Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Segmented Poly(urea)urethane Nanoparticles: Size Optimization Using Taguchi Experimental Design and Nanoprecipitation Method

Author(s): Lerma Hanaiy Chan-Chan*, María Elisa Martínez-Barbosa, Mónica Mayté Vásquez-Alfaro, Juan Valerio Cauich-Rodríguez, José Manuel Cervantes-Uc , Irlanda Lagarda-Diaz and Amir Maldonado

Volume 17, Issue 1, 2021

Published on: 24 March, 2020

Page: [70 - 80] Pages: 11

DOI: 10.2174/1573413716666200324180010

open access plus

conference banner
Abstract

Background: Polymeric nanomaterials are important for developing drug delivery systems. The control of nanoparticle size, polydispersity, and morphology in these systems are important goals. Therefore, different strategies have been explored depending on the type of materials used.

Objective: To prepare biodegradable segmented poly(urea)urethane nanoparticles and to optimize the nanoparticle size and polydispersity using an experimental design methodology.

Methods: In this work, a biodegradable segmented poly(urea)urethane (SPUU) was synthesized. This polymer was used for nanoparticle preparation by the nanoprecipitation technique in the context of the experimental design methodology Taguchi L9. SPUU and nanoparticles were characterized using Fourier transformed infrared, proton nuclear magnetic resonance, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering.

Results: This methodology produced polymeric nanoparticles with mean sizes in the range of 60 to 220 nm with polydispersity in the range of 0.077 to 0.233. The statistical analysis showed that the SPUU concentration and the stirring speed were the most influential parameters, while temperature, at the studied range, did not show a relevant effect.

Conclusion: The analysis of Taguchi’s experimental design resulted in the optimization of parameters determining SPUU-NPs’ size. Nanoparticles from 60 nm of effective diameter were obtained at low polymer concentration and higher stirring speed.

Keywords: Polyurethane, nanoparticle, nanoprecipitation, nanocarriers, taguchi experimental design, optimization.

Graphical Abstract
[1]
Zakharova, E.; León, S.; de Ilarduya, A.M.; Muñoz-Guerra, S. Triblock copolyesters derived from lactic acid and glucose: Synthesis, nanoparticle formation and simulation. Eur. Polym. J., 2017, 92, 1-12.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.033]
[2]
Zakharova, L.; Pashirova, T.; Kashapov, R.; Gabdrakhmanov, D.; Sinyashin, O. Drug delivery mediated by confined nanosystems: structure-activity relations and factors responsible for the efficacy of formulations. Nanostructures for Drug Delivery; Andronescu, E., Ed.; Elsevier: Amsterdam, Netherlands, 2017, pp. 749-806.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00024-5]
[3]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[4]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[5]
Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Optimizing injection molding parameters of different halloysites type-reinforced thermoplastic polyurethane nanocomposites via Taguchi complemented with ANOVA. Materials (Basel), 2016, 9(11), 947.
[http://dx.doi.org/10.3390/ma9110947] [PMID: 28774069]
[6]
Taguchi, G.; Wu, Y. Introduction to off-line quality control; Central Japan Quality Control Association: Nagaya, Japan, 1979.
[7]
Wu, L.; Yick, K-L.; Ng, S-P.; Yip, J. Application of the Box–Behnken design to the optimization of process parameters in foam cup molding. Expert Syst. Appl., 2012, 39(9), 8059-8065.
[http://dx.doi.org/10.1016/j.eswa.2012.01.137]
[8]
Freddi, A.; Salmon, M. Design Principles and Methodologies: From Conceptualization to First Prototyping with Examples and Case Studies; Springer International Publishing: Cham, Switzerland, 2019, pp. 159-180.
[http://dx.doi.org/10.1007/978-3-319-95342-7_7]
[9]
Hou, T-H.; Su, C-H.; Liu, W-L. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol., 2007, 173(3), 153-162.
[http://dx.doi.org/10.1016/j.powtec.2006.11.019]
[10]
Ahmadkhaniha, D.; Sohi, M.H.; Zarei-Hanzaki, A.; Bayazid, S.; Saba, M. Taguchi optimization of process parameters in friction stir processing of pure Mg. J. Magnes. Alloy., 2015, 3(2), 168-172.
[http://dx.doi.org/10.1016/j.jma.2015.04.002]
[11]
Mohammed, A.; Kadhum, A.; Ba-Abbad, M.; Al-Amiery, A. Optimization of solar photocatalytic degradation of chloroxylenol using TiO2, Er3+/TiO2, and Ni2+/TiO2 via the Taguchi orthogonal array technique. Catalysts, 2016, 6(10), 163.
[http://dx.doi.org/10.3390/catal6100163]
[12]
Alrashdan, M.H.; Ahmed, M.Z.; Abu-Al-Aish, A. Modeling and optimization of frequency tunable piezoelectric micro power generator. Micro Nanosyst., 2017, 9(2), 127-133.
[http://dx.doi.org/10.2174/1876402910666180118125520]
[13]
Nansa, V.M.; Heydarinasab, A.; Otadi, M.; Amiri, R. Analysing petroleum effluent samples for determination of cadmium using carbon nanotubes followed by atomic absorption spectrometry. Curr. Nanosci., 2018, 14(6), 545-554.
[http://dx.doi.org/10.2174/1573413714666180829115204]
[14]
Jain, V.; Jain, S.C.; Mahajan, S. Optimization studies for fast dissolving dosage forms. Drug Deliv. Lett., 2013, 3(2), 110-126.
[http://dx.doi.org/10.2174/2210304x113039990001]
[15]
Chang, B.P.; Chan, W.H.; Zamri, M.H.; Md Akil, H.; Chuah, H.G. Investigating the effects of operational factors on wear properties of heat-treated pultruded kenaf fiber-reinforced polyester composites using taguchi method. J. Nat. Fibers, 2019, 16(5), 702-717.
[http://dx.doi.org/10.1080/15440478.2018.1432001]
[16]
Zhang, L.; Yao, Q.; Ma, Y.; Sun, B.; Shao, C.; Zhou, T.; Wang, Y.; Selim, F.A.; Wong, C.; Chen, H. Taguchi method-assisted optimization of multiple effects on the optical and luminescence performance of Ce: YAG transparent ceramics for high power white LEDs. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(37), 11431-11440.
[PMID: 31475273]
[17]
Yilmaz, E.; Guzel, K.G.; Deveci, H. Removal of methylene blue dye from aqueous solution by semi‐interpenetrating polymer network hybrid hydrogel: Optimization through Taguchi method. J. Polym. Sci. A Polym. Chem., 2019, 57(10), 1070-1078.
[http://dx.doi.org/10.1002/pola.29361]
[18]
Go, A.W.; Conag, A.T.; Bertumen, M.M.N. Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds. Biofuels, 2019, 10(2), 193-205.
[http://dx.doi.org/10.1080/17597269.2017.1309855]
[19]
Canel, T.; Zeren, M.; Sınmazçelik, T. Laser parameters optimization of surface treating of Al 6082-T6 with Taguchi method. Opt. Laser Technol., 2019, 120105714
[http://dx.doi.org/10.1016/j.optlastec.2019.105714]
[20]
Karatas, M.A.; Gokkaya, H.; Nalbant, M. Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method. Aircr. Eng. Aerosp. Technol., 2019, 92(2), 128-138.
[http://dx.doi.org/10.1108/AEAT-11-2018-0282]
[21]
Pundir, R.; Chary, G.; Dastidar, M. Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resour. Ind., 2018, 20, 83-92.
[http://dx.doi.org/10.1016/j.wri.2016.05.001]
[22]
Googerdchian, F.; Moheb, A.; Emadi, R.; Asgari, M. Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. J. Hazard. Mater., 2018, 349, 186-194.
[http://dx.doi.org/10.1016/j.jhazmat.2018.01.056] [PMID: 29427969]
[23]
Akyalcin, S.; Akyalcin, L.; Bjørgen, M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous Mesoporous Mater., 2019, 273, 256-264.
[http://dx.doi.org/10.1016/j.micromeso.2018.07.014]
[24]
Chung, Y.T.; Ba-Abbad, M.M.; Mohammad, A.W.; Hairom, N.H.H.; Benamor, A. Synthesis of minimal-size ZnO nanoparticles through sol-gel method: Taguchi design optimisation. Mater. Des., 2015, 87, 780-787.
[http://dx.doi.org/10.1016/j.matdes.2015.07.040]
[25]
Tajik, S.; Khodabakhshi, S. Novel and feasible synthetic routes to copper ferrite nanoparticles: Taguchi optimization and photocatalytic application. J. Mater. Sci. Mater. Electron., 2016, 27(5), 5175-5182.
[http://dx.doi.org/10.1007/s10854-016-4410-z]
[26]
Maurya, L.; Singh, S.; Rajamanickam, V.M.; Narayan, G. Vitamin E TPGS emulsified vinorelbine bitartrate loaded Solid Lipid Nanoparticles (SLN): Formulation development, optimization and in vitro characterization. Curr. Drug Deliv., 2018, 15(8), 1135-1145.
[http://dx.doi.org/10.2174/1567201815666180409105410] [PMID: 29629662]
[27]
Prakash, J.; Ghosh, S.K.; Sathiyamoorthy, D.; Venugopalan, R.; Paul, B. Taguchi method optimization of parameters for growth of nano dimensional SiC wires by chemical vapor deposition technique. Curr. Nanosci., 2012, 8(1), 161-169.
[http://dx.doi.org/10.2174/1573413711208010161]
[28]
El-Ghwas, D.E.; Mazeed, T.E.; El-Waseif, A.; Al-Zahrani, H.A.; Almaghrabi, O.A.; Elazzazy, A.M. Factorial experimental design for optimization of zinc oxide nanoparticles production. Curr. Nanosci., 2020, 16(1), 51-61.
[http://dx.doi.org/10.2174/1573413715666190618103127]
[29]
Shafiee, S.; Ahangar, H.A.; Saffar, A. Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr. Polym., 2019, 222114982
[http://dx.doi.org/10.1016/j.carbpol.2019.114982] [PMID: 31320096]
[30]
Abadeh, A.; Passandideh-Fard, M.; Maghrebi, M.J.; Mohammadi, M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J. Therm. Anal. Calorim., 2019, 135(2), 1323-1334.
[http://dx.doi.org/10.1007/s10973-018-7662-4]
[31]
Bhalla, V.; Khullar, V.; Tyagi, H. Investigation of factors influencing the performance of nanofluid-based direct absorption solar collector using Taguchi method. J. Therm. Anal. Calorim., 2019, 135(2), 1493-1505.
[http://dx.doi.org/10.1007/s10973-018-7721-x]
[32]
Benini, K.C.C.C.; Voorwald, H.J.C.; Cioffi, M.O.H.; Rezende, M.C.; Arantes, V. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr. Polym., 2018, 192, 337-346.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.055] [PMID: 29691029]
[33]
Rahnama, S.; Shariati, S.; Divsar, F. Synthesis of functionalized magnetite titanium dioxide nanocomposite for removal of acid fuchsine dye. Comb. Chem. High Throughput Screen., 2018, 21(8), 583-593.
[http://dx.doi.org/10.2174/1386207321666181019111211] [PMID: 30338734]
[34]
Behmaneshfar, A.; Sadrnia, A.; Karimi-Maleh, H. A review of different types of DOE methods as a useful platform for improving the performan current nanosciencece of nano adsorbents in removal systems of pollutants. Nanosci. Nanotech-Asia, 2020, 10(3), 219-227.
[http://dx.doi.org/10.2174/2210681209666190220130002]
[35]
Raza, Z.A.; Anwar, F. Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano. Struct. Nano. Obj., 2017, 10, 80-90.
[http://dx.doi.org/10.1016/j.nanoso.2017.03.007]
[36]
Sharma, M.; Sharma, R.; Jain, D.K. Preparation, characterization and optimization of carvedilol loaded chitosan nanoparticles by applying Taguchi orthogonal array design. Asian J. Pharm., 2017, 11(01), 53-61.
[37]
Pham, D-D.; Fattal, E.; Tsapis, N. Pyrazinamide-loaded poly (lactide-co-glycolide) nanoparticles: Optimization by experimental design. J. Drug Deliv. Sci. Technol., 2015, 30, 384-390.
[http://dx.doi.org/10.1016/j.jddst.2015.07.006]
[38]
Shahavi, M.H.; Hosseini, M.; Jahanshahi, M.; Meyer, R.L.; Darzi, G.N. Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalin. Water Treat., 2016, 57(39), 18379-18390.
[http://dx.doi.org/10.1080/19443994.2015.1092893]
[39]
Olajide, O.S.; Yaro, S.A.; Asuke, F.; Aponbiede, O. Experimental correlation between process parameters and tensile strength of polylactic acid/groundnut shell nanoparticle biocomposites. Int. J. Adv. Manuf. Technol., 2017, 93(1-4), 717-726.
[http://dx.doi.org/10.1007/s00170-017-0448-1]
[40]
Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J. Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm., 2011, 412(1-2), 52-58.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.007] [PMID: 21511019]
[41]
Yu, S.; He, C.; Ding, J.; Cheng, Y.; Song, W.; Zhuang, X.; Chen, X. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9(9), 2637-2645.
[http://dx.doi.org/10.1039/c2sm27616j]
[42]
Guelcher, S.A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng. Part B Rev., 2008, 14(1), 3-17.
[http://dx.doi.org/10.1089/teb.2007.0133] [PMID: 18454631]
[43]
Ding, M.; Li, J.; Tan, H.; Fu, Q. Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter, 2012, 8(20), 5414-5428.
[http://dx.doi.org/10.1039/c2sm07402h]
[44]
Valério, A.; Conti, D.S.; Araújo, P.H.; Sayer, C.; da Rocha, S.R. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf. B Biointerfaces, 2015, 135, 35-41.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.044] [PMID: 26241914]
[45]
Souguir, H.; Salaün, F.; Douillet, P.; Vroman, I.; Chatterjee, S. Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chem. Eng. J., 2013, 221, 133-145.
[http://dx.doi.org/10.1016/j.cej.2013.01.069]
[46]
Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J. Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly (ethylene glycol). Soft Matter, 2011, 7(7), 3546-3552.
[http://dx.doi.org/10.1039/c0sm01350a]
[47]
Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H.; Bonnet, I.; Zydowicz, N. Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int. J. Pharm., 2004, 269(1), 89-100.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.025] [PMID: 14698580]
[48]
Chan-Chan, L.H.; Tkaczyk, C.; Vargas-Coronado, R.F.; Cervantes-Uc, J.M.; Tabrizian, M.; Cauich-Rodriguez, J.V. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J. Mater. Sci. Mater. Med., 2013, 24(7), 1733-1744.
[http://dx.doi.org/10.1007/s10856-013-4931-4] [PMID: 23615787]
[49]
Perales-Alcacio, J.L.; Santa-Olalla Tapia, J.; Mojica-Cardoso, C.; Vargas-Coronado, R.F.; Chan-Chan, L.H.; Headen, D.M.; García, A.J.; Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V. HUVEC biocompatibility and platelet activation of segmented polyurethanes prepared with either glutathione or its amino acids as chain extenders. J. Biomater. Sci. Polym. Ed., 2013, 24(14), 1601-1617.
[http://dx.doi.org/10.1080/09205063.2013.782804] [PMID: 23544871]
[50]
González‐Rendón, M.E.; Dávila‐Arazazú, S.N.; Ramírez‐Saldaña, M.; Cauich‐Rodríguez, J.V.; Cervantes‐Uc, J.M.; Maldonado‐Arce, A.D.; Chan‐Chan, L.H. Immunomodulatory effect of amino acid based polyurethanes. Soc. Biomater, 2017.
[51]
Tsatsakis, A.; Stratidakis, A.K.; Goryachaya, A.V.; Tzatzarakis, M.N.; Stivaktakis, P.D.; Docea, A.O.; Berdiaki, A.; Nikitovic, D.; Velonia, K.; Shtilman, M.I.; Rizos, A.K.; Kuskov, A.N. In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles. Food Chem. Toxicol., 2019, 127, 42-52.
[http://dx.doi.org/10.1016/j.fct.2019.02.041] [PMID: 30836108]
[52]
Chan-Chan, L.H.; González-García, G.; Vargas-Coronado, R.F.; Cervantes-Uc, J.M.; Hernández-Sánchez, F.; Marcos-Fernandez, A.; Cauich-Rodríguez, J.V. Characterization of model compounds and poly (amide-urea) urethanes based on amino acids by FTIR, NMR and other analytical techniques. Eur. Polym. J., 2017, 92, 27-39.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.014]
[53]
Martinez-Barbosa, M.E.; Montembault, V.; Cammas-Marion, S.; Ponchel, G.; Fontaine, L. Synthesis and characterization of novel poly (g-benzyl-L-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polym. Int., 2007, 56(3), 317-324.
[http://dx.doi.org/10.1002/pi.2133]
[54]
Martinez Barbosa, M.E.; Cammas, S.; Appel, M.; Ponchel, G. Investigation of the degradation mechanisms of poly(malic acid) esters in vitro and their related cytotoxicities on J774 macrophages. Biomacromolecules, 2004, 5(1), 137-143.
[http://dx.doi.org/10.1021/bm0300608] [PMID: 14715019]
[55]
Thioune, O.; Fessi, H.; Devissaguet, J.P.; Puisieux, F. Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int. J. Pharm., 1997, 146(2), 233-238.
[http://dx.doi.org/10.1016/S0378-5173(96)04830-2] [PMID: 10477820]
[56]
Montgomery, D.C. Design and analysis of experiments, 9th ed; John Wiley & Sons: Hoboken, NJ, 2017.
[57]
Kwak, J-S. Application of Taguchi and response surface methodologies for geometric error in surface grinding process. Int. J. Mach. Tools Manuf., 2005, 45(3), 327-334.
[http://dx.doi.org/10.1016/j.ijmachtools.2004.08.007]
[58]
Berger, P.D.; Maurer, R.E.; Celli, G.B. Introduction to Taguchi Methods. Experimental Design; Springer: Cham, 2018, pp. 449-480.
[http://dx.doi.org/10.1007/978-3-319-64583-4_13]
[59]
Mitra, A. The Taguchi method. WIREs Comp. Stat, 2011, 3(5), 472-480.
[60]
Candioti, L.V.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 2014, 124, 123-138.
[http://dx.doi.org/10.1016/j.talanta.2014.01.034] [PMID: 24767454]
[61]
Panda, A.K.; Singh, R. Optimization of process parameters by Taguchi method: catalytic degradation of polypropylene to liquid fuel. Int. J. Multidiscip. Curr. Res, 2013, 50-54.
[62]
Molpeceres, J.; Guzman, M.; Aberturas, M.R.; Chacon, M.; Berges, L. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci., 1996, 85(2), 206-213.
[http://dx.doi.org/10.1021/js950164r] [PMID: 8683450]
[63]
Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater., 2009, 8(1), 15-23.
[http://dx.doi.org/10.1038/nmat2344] [PMID: 19096389]
[64]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[65]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[66]
Chithrani, B.D.; Chan, W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[67]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[68]
Thioune, O.; Briançon, S.; Devissaguet, J.P.; Fessi, H. Development of a new ethylcellulose pseudolatex for coating. Drug Dev. Res., 2000, 50(2), 157-162.
[http://dx.doi.org/10.1002/1098-2299(200006)50:2<157:AID-DDR5>3.0.CO;2-J]
[69]
Jung, T.; Breitenbach, A.; Kissel, T. Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J. Control. Release, 2000, 67(2-3), 157-169.
[http://dx.doi.org/10.1016/S0168-3659(00)00201-7] [PMID: 10825550]
[70]
Legrand, P.; Lesieur, S.; Bochot, A.; Gref, R.; Raatjes, W.; Barratt, G.; Vauthier, C. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm., 2007, 344(1-2), 33-43.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.054] [PMID: 17616282]
[71]
Beck-Broichsitter, M.; Rytting, E.; Lebhardt, T.; Wang, X.; Kissel, T. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur. J. Pharm. Sci., 2010, 41(2), 244-253.
[http://dx.doi.org/10.1016/j.ejps.2010.06.007] [PMID: 20600881]
[72]
Galindo-Rodriguez, S.; Allémann, E.; Fessi, H.; Doelker, E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm. Res., 2004, 21(8), 1428-1439.
[http://dx.doi.org/10.1023/B:PHAM.0000036917.75634.be] [PMID: 15359578]
[73]
Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of rhododendron dauricum. Nano Biomed. Eng., 2012, 4(3), 118-124.
[http://dx.doi.org/10.5101/nbe.v4i3.p118-124]
[74]
Slütter, B.; Bal, S.; Keijzer, C.; Mallants, R.; Hagenaars, N.; Que, I.; Kaijzel, E.; van Eden, W.; Augustijns, P.; Löwik, C.; Bouwstra, J.; Broere, F.; Jiskoot, W. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010, 28(38), 6282-6291.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.121] [PMID: 20638455]
[75]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]

© 2024 Bentham Science Publishers | Privacy Policy