Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Recent Advances on Manipulator Trajectory Planning Methods

Author(s): Hongxin Zhang*, Haoran Qiu, Xu Zhang and Ping Hu

Volume 13 , Issue 4 , 2020

Page: [303 - 327] Pages: 25

DOI: 10.2174/2212797613666200319151513

Price: $65

Abstract

Background: Traditional manipulator requires professionals to write control programs for specific job requirements so that the end-effector of the manipulator can work following the control instructions. However, the flexibility of the manipulator is not high under the control of off-line programming. With the diversification of the job requirements, the complexity of the work environment has gradually increased. Therefore, the relevant scholars focused their research on the automatic trajectory planning method of the manipulator. They used some algorithms to plan optimal trajectories for the manipulator to automatically avoid obstacles in the complex environment. Researches show that the hybrid optimal trajectory with parameter optimization such as time, energy and impact can be planned by automated programming under some constraint conditions. The trajectory planning is helpful to improve the automation and working efficiency of manipulators for the development of intelligent manufacturing.

Objective: Providing references for researchers from related fields by reviewing recent advances of the manipulator trajectory planning.

Methods: This paper reviews the latest patents and current representative articles related to the manipulator trajectory planning. The key methods of some references are introduced in several aspects of the algorithm, innovation and principle.

Results: Researches on the manipulator trajectory planning in recent 10 years are reviewed. The differences between algorithms in latest patents and current articles are introduced and analyzed and the future developments and potential problems of the manipulator trajectory optimization are discussed.

Conclusion: The manipulator trajectory planning reduces complicated operator and hard programming tasks, improving the intelligence of robots and the work efficiency. Current researches focus on collision- free, parameter-optimized and high-efficiency solution which can be used to solve the problem of the end-trajectory planning of the manipulator in the complicated space with obstacles. The aspects that need to be improved in the future include: algorithm reliability, operational security and intelligence, human-computer interaction, efficient simulation, and so on. More patents on manipulator trajectory planning should be invented.

Keywords: Basic trajectory planning, Cartesian space trajectory planning, joint space trajectory planning, manipulator, manipulator modeling, trajectory optimization.

[1]
Francisco R, Francisco V, Josep Lluis S, Vicente M. A comparison of algorithms for path planning of industrial robots. Proceedings of 2nd European Conference on Mechanism Science, Berlin, Germany, September, 2008.
[2]
Valero F, Mata V, Besa A. Trajectory planning in workspaces with obstacles taking into account the dynamic robot behavior. Mech Mach Theory 2006; 41(5): 525-36.
[http://dx.doi.org/10.1016/j.mechmachtheory.2005.08.002]
[3]
AL-Taharva I, Sheta A, AL-Weshah M. Mobile robot path planning using genetic algorithm in static environment. J Comput Sci 2008; 4(4): 341-4.
[http://dx.doi.org/10.3844/jcssp.2008.341.344]
[4]
Hoffmann W, Sauer T. Spline optimization problem from robotics. J Rendiconti di Matematica 2006; 26(7): 221-30.
[5]
Vanni Z, Alessandro G, Albano L, Paolo B, Reneto V. Experimental validation of minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 2011; 64(2): 197-219.
[http://dx.doi.org/10.1007/s10846-010-9533-5]
[6]
Xu JZ, Yang H, Liu MJ, Tian JD, Liu BQ. Research on winding trajectory planning for elbow pipe based on industrial robot. Int J Adv Manuf Technol 2017; 93: 1-9.
[http://dx.doi.org/10.1007/s00170-017-0568-7]
[7]
Han DP, Wei Q, Yang LP, Li ZX. A twist-based method for real-time trajectory planning in task space. Robot 2008; 30(4): 304-10.
[8]
Liu HS, Zhou WN, Lai XB, Zhou SQ. An efficient inverse kinematic algorithm for a PUMA560-structured robot manipulator. Int J Adv Robot Syst 2013; 10(236): 1-5.
[http://dx.doi.org/10.5772/56403]
[9]
Jiang HC, Liu SR, Zhang BT. Inverse kinematics analysis of a six-degree-of-freedom modular manipulator. J Zhejiang Univ Eng Sci 2010; 44(7): 1348-54.
[10]
Maeda Y. Robot trajectory generation method, robot trajectory generation apparatus, product fabrication method, recording medium, program, and robot system. US20170210008 (2017).
[11]
Li, H.S., Wang, Y.H. Method for controlling the speed of industrial robot trajectory based on trigonometric function. CN105867376 (2018).
[12]
Shen YQ, Ye BS, Xiong S. A robot trajectory planning method based on homogeneous transformation matrix. Modul Mach Tool Automat Process Technol 2014; 1(1): 5-9.
[13]
Lin W, Jiang WJ. The Cartesian space trajectory planning of mechanical arms. Mech Eng Automat 2014; 186(5): 141-3.
[14]
Li JW, He SM, Wu HB. A linear interpolation algorithm and its application in robots. Mech Elect Eng 2015; 32(7): 966-70.
[15]
Zhang H, Lu WQ, Wu CY, Tu K. Velocity optimization algorithm of 4-DOF robot end-effectors. Cluster Comput 2018; 1(5): 1-10.
[16]
Ye PC, Jia QX, Chen G, Sun HX. A novel computing method of spatial arc trajectories of manipulator. Appl Mech Mater 2014; 602-605: 1425-9.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.602-605.1425]
[17]
Bohumir S, Bhatt JP, Schwarz WC, Gouda BK. Blending algorithm for trajectory planning. US20110307096 (2011).
[18]
Zhao JZ, Xu M, Fu W. Space arc trajectory planning based on PCI motion control system. Adv Mat Res 2012; 24(2): 573-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.542-543.573]
[19]
Zeng C, Wei XP, Zhang Q. Subsection evolution in GA for trajectory planning of a space manipulator. Int J Adv Robot Syst 2013; 10(5): 425-9.
[http://dx.doi.org/10.5772/56401]
[20]
Ruolong QI, Weijia Z, Tiejun W. An obstacle avoidance trajectory planning scheme for space manipulators based on genetic algorithm. Robot 2014; 36(3): 263-70.
[21]
Li WG, Liu GL, Wang YL, Zhi JB. Optimized trajectory planning algorithm for industrial robot. Fuzzy Systems and Knowledge Discovery 2012; 9: 2397-400.
[22]
Xu W, Yuan SC, Cao YH. Research on yinma palletizing robot motion feasibility based on matlab-robotics toolbox. Appl Mech Mater 2014; 5(9): 543-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.599-601.543]
[23]
Shi Y. Cartesian non-holonomic path planning of space robot based on quantum-behaved particle swarm optimization algorithm. J Mech En 2011; 47(23): 65-73.
[http://dx.doi.org/10.3901/JME.2011.23.065]
[24]
Ouyang F, Zhang T. Virtual velocity vector-based offline collision-free path planning of industrial robotic manipulator. Int J Adv Robot Syst 2015; 12(9): 92-6.
[http://dx.doi.org/10.5772/60127]
[25]
Lu HC, Zhou XD, Li R. An optimization algorithm for trajectory planning of a 7-DOF redundant manipulator. Proceedings of IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, August, 2016.
[26]
Wang, Y., Chou, X.L., Liu, M.G., Hui, G.B., Zhao, P. A method for trajectory planning of industrial robot based on NC code. CN102581849 (2014) .
[27]
Liu, Z., Jiang, H., Zhang, K., Zhang, Y. An industrial robot integrated control platform and its control method. CN101850552 (2010).
[28]
Chen DS, Zhang BG, Wang M. Cartesian space trajectory planning on 7-DOF manipulator. Proceedings of IEEE International Conference on Robotics & Biomimetics, Zhuhai, China , December, 2015.
[http://dx.doi.org/10.1109/ROBIO.2015.7418892]
[29]
Zhou Y. Bezier curve Cartesian space trajectory planning based on improved genetic algorithm. J Shanghai Dianji Univ 2012; 15(4): 237-40.
[30]
Gao MY, Chen D, Din P, He ZW, Wu ZX, Liu YY. A fixed-distance Cartesian path planning algorithm for 6-DOF industrial robots. Proceedings of IEEE International Symposium on Industrial Electronics, Buzios, Brazil, June, 2015.
[31]
Zhang, T., Huang, X.X. A six degrees of freedom industrial robot passing the singular domain method. CN 103909522 (2016).
[32]
Fang Y, Hu J, Liu WH, Chen B, Qi J, Ye X. A CPG-based online trajectory planning method for industrial manipulators. Proceedings of Asia-Pacific Conference on Intelligent Robot Systems, Tokyo, Japan, July 2016.
[33]
Nguyen PDH, Hoffmann M, Pattacini U, Metta G. A fast heuristic Cartesian space motion planning algorithm for many-DOF robotic manipulators in dynamic environments. Proceedings of IEEE-RAS 16th International Conference on Humanoid Robots. Cancun, Mexico, Novwmber, 2016.
[34]
Tasuhiro, O., Junggon, K., James, J.K. Robots, computer program products, and methods for trajectory plan optimization. US8843235 (2014) .
[35]
Guo YY, Qu DK. A robot processing path based on genetic algorithm method of drawing. J Huazhong Univ Sci Technol 2004; 32(1): 123-5.
[36]
Jin B, Fu YL, Wang SG, Cao ZC. Robot fuzzy motion planning approach in unknown environments. J Harbin Inst Technol 2005; 37(10): 1315-7.
[37]
Luo X, Fan XP. Two new algorithms for minimum time motion path planning of robot manipulators and their implementations on PVR based control platform. Control Theory A 2003; 20(5): 700-6.
[38]
Yang SX, Meng M. An efficient neural network method for real-time motion planning with safety consideration. Robot Auton Syst 2000; 32(2): 115-28.
[http://dx.doi.org/10.1016/S0921-8890(99)00113-X]
[39]
Huang XL, Liang B, Wu HX. A survey on robotics collision avoidance planning. Aerospace Control 2002; 4(1): 34-40.
[40]
An TH, Cong-Nguyen H, Sok JH, Lee WS, Han SH. A robust neural network control of robot manipulator for industrial application. Proceedings of International Conference on Control, Automation and Systems, Gyeonggi-do, South Korea, October, 2010.
[41]
Liu ZY, Zhao B, Zhu HB. Research of sorting technology based on industrial robot of machine vision. Proceedings of 5th International Symposium on Computational Intelligence and Design, Hangzhou, China, October, 2012.
[42]
Yu W. A robot is spraying system and its control method. CN107899814 (2018) .
[43]
He, L.Y., Wu, C.Y., Li, Q.C., Cui, D.S., Fu, J.Y. Extraction method and extraction device of robot spraying track based on curve 3D reconstruction. CN104408408 (2015) .
[44]
Qu FJ, Zhou YM, Wu XY, Zhang QF, Peng AS. Dynamic trajectory planning of underwater hydraulic manipulator in joint space. Robotics Biomimetics 2014; 3(7): 2564-9.
[45]
Sun, Y., Huang, Y.Q. Generating robotic trajectories with motion harmonics. US9764469 (2017).
[46]
Hu XP, Zuo FY. Research and simulation of robot trajectory planning in joint space. Appl Mech Mater 2011; 103(7): 372-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.103.372]
[47]
Li WG, Xu YJ. The trajectory planning of transport robot. Modular Machine Tool Automatic Manufacturing Technique 2010; 5: 83-5.
[48]
Zhao QP, Sun L, Zhu ZG, Chen G. Research on kinematics and trajectory planning for 6-DOF industrial robot. Adv Mat Res 2013; 823: 345-8.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.823.345]
[49]
Porawagama CD, Munasinghe SR. Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipulators. Proceedings of 7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, December, 2014.
[50]
Chen G, Jia QX, Ye PC, Sun HX. A novel autonomous obstacle avoidance path planning method for manipulator in joint space. Proceedings of 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, June, 2014.
[51]
Hu TT, Zhang JX, Zhang Q. Trajectory planning to optimize base disturbance of 7-DOF free-floating space manipulator based on QPSO. International Workshop on Multi-disciplinary Trends in Artificial Intelligence 2015; 9426: 281-93.
[http://dx.doi.org/10.1007/978-3-319-26181-2_27]
[52]
Zhang QW, Yuan MT, Song R. Robot trajectory planning method based on genetic chaos optimization algorithm. Proceedings of 18th International Conference on Advanced Robotics, Hong Kong, China, July, 2017.
[53]
Walch A, Eitzinger C, Zambal S, Palfinger W. LSPB trajectory planning using quadratic splines. ICMRE 2017; 28(5): 81-7.
[54]
Zheng, S., Lu, Y., Zeng, Q.Y., Li, Z.Z., He, W.D., Zhang, W., Li, B.B., Chen, Z.C. A new type of trajectory planning and programming method for industrial robots. CN106338966 (2018).
[55]
Zou, F.S., Qu, D.K., Xu, F., Huang, Y.C., Zheng, C.H., Du, Z.J. Industrial robot path planning method based on task and spline curve.CN103802113 (2014) .
[56]
Zhang SL, Jing FS, Wang S. A transition method based on Bezier curve for trajectory planning in Cartesian space. High Technology Letters 2017; 23(2): 141-8.
[57]
Chen ZL, Wang J, Li ST, Ren J, Wang Q, Cheng QC, et al. An optimized trajectory planning for welding robot. Mater Sci Eng 2017; 324(1): 1-7.
[58]
Li HS, Wang YH, Zhang W, Shi XX. Trajectory planning for industrial robots for NURBS free curve. Information & Control 2017; 46(2): 129-35.
[59]
Qi RL, Zhou WJ. Obstacle avoidance trajectory planning for manipulators with rapid multi-objective optimization. Proceedings of IEEE International Conference on Cyber Technology in Automation Control and Intelligent Systems Honolulu, HI, United States, August, 2017.
[http://dx.doi.org/10.1109/CYBER.2017.8446297]
[60]
Liu Y, Xie ZW, Gu YK, Fan CG, Zhao XY, Liu H. Trajectory planning of robot manipulators based on unit quaternion. Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Munich, Germany, July, 2017.
[61]
Zhao YT, Zheng B, Ma HL. A new method of 6-dof serial robot’s trajectory planning under multi-constraints. Appl Mech Mater 2014; 602-605: 1352-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.602-605.1352]
[62]
Ni WC, Jiang ZH, Li H, We B, Li XY, Zhang BN, et al. Trajectory optimization for 7-dofs space manipulator. Journal of Beijing Institute of Technology 2017; 26(2): 143-9.
[63]
Cao BS, Sun K, Li T, Gu YK, Jin MH, Liu H. Trajectory modified in joint space for vibration suppression of manipulator. IEEE Access 2018; 6: 57969-80.
[http://dx.doi.org/10.1109/ACCESS.2018.2874184]
[64]
Zhang JX, Wei XP, Zhou DS, Zhang Q. Trajectory planning of a redundant space manipulator based on improved hybrid PSO algorithm. Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Dalian, China, December, 2016.
[http://dx.doi.org/10.1109/ROBIO.2016.7866358]
[65]
Solteiro Pires EJ, Tenreiro Machado JA, de Moura Oliveira PB. Robot trajectory Planning using multi-objective genetic algorithm optimization. Proceedings of 6th Annual Genetic and Evolutionary Computation Conference, Seattle, WA, United States, June, 2004.
[http://dx.doi.org/10.1007/978-3-540-24854-5_64]
[66]
Uzunoglu E, Dede M, Kiper G. Trajectory planning for a planar macro-micro manipulator of a laser-cutting machine. Industrial Robot 2016; 43(5): 513-23.
[http://dx.doi.org/10.1108/IR-02-2016-0057]
[67]
Martin H, Hacan E. System of trajectory planning for robotic manipulators based on pre-defined time-optimum trajectory shapes. US6216058 (2001).
[68]
Amar K. Parallel kinematic machine trajectory planning method. US8719212 (2014).
[69]
Xu XR, Shi DQ, Lu M, Xu H, Zhou T. Study on mechanical mechanics with a method for minimum-time path planning of robots in Cartesian space. Adv Mater Res 2013; 703: 181-5.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.703.181]
[70]
Yang J, Wang HS, Chen WD, Li K. Time-jerk optimal trajectory planning for robotic manipulators. Proceedings of IEEE International Conference on Robotics & Biomimetics, Shanghai, China, December, 2013.
[http://dx.doi.org/10.1109/ROBIO.2013.6739805]
[71]
Zhang HQ. Time-optimal trajectory planning of manipulators. Master Dissertation, Hunan University, Changsha, China, April 2004.
[72]
Liu SG. Motion optimization and trajectory tracking control of six degrees of freedom tandem robot research. PhD Dissertation, Zhejiang University, Hangzhou, China, April 2009.
[73]
Zhu SQ, Liu SG, Wang XY, Wang HF. Robotic time optimal pulsating continuous track.Trace planning algorithm. J Mech Eng 2010; 46(3): 47-52.
[http://dx.doi.org/10.3901/JME.2010.03.047]
[74]
Nan WH, Zheng HX, Ye BS. Industrial machine based on modification target algorithm optimal path planning for human fixed path time. Robot 2016; 38(2): 234-40.
[75]
Zhang JY, Meng QG, Feng XG, Hao SA. 6-DOF robot-time optimal trajectory planning based on an improved genetic algorithm. Robotics and Biomimetics 2018; 5(1): 3-10.
[http://dx.doi.org/10.1186/s40638-018-0085-7]
[76]
Fu R. Time-Optimized manipulator trajectory planning algorithm based on particle swarm optimization. Information and Control 2011; 40(6): 802-8.
[77]
Reynoso MP. On the time-optimal trajectory planning along predetermined geometric paths and optimal control synthesis for trajectory tracking of robot manipulators. PhD Dissertation, University of California, Berkeley, United States, Jan, 2013.
[78]
Alexander R, Andreas M, Hubert G. On higher-order inverse kinematics methods in time-optimal trajectory planning for kinematically redundant manipulators. IEEE Trans Indust Informat 2018; 14(4): 1681-90.
[http://dx.doi.org/10.1109/TII.2018.2792002]
[79]
Slotine JJE, Yang HS. Improving the efficiency of time-optimal path following algorithms. Proceedings of the American Control Conference, Atlanta, GA, USA 1988.
[80]
Liu HH, Lai XB, Wu WX. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot CIM-INT Manuf 2013; 29(2): 309-17.
[http://dx.doi.org/10.1016/j.rcim.2012.08.002]
[81]
Zhang QW, Yuan MT, Song R. Robot trajectory planning method based on genetic chaos optimization algorithm. Proceedings of 18th International Conference on Advanced Robotics, Hong Kong, China, August, 2017.
[http://dx.doi.org/10.1109/ICAR.2017.8023673]
[82]
Zeng Y, Wu ZX. Time-optimal trajectory planning based on particle swarm optimization. Proceedings of 10th IEEE Conference on Industrial Electronics & Applications, Auckland, New Zealand, November, 2015.
[83]
Chen YD, Yan L, Wei HX, Wang TM. Optimal trajectory planning for industrial robots using harmony search algorithm. Ind Robot 2013; 40(5): 502-12.
[84]
Jiang H, Yan YH, Xu JX. Two applications of robot trajectory planning algorithm method. Mechatronics 2014; 18(5): 11-4.
[85]
Liu YJ, Liang L, Han HJ, Zhang SJ. A method of energy-optimal trajectory planning for palletizing robot. Math Probl Eng 2017; 2017: 1884-2020.
[86]
John G, Alberto O, Ernesto S. Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Syst Control Lett 2012; 61(2): 279-91.
[http://dx.doi.org/10.1016/j.sysconle.2011.11.005]
[87]
Koen P, Wim D, Karel VE, Karel K, Peter S. Energy efficient trajectories for an industrial ABB robot. Procedia CIRP 2014; 15(1): 73-7.
[http://dx.doi.org/10.1016/j.procir.2014.06.043]
[88]
Fung RF, Cheng YH. Trajectory planning based on minimum absolute input energy for an LCD glass handling robot. Appl Math Model 2014; 38(11/12): 2837-47.
[http://dx.doi.org/10.1016/j.apm.2013.11.017]
[89]
Zhang SJ. Optimal trajectory planning and control for high-speed heavy-duty palletizing robot energy consumption research. Master Dissertation, Harbin Institute of Technology, Harbin, China, April 2016.
[90]
Akira A. Minimum energy trajectory planning method for robot manipulator mounted on flexible base. Proceedings of 9th Asian Control Conference, Istanbul, Turkey, June, 2013.
[http://dx.doi.org/10.1109/ASCC.2013.6606088]
[91]
Liu YJ, Liang L, Han H, Zhang SJ. A method of energy-optimal trajectory planning for palletizing robot. Math Probl Eng 2017; 4(7): 1-10.
[http://dx.doi.org/10.1155/2017/5862457]
[92]
Bailón WP, Cardiel EB, Juárez-Campos I, Ramos-Paz A. Mechanical energy optimization in trajectory planning for six DOF robot manipulators based on eighth-degree polynomial functions and a genetic algorithm. Proceedings of the 2010 International Conference on Genetic and Evolutionary Methods, Las Vegas Nevada, USA, July, 2010.
[93]
Rubio F, Valero F, Sunyer J, Cuadrado J. Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Ind Robot 2012; 39(1): 92-100.
[94]
Gleeson D, Björkenstam S, Bohlin R, Carlson J, Lennartson B. Towards energy optimization using trajectory smoothing and automatic code generation for robotic assembly. Proceedings of 6th CIRP Conference on Assembly Technologies and Systems, Gothenburg, Sweden, May, 2016.
[http://dx.doi.org/10.1016/j.procir.2016.02.099]
[95]
Christian H, Julian O, Davis M, Tobias O. Enhanced approach for energy-efficient trajectory generation of industrial robots. Proceedings of IEEE International Conference on Automation Science and Engineering: Green Automation Toward a Sustainable Society, Sindelfingen, Germany, August, 2012.
[http://dx.doi.org/10.1109/CoASE.2012.6386343]
[96]
Hamon P, Gautier M, Garrec P, Janot A. Dynamic identification of robot with a load-dependent joint friction model. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Singapore, June, 2010.
[http://dx.doi.org/10.1109/CoASE.2012.6386343]
[97]
Raoudha G, Abdelmajid B, Bernard Y. An environmental impact/cost model for evaluating multiple feature-based machining methods. Proceedings of 6th International Congress on Design and Modeling of Mechanical Systems, Hammamet, Tunisia, March, 2015.
[98]
Craig JJ. Introduction to Robotics: Mechanics and Control. Addison- Wesley, Workingham, MA 1989.
[99]
Gasparetto A, Lanzutti A, Vidoni R, Zanotto V. Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robotics and Computer 2012; 28(2): 164-81.
[http://dx.doi.org/10.1016/j.rcim.2011.08.003]
[100]
Li MF, Tong ZW, Xiao QY. An industrial robot trajectory planning method to avoid cable interference constraints. CN107538493 (2018).
[101]
Macfarlane S, Croft EA. Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans Robot Autom 2003; 19(1): 42-52.
[http://dx.doi.org/10.1109/TRA.2002.807548]
[102]
Wu X, Zhu SQ, Liu SG. PDAG algorithm based trajectory tracking for industrial robots. China Mechanical Engineering 2010; 21(19): 2302-7.
[103]
Duan HG, Zhang RM, Yu F, Gao J. Optimal trajectory planning for glass-handing robot based on execution time acceleration and jerk. J Robot 2016; 12: 1-9.
[http://dx.doi.org/10.1155/2016/9329131]
[104]
Lin HI. A fast and unified method to find a minimumjerk robot joint trajectory using particle swarm optimization. J Intell Robot Syst 2014; 75(3/4): 379-92.
[http://dx.doi.org/10.1007/s10846-013-9982-8]
[105]
Yang JT, Jiang WG, Lin YC. Path gauge with optimal mechanical arm impact Algorithm. Science Technology and Engineering 2014; 14(28): 64-9.
[106]
Chen JC, Wang JC, Zhang LB, Yu F, Bao GJ. An obstacle avoidance trajectory planning method for industrial robot based on torque control. CN107139171 (2017).
[107]
Masahiro O, Yoshiharu N, Liang YX, Toshiya T. Robot program generation apparatus generating robot program for reducing jerks of joints of robot. US9610688 (2017) .
[108]
Miller DH, William LM. System and method for jerk limited trajectory planning for a path planner. US20090102411 (2009) .
[109]
Guo CQ, Gao HB, Ni FL, Lui H. A vibration suppression method for flexible joints manipulator based on trajectory optimization. Proceedings of IEEE International Conference on Mechatronics & Automation, Harbin, China, September, 2016.
[http://dx.doi.org/10.1109/ICMA.2016.7558585]
[110]
Shi XL, Fang HG. Time-energy-jerk optimal planning of industrial robot trajectories. Machinery Design & Manufacture 2018; 6: 228-30.
[111]
Oberherber M, Gattringer H, Springer K. Time optimal path planning for industrial robots: A dynamic programming approach considering torque derivative and jerk constraints. P A M M 2015; 14(1): 75-6.
[http://dx.doi.org/10.1002/pamm.201410025]
[112]
Gasparetto A, Zanotto V. Optimal trajectory planning for industrial robots. Adv Eng Softw 2010; 41(4): 548-56.
[http://dx.doi.org/10.1016/j.advengsoft.2009.11.001]
[113]
Paolo B, Alessandro G, Renato V. Jerk-continuous trajectories for cyclic tasks. Proceedings of the ASME Design Engineering Technical Conference, Chicago, IL, United States, August, 2012.
[114]
You W, Kong MX. A method for planning motion trajectory in the operating space of heavy-duty industrial robots. CN102298391 (2011).
[115]
Liu HS, Lai XB, Wu WX. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot CIM-INT Manuf 2013; 29(2): 309-17.
[http://dx.doi.org/10.1016/j.rcim.2012.08.002]
[116]
Yu Y, Lin M, Lin YC. The most industrial robot based on hybrid genetic algorithm. Computer Engineering and Design 2012; 33(4): 1574-80.
[117]
Amar K, Luc B, Marek B, Kudret D. Fuzzy-Neuro optimal time-energy control of a three degrees of freedom planar manipulator. Proceedings of 2006 Annual Meeting of the North American Fuzzy Information Processing Society, Montreal, QC, Canada, June, 2006.
[118]
Chen CT, Liao TT. A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators. Robot CIM-INT Manuf 2011; 27(1): 72-81.
[http://dx.doi.org/10.1016/j.rcim.2010.06.012]
[119]
Liu ST, Zhao JD, Li J. Solving the time-jerk optimal trajectory planning problem of a robot using augmented Lagrange constrained particle swarm optimization. Math Probl Eng 2017; 1(6): 1-10.
[120]
Ferenc L, Gábor S. Trajectory tracking control of a 6- degree- of- freedom robot arm using nonlinear optimization. Proceedings of 10th International Workshop on Advanced Motion Control, Trento, Italy, March, 2008.
[http://dx.doi.org/10.1109/AMC.2008.4516144]
[121]
Ferenc L, Gábor S. Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator. Proceedings of IEEE 2009 International Conference on Mechatronics, Malaga, Spain, April, 2009.
[http://dx.doi.org/10.1109/ICMECH.2009.4957138]
[122]
Xu HL, Jie XQ, Zhuang J, Wang SA. Optimal time and most optimal energy trajectory planning. J Mech Eng 2010; 9: 19-25.
[http://dx.doi.org/10.3901/JME.2010.09.019]
[123]
Li MF, Li JY, Luo LJ. An industrial robot operating point sequence and trajectory planning method based on swarm intelligence algorithm. CN105005301 (2018).
[124]
Sajad R, Amir Hossein A, Kambiz Ghaemi O, Ali M, Aydin A. Optimal trajectory planning for parallel robots considering time-jerk. Appl Mech Mater 2013; 390(6): 471-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.390.471]
[125]
Sun TT, Cheng L, Wang YK, Liang X, Zheng J, Zhang HJ. Time-optimal trajectory planning for delta robot based on quintic pythagorean-hodograph curves. IEEE Access 2018; 6: 28530-9 .
[126]
Esfandiar H, Korayem MH. Optimal point to point path planning of flexible manipulator under large deformation by using harmony search method. J Theor Appl Mech 2016; 54(1): 179-93.
[http://dx.doi.org/10.15632/jtam-pl.54.1.179]
[127]
Chiddarwar SS, Babu NR. Optimal trajectory planning for industrial robot along a specified path with payload constraint using trigonometric splines. Int J Autom Control 2012; 6(1): 39-65.
[128]
Gao MY, Ding P, Yang YX. Time-Optimal trajectory planning of industrial robots based on particle swarm optimization. Proceedings of 5th International Conference on Instrumentation and Measurement, Computer, Communication, and Control, Qinhuangdao, China, February, 2016.
[129]
Guo TY, Li F, Huang K, Zhang FZ, Feng Q. Application of optimal algorithm on trajectory planning of mechanical arm based on b-spline curve. Appl Mech Mater 2013; 376(23): 253-6.
[130]
Marcos MG, Tenreiro Machado JA, Azevedo-Perdicoúlis TP. Trajectory planning of redundant manipulators using genetic algorithms. Commun Nonlinear Sci Numer Simul 2009; 14(7): 2858-69.
[http://dx.doi.org/10.1016/j.cnsns.2008.10.014]
[131]
Jiang L, Lu ST, Gu YK, Zhao JD. Time-Jerk optimal trajectory planning for a 7-DOF redundant robot using the sequential quadratic programming method. Proceedings of 10th International Conference on Intelligent Robotics and Applications. Wuhan, China, August, 2017.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy