiazol-2-yl) isoindoline-1,3-dione derivatives as anti-prostate cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1199-1204.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.065] [PMID: 28162857]
[25]
Zhao, P-L.; Ma, W-F.; Duan, A-N.; Zou, M.; Yan, Y-C.; You, W-W.; Wu, S-G. One-pot synthesis of novel isoindoline-1,3-dione derivatives bearing 1,2,4-triazole moiety and their preliminary biological evaluation. Eur. J. Med. Chem., 2012, 54, 813-822.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.041] [PMID: 22809558]
[26]
Shiheido, H.; Terada, F.; Tabata, N.; Hayakawa, I.; Matsumura, N.; Takashima, H.; Ogawa, Y.; Du, W.; Yamada, T.; Shoji, M.; Sugai, T.; Doi, N.; Iijima, S.; Hattori, Y.; Yanagawa, H. A phthalimide derivative that inhibits centrosomal clustering is effective on multiple myeloma. PLoS One, 2012, 7(6)e38878
[http://dx.doi.org/10.1371/journal.pone.0038878] [PMID: 22761710]
[27]
Matsushita, M.; Ozaki, Y.; Hasegawa, Y.; Terada, F.; Tabata, N.; Shiheido, H.; Yanagawa, H.; Oikawa, T.; Matsuo, K.; Du, W.; Yamada, T.; Hozumi, M.; Ichikawa, D.; Hattori, Y. A novel phthalimide derivative, TC11, has preclinical effects on high-risk myeloma cells and osteoclasts. PLoS One, 2015, 10(1)e0116135
[http://dx.doi.org/10.1371/journal.pone.0116135] [PMID: 25617756]
[28]
Nagarajan, S.; Majumder, S.; Sharma, U.; Rajendran, S.; Kumar, N.; Chatterjee, S.; Singh, B. Synthesis and anti-angiogenic activity of benzothiazole, benzimidazole containing phthalimide derivatives. Bioorg. Med. Chem. Lett., 2013, 23(1), 287-290.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.106] [PMID: 23182087]
[29]
da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.T.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.L.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M.P. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183.
[http://dx.doi.org/10.1016/j.cbi.2015.06.037] [PMID: 26134001]
[30]
El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; Seno, M. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol., 2014, 21(2), 283-292.
[http://dx.doi.org/10.1016/j.intimp.2014.05.007] [PMID: 24859059]
[31]
Talaat, R.; El-Sayeda, W.; Agwa, H.; Gamal-Eldeen, A.; Moawia, S.; Zahran, M. Novel thalidomide analogs: Anti-angiogenic and apoptotic effects on Hep-G2 and MCF-7 cancer cell lines. Biomed. Aging Pathol., 2014, 4, 179-189.
[http://dx.doi.org/10.1016/j.biomag.2014.03.002]
[32]
Xiao, B.; Wang, S.; She, Z.; Cao, Q.; Zhao, N.; Tian, X.; Su, Y. Structure-based design, synthesis, PPAR-γ activation, and molecular docking of N-substituted phthalimides. Med. Chem. Res., 2017, 26, 1628-1634.
[http://dx.doi.org/10.1007/s00044-017-1867-0]
[33]
Sena, V.L.M.; Srivastava, R.M.; Silva, R.O.; Lima, V.L.M. Synthesis and hypolipidemic activity of N-substituted phthalimides. Part V. Farmaco, 2003, 58(12), 1283-1288.
[http://dx.doi.org/10.1016/S0014-827X(03)00185-X] [PMID: 14630240]
[34]
Chapman, J.M., Jr; Cocolas, G.H.; Hall, I.H. Hypolipidemic activity of phthalimide derivatives. 1. N-Substituted phthalimide derivatives. J. Med. Chem., 1979, 22(11), 1399-1402.
[http://dx.doi.org/10.1021/jm00197a022] [PMID: 533887]
[35]
Neto, M.D.C.; Filho, W.C.P.; Neto, B.B.; Ramos, M.N. The hypolipidemic Activity of N-Phenylphtalimide Derivatives: a QSAR Study. J. Braz. Chem. Soc., 1993, 4, 139-142.
[http://dx.doi.org/10.5935/0103-5053.19930030]
[36]
Srivastava, R.M.; Oliveira, F.J.S.; da Silva, L.P.; de Freitas Filho, J.R.; Oliveira, S.P.; Lima, V.L.M. Synthesis and hypolipidemic activity of N-phthalimidomethyl tetra-O-acyl-α-D-mannopyranosides. Carbohydr. Res., 2001, 332(3), 335-340.
[http://dx.doi.org/10.1016/S0008-6215(01)00088-X] [PMID: 11376613]
[37]
Xiao, B.; Su, M.; Kim, E.L.; Hong, J.; Chung, H.Y.; Kim, H.S.; Yin, J.; Jung, J.H. Synthesis of PPAR-γ activators inspired by the marine natural product, paecilocin A. Mar. Drugs, 2014, 12(2), 926-939.
[http://dx.doi.org/10.3390/md12020926] [PMID: 24531188]
[38]
Eom, S.H.; Liu, S.; Su, M.; Noh, T.H.; Hong, J.; Kim, N.D.; Chung, H.Y.; Yang, M.H.; Jung, J.H. Synthesis of phthalimide derivatives as potential PPAR-γ ligands. Mar. Drugs, 2016, 14(6), 1-10.
[http://dx.doi.org/10.3390/md14060112] [PMID: 27338418]
[39]
Wiecek, M.; Kieć-Kononowicz, K. Synthesis and anticonvulsant evaluation of some N-substituted phthalimides. Acta Pol. Pharm., 2009, 66(3), 249-257.
[PMID: 19645325]
[40]
Akgul, O.; Sultan Kilic, F.; Erol, K.; Pabuccuoglu, V. Synthesis and anticonvulsant activity of some N-phenyl-2-phtalimidoethanesulfonamide derivatives. Arch. Pharm. (Weinheim), 2007, 340(12), 656-660.
[http://dx.doi.org/10.1002/ardp.200700166] [PMID: 18038376]
[41]
Bailleux, V.; Vallee, L.; Nuyts, J-P.; Vamecq, J. Synthesis and anticonvulsant activity of some N-phenylphthalimides. Chem. Pharm. Bull. (Tokyo), 1994, 42(9), 1817-1821.
[http://dx.doi.org/10.1248/cpb.42.1817] [PMID: 7954932]
[42]
Vamecq, J.; Bac, P.; Herrenknecht, C.; Maurois, P.; Delcourt, P.; Stables, J.P. Synthesis and anticonvulsant and neurotoxic properties of substituted N-phenyl derivatives of the phthalimide pharmacophore. J. Med. Chem., 2000, 43(7), 1311-1319.
[http://dx.doi.org/10.1021/jm990068t] [PMID: 10753468]
[43]
Soyer, Z.; Kilic, F.S.; Erol, K.; Pabuccuoglu, V. The synthesis and anticonvulsant activity of some ω-phthalimido-N-phenylacetamide and propionamide derivatives. Arch. Pharm. (Weinheim), 2004, 337(2), 105-111.
[http://dx.doi.org/10.1002/ardp.200300823] [PMID: 14981667]
[44]
Kamiński, K.; Obniska, J.; Wiklik, B.; Atamanyuk, D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur. J. Med. Chem., 2011, 46(9), 4634-4641.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.043] [PMID: 21840629]
[45]
Iman, M.; Saadabadi, A.; Davood, A.; Shafaroodi, H.; Nikbakht, A.; Ansari, A.; Abedini, M. Docking, Synthesis and Anticonvulsant Activity of N-substituted Isoindoline-1,3-dione. Iran. J. Pharm. Res., 2017, 16(2), 586-595.
[PMID: 29721024]
[46]
Iman, M.; Fakhari, S.; Jahanpanah, M.; Naderi, N.; Davood, A. Design and Synthesis of 4-flurophthalimides as potential anticonvulsant agents. Iran. J. Pharm. Res., 2018, 17(3), 896-905.
[PMID: 30127813]
[47]
Lamie, P.F. Synthesis and antimicrobial activity of some novel isoindoline-1,3-dione derivatives. J. Advan. Chem., 2014, 8, 1660-1666.
[http://dx.doi.org/10.24297/jac.v8i2.5570]
[48]
Amin, K.M.; El-masry, A.H.; Mohamed, N.A.; Awad, G.E.A.; Habib, B.S. Synthesis, characterization and anti-microbial activity of some novel isoindole-1,3-dione derivatives. Pharma Chem., 2013, 5, 97-108.
[49]
Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q.F. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem., 2009, 17(11), 3795-3799.
[http://dx.doi.org/10.1016/j.bmc.2009.04.042] [PMID: 19427791]
[50]
Akgün, H.; Karamelekoğlu, I.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Oktem, S.; Kocagöz, T. Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorg. Med. Chem., 2012, 20(13), 4149-4154.
[http://dx.doi.org/10.1016/j.bmc.2012.04.060] [PMID: 22633120]
[51]
Sinha, G.K.; Priya, A.; Priya, S.; Narayan, S. Synthesis and Biological Activity of Some Schiff Bases from Phthalimides. Univers. J. Chem, 2017, 5(2), 36-42.
[52]
Pan, L.; Li, X.; Gong, C.; Jin, H.; Qin, B. Synthesis of N-substituted phthalimides and their antifungal activity against Alternaria solani and Botrytis cinerea. Microb. Pathog., 2016, 95, 186-192.
[http://dx.doi.org/10.1016/j.micpath.2016.04.012] [PMID: 27079471]
[53]
Nayab, P.S.; Arif, R.; Arshad, M. Rahisuddin. Synthesis, characterization, antibacterial, dna binding and molecular docking studies of novel n-substituted phthalimides. Heterocycl. Lett., 2015, 5(2), 223-239.
[54]
Nayab, P.S.; Pulaganti, M.; Chitta, S.K.; Oves, M. Rahisuddin. Synthesis, spectroscopic studies of novel N-substituted phthalimides and evaluation of their antibacterial, antioxidant, DNA binding and molecular docking studies. Bangladesh J. Pharmacol., 2015, 10, 703-713.
[http://dx.doi.org/10.3329/bjp.v10i3.23637]
[55]
Nayab, P.S.; Irfan, M.; Abid, M.; Pulaganti, M.; Nagaraju, C.; Chitta, S.K.; Rahisuddin, Experimental and molecular docking investigation on DNA interaction of N-substituted phthalimides: antibacterial, antioxidant and hemolytic activities. Luminescence, 2017, 32(3), 298-308.
[http://dx.doi.org/10.1002/bio.3178] [PMID: 27385637]
[56]
Singh, A.K.; Rajendran, V.; Pant, A.; Ghosh, P.C.; Singh, N.; Latha, N.; Garg, S.; Pandey, K.C.; Singh, B.K.; Rathi, B. Design, synthesis and biological evaluation of functionalized phthalimides: A new class of antimalarials and inhibitors of falcipain-2, a major hemoglobinase of malaria parasite. Bioorg. Med. Chem., 2015, 23(8), 1817-1827.
[http://dx.doi.org/10.1016/j.bmc.2015.02.029] [PMID: 25766631]
[57]
Rani, A.; Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Microwave-promoted facile access to 4-aminoquinoline-phthalimides: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2018, 143, 150-156.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.033] [PMID: 29174811]
[58]
Si, W.; Zhang, T.; Zhang, L.; Mei, X.; Dong, M.; Zhang, K.; Ning, J. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(9), 2380-2382.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.052] [PMID: 27017111]
[59]
Guzior, N.; Bajda, M.; Skrok, M.; Kurpiewska, K.; Lewiński, K.; Brus, B.; Pišlar, A.; Kos, J.; Gobec, S.; Malawska, B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem., 2015, 92, 738-749.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.027] [PMID: 25621991]
[60]
Guzior, N.; Bajda, M.; Rakoczy, J.; Brus, B.; Gobec, S.; Malawska, B. Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer’s agents. Bioorg. Med. Chem., 2015, 23(7), 1629-1637.
[http://dx.doi.org/10.1016/j.bmc.2015.01.045] [PMID: 25707322]
[61]
Sang, Z.; Wang, K.; Wang, H.; Yu, L.; Wang, H.; Ma, Q.; Ye, M.; Han, X.; Liu, W. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2017, 27(22), 5053-5059.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.055] [PMID: 29033232]
[62]
Łączkowski, K.Z.; Baranowska-Łączkowska, A. Recent studies on the thalidomide and its derivatives. Future Med. Chem., 2018, 10(18), 2133-2136.
[http://dx.doi.org/10.4155/fmc-2018-0217] [PMID: 30088422]
[63]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7, 13-23.
[http://dx.doi.org/10.2174/157488512800389164]
[64]
Yang, C.S.; Kim, C.; Antaya, R.J. Review of thalidomide use in the pediatric population. J. Am. Acad. Dermatol., 2015, 72(4), 703-711.
[http://dx.doi.org/10.1016/j.jaad.2015.01.002] [PMID: 25617013]
[65]
Mercurio, A.; Adriani, G.; Catalano, A.; Carocci, A.; Rao, L.; Lentini, G.; Cavalluzzi, M.M.; Franchini, C.; Vacca, A.; Corbo, F. A Mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr. Med. Chem., 2017, 24(25), 2736-2744.
[http://dx.doi.org/10.2174/0929867324666170601074646] [PMID: 28571559]
[66]
Cardoso, M.V.O.; Moreira, D.R.M.; Oliveira Filho, G.B.; Cavalcanti, S.M.T.; Coelho, L.C.D.; Espíndola, J.W.P.; Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.P.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E.T.; Soares, M.B.P.; Leite, A.C.L. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.041] [PMID: 25942060]
[67]
Sano, H.; Noguchi, T.; Tanatani, A.; Hashimoto, Y.; Miyachi, H. Design and synthesis of subtype-selective cyclooxygenase (COX) inhibitors derived from thalidomide. Bioorg. Med. Chem., 2005, 13(9), 3079-3091.
[http://dx.doi.org/10.1016/j.bmc.2005.03.002] [PMID: 15809144]
[68]
Stewart, S.G.; Braun, C.J.; Ng, S-L.; Polomska, M.E.; Karimi, M.; Abraham, L.J. New thalidomide analogues derived through Sonogashira or Suzuki reactions and their TNF expression inhibition profiles. Bioorg. Med. Chem., 2010, 18(2), 650-662.
[http://dx.doi.org/10.1016/j.bmc.2009.12.001] [PMID: 20034801]
[69]
Hamak, K.F. Synthetic of Phthalimides via the reaction of phthalic anhydride with amines and evaluating of its biological and anti corrosion activity. Int. J. Chemtech Res., 2014, 6(1), 324-333.
[70]
Ghabbour, H.A.; Kadi, A.A.; ElTahir, K.E.H.; Angawi, R.F.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents. Med. Chem. Res., 2015, 24, 3194-3211.
[http://dx.doi.org/10.1007/s00044-015-1371-3]
[71]
Al-Qaisi, J.A.; Alhussainy, T.M.; Qinna, N.A.; Matalka, K.Z.; Al-Kaissi, E.N.; Muhi-Eldeen, Z.A. Synthesis and pharmacological evaluation of aminoacetylenic isoindoline-1,3-dione derivatives as anti-inflammatory agents. Arab. J. Chem., 2014, 7, 1024-1030.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.030]
[72]
Xu, H.; Qiao, X.; Yang, S.; Shen, Z. Cu-catalyzed direct amidation of aromatic C-H bonds: an access to arylamines. J. Org. Chem., 2014, 79(10), 4414-4422.
[http://dx.doi.org/10.1021/jo5003592] [PMID: 24735227]
[73]
Wan, J-P.; Jing, Y. Recent advances in copper-catalyzed C-H bond amidation. Beilstein J. Org. Chem., 2015, 11, 2209-2222.
[http://dx.doi.org/10.3762/bjoc.11.240] [PMID: 26664644]
[74]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1, 1-28.
[http://dx.doi.org/10.1055/s-1981-29317]
[75]
Carocci, A.; Catalano, A.; Corbo, F.; Duranti, A.; Amoroso, R.; Franchini, C.; Lentinia, G.; Tortorella, V. Stereospecific synthesis of mexiletine and related compounds: Mitsunobu versus Williamson reaction. Tetrahedron Asymmetry, 2000, 11, 3619-3634.
[http://dx.doi.org/10.1016/S0957-4166(00)00332-3]
[76]
Pascale, R.; Carocci, A.; Catalano, A.; Lentini, G.; Spagnoletta, A.; Cavalluzzi, M.M.; De Santis, F.; De Palma, A.; Scalera, V.; Franchini, C. New N-(phenoxydecyl)phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. Bioorg. Med. Chem., 2010, 18(16), 5903-5914.
[http://dx.doi.org/10.1016/j.bmc.2010.06.088] [PMID: 20667739]
[77]
Catalano, A.; Desaphy, J-F.; Lentini, G.; Carocci, A.; Di Mola, A.; Bruno, C.; Carbonara, R.; De Palma, A.; Budriesi, R.; Ghelardini, C.; Perrone, M.G.; Colabufo, N.A.; Conte Camerino, D.; Franchini, C. Synthesis and toxicopharmacological evaluation of m-hydroxymexiletine, the first metabolite of mexiletine more potent than the parent compound on voltage-gated sodium channels. J. Med. Chem., 2012, 55(3), 1418-1422.
[http://dx.doi.org/10.1021/jm201197z] [PMID: 22191686]
[78]
Catalano, A.; Budriesi, R.; Bruno, C.; Di Mola, A.; Defrenza, I.; Cavalluzzi, M.M.; Micucci, M.; Carocci, A.; Franchini, C.; Lentini, G. Searching for new antiarrhythmic agents: Evaluation of meta-hydroxymexiletine enantiomers. Eur. J. Med. Chem., 2013, 65, 511-516.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.008] [PMID: 23777871]
[79]
Cao, H.; Alper, H. Palladium-catalyzed double carbonylation reactions of o-dihaloarenes with amines in phosphonium salt ionic liquids. Org. Lett., 2010, 12(18), 4126-4129.
[http://dx.doi.org/10.1021/ol101714p] [PMID: 20735076]
[80]
Zahran, M.; Agwa, H.; Osman, A.; Hammad, S.; El-Aarag, B.; Ismail, N.; Salem, T.; Gamal-Eldeen, A. Synthesis and biological evaluation of phthalimide dithiocarbamate and dithioate derivatives as anti-proliferative and anti-angiogenic agents-I. Eur. J. Chem., 2017, 8(4), 391-399.
[http://dx.doi.org/10.5155/eurjchem.8.4.391-399.1652]
[81]
Wallach, D. The cybernetics of TNF: Old views and newer ones. Semin. Cell Dev. Biol., 2016, 50, 105-114.
[http://dx.doi.org/10.1016/j.semcdb.2015.10.014] [PMID: 26474540]
[82]
Zañudo, J.G.T.; Steinway, S.N.; Albert, R. Discrete dynamic network modeling of oncogenic signaling: Mechanistic insights for personalized treatment of cancer. Curr. Opin. Syst. Biol., 2018, 9, 1-10.
[http://dx.doi.org/10.1016/j.coisb.2018.02.002]
[83]
Bhatia, R.K. Isoindole derivatives: Propitious ANTICANCER STRUCTURAL MOTIFS. Curr. Top. Med. Chem., 2017, 17(2), 189-207.
[http://dx.doi.org/10.2174/1568026616666160530154100] [PMID: 27237330]
[84]
Sugii, S.; Evans, R.M. Epigenetic codes of PPARγ in metabolic disease. FEBS Lett., 2011, 585(13), 2121-2128.
[http://dx.doi.org/10.1016/j.febslet.2011.05.007] [PMID: 21605560]
[85]
Abdel-Aziz, A.A-M.; El-Azab, A.S.; Attia, S.M.; Al-Obaid, A.M.; Al-Omar, M.A.; El-Subbagh, H.I. Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents. Eur. J. Med. Chem., 2011, 46(9), 4324-4329.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.002] [PMID: 21783284]
[86]
Rateb, H.S.; Ahmed, H.E.A.; Ahmed, S.; Ihmaid, S.; Afifi, T.H. Discovery of novel phthalimide analogs: Synthesis, antimicrobial and antitubercular screening with molecular docking studies. EXCLI J., 2016, 15, 781-796.
[PMID: 28337109]
[87]
González, M.A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg. Med. Chem. Lett., 2014, 24(22), 5234-5237.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.061] [PMID: 25316317]
[88]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[89]
Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10.
[http://dx.doi.org/10.1016/j.jfma.2015.04.001] [PMID: 26220908]
[90]
Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[91]
Bian, X.; Wang, Q.; Ke, C.; Zhao, G.; Li, Y. A new series of N2-substituted-5-(p-toluenesulfonylamino)phthalimide analogues as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2022-2026.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.011] [PMID: 23466232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy