Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默氏病的主观认知下降导致触角辨别力下降

卷 17, 期 2, 2020

页: [168 - 176] 页: 9

弟呕挨: 10.2174/1567205017666200309104033

价格: $65

摘要

背景:主观认知下降(SCD)是阿尔茨海默氏病(AD)的临床前阶段。先前的研究表明,可将触角识别系统用于区分健康的老年人和轻度认知障碍和AD的患者,从而提供了宝贵的贡献。但是,该研究很少关注触角辨别与SCD之间的关系。因此,迫切需要一种区分正常对照(NC),老年SCD,轻度轻度认知障碍(aMCI)患者和AD的方法。 方法:在本研究中,我们开发了一种新颖的触觉辨别设备,该设备使用对食指垫施加角度刺激来识别NC(n = 30),SCD(n = 30),aMCI( n = 30)和AD(n = 30)组。我们使用三选的强制选择和阶梯方法,分析了平均准确度和角度判别阈值。 结果:我们发现,在以下组中,准确性显着下降,而角度辨别阈值按以下顺序增加:NC,SCD,aMCI和AD。接收器工作特性曲线下方的区域还表明,在区分NC个体和SCD患者时,触角辨别阈值优于Mini-Mental State Examination分数。 结论:这些发现强调了触觉工作记忆功能障碍在解释AD患者SCD发生的角度歧视的认知能力下降方面的重要性,并为早期发现AD患者提供了进一步的认识。

关键词: 阿尔茨海默氏病,主观认知下降,认知功能,触觉,角度歧视,工作记忆。

[1]
Vellas B, Aisen PS, Sampaio C, et al. Prevention trials in Alzheimer’s disease: an EU-US task force report. Prog Neurobiol 95(4): 594-600. (2011).
[http://dx.doi.org/10.1016/j.pneurobio.2011.08.014] [PMID: 21925234]
[2]
Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34(8): 430-42. (2011).
[http://dx.doi.org/10.1016/j.tins.2011.05.005] [PMID: 21696834]
[3]
Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10(6): 844-52. (2014).
[http://dx.doi.org/10.1016/j.jalz.2014.01.001] [PMID: 24798886]
[4]
Rönnlund M, Sundström A, Adolfsson R, Nilsson LG. Self-reported memory failures: associations with future dementia in a population-based study with long-term follow-up. J Am Geriatr Soc 63(9): 1766-73. (2015).
[http://dx.doi.org/10.1111/jgs.13611] [PMID: 26280989]
[5]
Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand 130(6): 439-51. (2014).
[http://dx.doi.org/10.1111/acps.12336] [PMID: 25219393]
[6]
Buckley RF, Maruff P, Ames D, et al. Subjective memory decline predicts greater rates of clinical progression in preclinical Alzheimer’s disease. Alzheimers Dement 12(7): 796-804. (2016).
[http://dx.doi.org/10.1016/j.jalz.2015.12.013] [PMID: 26852195]
[7]
Wang Y, West JD, Flashman LA, et al. Selective changes in white matter integrity in MCI and older adults with cognitive complaints. Biochim Biophys Acta 1822(3): 423-30. (2012).
[http://dx.doi.org/10.1016/j.bbadis.2011.08.002] [PMID: 21867750]
[8]
Thomann PA, Seidl U, Brinkmann J, et al. Hippocampal morphology and autobiographic memory in mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 9(4): 507-15. (2012).
[http://dx.doi.org/10.2174/156720512800492558] [PMID: 22372439]
[9]
Amariglio RE, Becker JA, Carmasin J, et al. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 50(12): 2880-6. (2012).
[http://dx.doi.org/10.1016/j.neuropsychologia.2012.08.011] [PMID: 22940426]
[10]
Hafkemeijer A, Altmann-Schneider I, Oleksik AM, et al. Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connect 3(4): 353-62. (2013).
[http://dx.doi.org/10.1089/brain.2013.0144] [PMID: 23627661]
[11]
Scheef L, Spottke A, Daerr M, et al. Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology 79(13): 1332-9. (2012).
[http://dx.doi.org/10.1212/WNL.0b013e31826c1a8d] [PMID: 22914828]
[12]
Lederman SJ, Klatzky RL. Haptic perception: a tutorial. Atten Percept Psychophys 71(7): 1439-59. (2009).
[http://dx.doi.org/10.3758/APP.71.7.1439] [PMID: 19801605]
[13]
Shaffer SW, Harrison AL. Aging of the somatosensory system: a translational perspective. Phys Ther 87(2): 193-207. (2007).
[http://dx.doi.org/10.2522/ptj.20060083] [PMID: 17244695]
[14]
Vega-Bermudez F, Johnson KO. Spatial acuity after digit amputation. Brain 125(Pt 6): 1256-64. (2002).
[http://dx.doi.org/10.1093/brain/awf129] [PMID: 12023314]
[15]
Stevens JC, Choo KK. Spatial acuity of the body surface over the life span. Somatosens Mot Res 13(2): 153-66. (1996).
[http://dx.doi.org/10.3109/08990229609051403] [PMID: 8844964]
[16]
Suvà D, Favre I, Kraftsik R, Esteban M, Lobrinus A, Miklossy J. Primary motor cortex involvement in Alzheimer disease. J Neuropathol Exp Neurol 58(11): 1125-34. (1999).
[http://dx.doi.org/10.1097/00005072-199911000-00002] [PMID: 10560655]
[17]
Baddeley A, Logie R, Bressi S, Della Sala S, Spinnler H. Dementia and working memory. Q J Exp Psychol A 38(4): 603-18. (1986).
[http://dx.doi.org/10.1080/14640748608401616] [PMID: 3809575]
[18]
Abdulkadir A, Ronneberger O, Wolf RC, Pfleiderer B, Saft C, Klöppel S. Functional and structural MRI biomarkers to detect pre-clinical neurodegeneration. Curr Alzheimer Res 10(2): 125-34. (2013).
[http://dx.doi.org/10.2174/1567205011310020002] [PMID: 22742852]
[19]
Baddeley AD, Bressi S, Della Sala S, Logie R, Spinnler H. The decline of working memory in Alzheimer’s disease. A longitudinal study. Brain 114(Pt 6): 2521-42. (1991).
[http://dx.doi.org/10.1093/brain/114.6.2521] [PMID: 1782529]
[20]
Kessels RP, Molleman PW, Oosterman JM. Assessment of working-memory deficits in patients with mild cognitive impairment and Alzheimer’s dementia using Wechsler’s Working Memory Index. Aging Clin Exp Res 23(5-6): 487-90. (2011).
[http://dx.doi.org/10.1007/BF03325245] [PMID: 22526081]
[21]
Belleville S, Rouleau N, Van der Linden M, Collette F. Effect of manipulation and irrelevant noise on working memory capacity of patients with Alzheimer’s dementia. Neuropsychology 17(1): 69-81. (2003).
[http://dx.doi.org/10.1037/0894-4105.17.1.69] [PMID: 12597075]
[22]
Burgess PW, Shallice T. The Hayling and Brixton tests Bury St Edmunds, England: Thames Valley Test Company 1997.
[23]
Peters ME, Schwartz S, Han D, et al. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: the Cache County Dementia Progression Study. Am J Psychiatry 172(5): 460-5. (2015).
[http://dx.doi.org/10.1176/appi.ajp.2014.14040480] [PMID: 25585033]
[24]
Castel AD, Balota DA, McCabe DP. Memory efficiency and the strategic control of attention at encoding: impairments of value-directed remembering in Alzheimer’s disease. Neuropsychology 23(3): 297-306. (2009).
[http://dx.doi.org/10.1037/a0014888] [PMID: 19413444]
[25]
Yang J, Ogasa T, Ohta Y, Abe K, Wu J. Decline of human tactile angle discrimination in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 22(1): 225-34. (2010).
[http://dx.doi.org/10.3233/JAD-2010-100723] [PMID: 20847416]
[26]
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1): 97-113. (1971).
[http://dx.doi.org/10.1016/0028-3932(71)90067-4] [PMID: 5146491]
[27]
Guo QH, Sun YM, Pei-Min YU, Hong Z. Norm of auditory verbal learning test in the normal aged in china community. Chin J Clin Psychol 15: 132-4. (2007).
[28]
Lu J, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol 24(4): 184-90. (2011).
[http://dx.doi.org/10.1177/0891988711422528] [PMID: 22228824]
[29]
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43(11): 2412-4. (1993).
[http://dx.doi.org/10.1212/WNL.43.11.2412-a] [PMID: 8232972]
[30]
Dozeman E, van Schaik DJ, van Marwijk HW, Stek ML, van der Horst HE, Beekman AT. The center for epidemiological studies depression scale (CES-D) is an adequate screening instrument for depressive and anxiety disorders in a very old population living in residential homes. Int J Geriatr Psychiatry 26(3): 239-46. (2011).
[http://dx.doi.org/10.1002/gps.2519] [PMID: 20623777]
[31]
Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 23: 56-62. (1960).
[http://dx.doi.org/10.1136/jnnp.23.1.56] [PMID: 14399272]
[32]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7): 939-44. (1984).
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[33]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263-9. (2011).
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[34]
De Weerd P, Vandenbussche E, Orban GA. Staircase procedure and constant stimuli method in cat psychophysics. Behav Brain Res 40(3): 201-14. (1990).
[http://dx.doi.org/10.1016/0166-4328(90)90077-R] [PMID: 2285478]
[35]
Molinuevo JL, Rabin LA, Amariglio R, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimers Dement 13(3): 296-311. (2017).
[http://dx.doi.org/10.1016/j.jalz.2016.09.012] [PMID: 27825022]
[36]
Ester EF, Sprague TC, Serences JT. parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87(4): 893-905. (2015).
[http://dx.doi.org/10.1016/j.neuron.2015.07.013] [PMID: 26257053]
[37]
Brodt S, Pöhlchen D, Flanagin VL, Glasauer S, Gais S, Schönauer M. Rapid and independent memory formation in the parietal cortex. Proc Natl Acad Sci USA 113(46): 13251-6. (2016).
[http://dx.doi.org/10.1073/pnas.1605719113] [PMID: 27803331]
[38]
Viviano RP, Hayes JM, Pruitt PJ, et al. Aberrant memory system connectivity and working memory performance in subjective cognitive decline. Neuroimage 185: 556-64. (2019).
[http://dx.doi.org/10.1016/j.neuroimage.2018.10.015] [PMID: 30308246]
[39]
Yang J, Yu Y, Kunita A, et al. Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: an fMRI study. Front Hum Neurosci 8: 926. (2014).
[http://dx.doi.org/10.3389/fnhum.2014.00926] [PMID: 25566010]
[40]
Franzmeier N, Düzel E, Jessen F, et al. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease. Brain 141(4): 1186-200. (2018).
[http://dx.doi.org/10.1093/brain/awy008] [PMID: 29462334]
[41]
Wang Z, Qiao K, Chen G, et al. Functional connectivity changes across the spectrum of subjective cognitive decline, amnestic mild cognitive impairment and Alzheimer’s disease. Front Neuroinform 13: 26. (2019).
[http://dx.doi.org/10.3389/fninf.2019.00026] [PMID: 31105548]
[42]
López-Sanz D, Bruña R, Garcés P, et al. Functional connectivity disruption in subjective cognitive decline and mild cognitive impairment: a common pattern of alterations. Front Aging Neurosci 9: 109. (2017).
[http://dx.doi.org/10.3389/fnagi.2017.00109] [PMID: 28484387]
[43]
Clark CM, Sheppard L, Fillenbaum GG, et al. Variability in annual mini-mental state examination score in patients with probable Alzheimer disease: a clinical perspective of data from the consortium to establish a registry for Alzheimer’s Disease. Arch Neurol 56(7): 857-62. (1999).
[http://dx.doi.org/10.1001/archneur.56.7.857] [PMID: 10404988]
[44]
O’Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol 65(7): 963-7. (2008).
[http://dx.doi.org/10.1001/archneur.65.7.963] [PMID: 18625866]
[45]
Black SA, Espino DV, Mahurin R, et al. The influence of noncognitive factors on the Mini-Mental State Examination in older Mexican-Americans: findings from the Hispanic EPESE. J Clin Epidemiol 52(11): 1095-102. (1999).
[http://dx.doi.org/10.1016/S0895-4356(99)00100-6] [PMID: 10527004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy