Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Sleep Disturbances and Cognitive Impairment in the Course of Type 2 Diabetes-A Possible Link

Author(s): Anna Brzecka*, Natalia Madetko , Vladimir N. Nikolenko, Ghulam M. Ashraf, Maria Ejma , Jerzy Leszek, Cyryl Daroszewski, Karolina Sarul, Liudmila M. Mikhaleva, Siva G. Somasundaram, Cecil E. Kirkland, Sergey O. Bachurin and Gjumrakch Aliev*

Volume 19, Issue 1, 2021

Published on: 08 March, 2020

Page: [78 - 91] Pages: 14

DOI: 10.2174/1570159X18666200309101750

Price: $65

conference banner
Abstract

There is an increasing number of patients worldwide with sleep disturbances and diabetes. Various sleep disorders, including long or short sleep duration and poor sleep quality of numerous causes, may increase the risk of diabetes. Some symptoms of diabetes, such as painful peripheral neuropathy and nocturia, or associated other sleep disorders, such as sleep breathing disorders or sleep movement disorders, may influence sleep quality and quantity. Both sleep disorders and diabetes may lead to cognitive impairment. The risk of development of cognitive impairment in diabetic patients may be related to vascular and non-vascular and other factors, such as hypoglycemia, hyperglycemia, central insulin resistance, amyloid and tau deposits and other causes. Numerous sleep disorders, e.g., sleep apnea, restless legs syndrome, insomnia, and poor sleep quality are most likely are also associated with cognitive impairment. Adequate functioning of the system of clearance of the brain from toxic substances, such as amyloid β, i.e. glymphatic system, is related to undisturbed sleep and prevents cognitive impairment. In the case of coexistence, sleep disturbances and diabetes either independently lead to and/or mutually aggravate cognitive impairment.

Keywords: Insulin, hypoglycemia, hyperglycemia, dementia, sleep apnea, glymphatic system, central nervous system, risk factors.

Graphical Abstract
[1]
Bao, Y.P.; Han, Y.; Ma, J.; Wang, R.J.; Shi, L.; Wang, T.Y.; He, J.; Yue, J.L.; Shi, J.; Tang, X.D.; Lu, L. Cooccurrence and bidirectional prediction of sleep disturbances and depression in older adults: Meta-analysis and systematic review. Neurosci. Biobehav. Rev., 2017, 75, 257-273.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.032] [PMID: 28179129]
[2]
Stranges, S.; Tigbe, W.; Gómez-Olivé, F.X.; Thorogood, M.; Kandala, N.B. Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep (Basel), 2012, 35(8), 1173-1181.
[http://dx.doi.org/10.5665/sleep.2012] [PMID: 22851813]
[3]
Duarte, A.A.; Mohsin, S.; Golubnitschaja, O. Diabetes care in figures: current pitfalls and future scenario. EPMA J., 2018, 9(2), 125-131.
[http://dx.doi.org/10.1007/s13167-018-0133-y] [PMID: 29896313]
[4]
Guarnieri, B.; Cerroni, G.; Sorbi, S. Sleep disturbances and cognitive decline: recommendations on clinical assessment and the management. Arch. Ital. Biol., 2015, 153(2-3), 225-230.
[http://dx.doi.org/10.12871/0003982920152347] [PMID: 26742676]
[5]
Biessels, G.J.; Reijmer, Y.D. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes, 2014, 63(7), 2244-2252.
[http://dx.doi.org/10.2337/db14-0348] [PMID: 24931032]
[6]
Brady, E.M.; Bodicoat, D.H.; Hall, A.P.; Khunti, K.; Yates, T.; Edwardson, C.; Davies, M.J. Sleep duration, obesity and insulin resistance in a multi-ethnic UK population at high risk of diabetes. Diabetes Res. Clin. Pract., 2018, 139, 195-202.
[http://dx.doi.org/10.1016/j.diabres.2018.03.010] [PMID: 29526681]
[7]
Makino, S.; Hirose, S.; Kakutani, M.; Fujiwara, M.; Nishiyama, M.; Terada, Y.; Ninomiya, H. Association between nighttime sleep duration, midday naps, and glycemic levels in Japanese patients with type 2 diabetes. Sleep Med., 2018, 44, 4-11.
[http://dx.doi.org/10.1016/j.sleep.2017.11.1124] [PMID: 29530368]
[8]
Deng, H.B.; Tam, T.; Zee, B.C.; Chung, R.Y.; Su, X.; Jin, L.; Chan, T.C.; Chang, L.Y.; Yeoh, E.K.; Lao, X.Q. Short sleep duration increases metabolic impact in healthy adults: a population-based cohort study. Sleep (Basel), 2017, 40(10)zsx130
[http://dx.doi.org/10.1093/sleep/zsx130]] [PMID: 28977563]
[9]
Liu, R.; Li, Y.; Mao, Z.; Liu, X.; Zhang, H.; Yang, K.; Zhang, H.; Tu, R.; Qian, X.; Jiang, J.; Bie, R.; Wang, C. Gender-specific independent and combined dose-response association of napping and night sleep duration with type 2 diabetes mellitus in rural Chinese adults: the RuralDiab study. Sleep Med., 2018, 45, 106-113.
[http://dx.doi.org/10.1016/j.sleep.2017.12.017] [PMID: 29680417]
[10]
Su, J.; Tao, R.; Zhou, J.Y.; Yang, J.; Qin, Y.; Hu, Y.H.; Lu, Y.; Jin, J.R.; Bian, Z.; Guo, Y.; Chen, Z.M.; Li, L.M.; Wu, M. Relationship between sleep status and the risk of diabetes in adults. Zhonghua Liu Xing Bing Xue Za Zhi, 2017, 38(5), 597-601.
[http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2017.05.008] [PMID: 28651394]
[11]
Donga, E.; van Dijk, M.; van Dijk, J.G.; Biermasz, N.R.; Lammers, G.J.; van Kralingen, K.W.; Corssmit, E.P.; Romijn, J.A. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J. Clin. Endocrinol. Metab., 2010, 95(6), 2963-2968.
[http://dx.doi.org/10.1210/jc.2009-2430] [PMID: 20371664]
[12]
Rao, M.N.; Neylan, T.C.; Grunfeld, C.; Mulligan, K.; Schambelan, M.; Schwarz, J.M. Subchronic sleep restriction causes tissue-specific insulin resistance. J. Clin. Endocrinol. Metab., 2015, 100(4), 1664-1671.
[http://dx.doi.org/10.1210/jc.2014-3911] [PMID: 25658017]
[13]
Engeda, J.; Mezuk, B.; Ratliff, S.; Ning, Y. Association between duration and quality of sleep and the risk of pre-diabetes: evidence from NHANES. Diabet. Med., 2013, 30(6), 676-680.
[http://dx.doi.org/10.1111/dme.12165] [PMID: 23425048]
[14]
Zhang, J.; Lam, S.P.; Li, S.X.; Li, A.M.; Wing, Y.K. The longitudinal course and impact of non-restorative sleep: a five-year community-based follow-up study. Sleep Med., 2012, 13(6), 570-576.
[http://dx.doi.org/10.1016/j.sleep.2011.12.012] [PMID: 22445230]
[15]
Zhu, B.; Hershberger, P.E.; Kapella, M.C.; Fritschi, C. The relationship between sleep disturbance and glycaemic control in adults with type 2 diabetes: An integrative review. J. Clin. Nurs., 2017, 26(23-24), 4053-4064.
[http://dx.doi.org/10.1111/jocn.13899] [PMID: 28544107]
[16]
Narisawa, H.; Komada, Y.; Miwa, T.; Shikuma, J.; Sakurai, M.; Odawara, M.; Inoue, Y. Prevalence, symptomatic features, and factors associated with sleep disturbance/insomnia in Japanese patients with type-2 diabetes. Neuropsychiatr. Dis. Treat., 2017, 13, 1873-1880.
[http://dx.doi.org/10.2147/NDT.S134814] [PMID: 28765709]
[17]
Zubair, U.; Majid, F.; Siddiqui, A.A.; Zubair, Z. Sleep abnormalities among patients with and without diabetes using pittsburg sleep quality index and epworth sleepiness scale. Cureus, 2018, 10(2)e2151
[http://dx.doi.org/10.7759/cureus.2151]] [PMID: 29637032]
[18]
Telford, O.; Diamantidis, C.J.; Bosworth, H.B.; Patel, U.D.; Davenport, C.A.; Oakes, M.M.; Crowley, M.J. The relationship between Pittsburgh Sleep Quality Index subscales and diabetes control. Chronic Illn., 2018, 15(3), 210-219.
[19]
Kline, C.E.; Hall, M.H.; Buysse, D.J.; Earnest, C.P.; Church, T.S. Poor sleep quality is associated with insulin resistance in postmenopausal women with and without metabolic syndrome. Metab. Syndr. Relat. Disord., 2018, 16(4), 183-189.
[http://dx.doi.org/10.1089/met.2018.0013] [PMID: 29649378]
[20]
Stamatakis, K.A.; Punjabi, N.M. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest, 2010, 137(1), 95-101.
[http://dx.doi.org/10.1378/chest.09-0791] [PMID: 19542260]
[21]
Lin, C.L.; Chien, W.C.; Chung, C.H.; Wu, F.L. Risk of type 2 diabetes in patients with insomnia: A population-based historical cohort study. Diabetes Metab. Res. Rev., 2018, 34(1)
[http://dx.doi.org/10.1002/dmrr.2930]] [PMID: 28834008]
[22]
Tschepp, J.; Lauer, C.J.; Wilde-Frenz, J.; Pollmächer, T. No impaired glucose tolerance in primary insomnia patients with normal results of polysomnography. Front. Neurol., 2017, 8, 303.
[http://dx.doi.org/10.3389/fneur.2017.00303] [PMID: 28701993]
[23]
Chattu, V.K.; Chattu, S.K.; Burman, D.; Spence, D.W.; Pandi-Perumal, S.R. The interlinked rising epidemic of insufficient sleep and diabetes mellitus. Healthcare (Basel), 2019, 7(1)E37
[http://dx.doi.org/10.3390/healthcare7010037]] [PMID: 30841553]
[24]
Einhorn, D.; Stewart, D.A.; Erman, M.K.; Gordon, N.; Philis-Tsimikas, A.; Casal, E. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr. Pract., 2007, 13(4), 355-362.
[http://dx.doi.org/10.4158/EP.13.4.355] [PMID: 17669711]
[25]
Foster, G.D.; Sanders, M.H.; Millman, R.; Zammit, G.; Borradaile, K.E.; Newman, A.B.; Wadden, T.A.; Kelley, D.; Wing, R.R.; Sunyer, F.X.; Darcey, V.; Kuna, S.T. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care, 2009, 32(6), 1017-1019.
[http://dx.doi.org/10.2337/dc08-1776] [PMID: 19279303]
[26]
Siwasaranond, N.; Nimitphong, H.; Manodpitipong, A.; Saetung, S.; Chirakalwasan, N.; Thakkinstian, A.; Reutrakul, S. The relationship between diabetes-related complications and obstructive sleep apnea in type 2 diabetes. J. Diabetes Res., 2018, 20189269170
[http://dx.doi.org/10.1155/2018/9269170]] [PMID: 29707586]
[27]
Kroner, T.; Arzt, M.; Rheinberger, M.; Gorski, M.; Heid, I.M.; Böger, C.A.; Stadler, S. Sex differences in the prevalence and modulators of sleep-disordered breathing in outpatients with Type 2 Diabetes. J. Diabetes Res., 2018, 20187617524
[http://dx.doi.org/10.1155/2018/7617524]] [PMID: 29805982]
[28]
Lam, D.C.; Lui, M.M.; Lam, J.C.; Ong, L.H.; Lam, K.S.; Ip, M.S. Prevalence and recognition of obstructive sleep apnea in Chinese patients with type 2 diabetes mellitus. Chest, 2010, 138(5), 1101-1107.
[http://dx.doi.org/10.1378/chest.10-0596] [PMID: 20705796]
[29]
Kashine, S.; Kishida, K.; Funahashi, T.; Nakagawa, Y.; Otuki, M.; Okita, K.; Iwahashi, H.; Kihara, S.; Nakamura, T.; Matsuzawa, Y.; Shimomura, I. Characteristics of sleep-disordered breathing in Japanese patients with type 2 diabetes mellitus. Metabolism, 2010, 59(5), 690-696.
[http://dx.doi.org/10.1016/j.metabol.2009.08.025] [PMID: 19913847]
[30]
Resnick, H.E.; Redline, S.; Shahar, E.; Gilpin, A.; Newman, A.; Walter, R.; Ewy, G.A.; Howard, B.V.; Punjabi, N.M. Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care, 2003, 26(3), 702-709.
[http://dx.doi.org/10.2337/diacare.26.3.702] [PMID: 12610025]
[31]
Lecube, A.; Sampol, G.; Hernández, C.; Romero, O.; Ciudin, A.; Simó, R. Characterization of sleep breathing pattern in patients with type 2 diabetes: sweet sleep study. PLoS One, 2015, 10(3)e0119073
[http://dx.doi.org/10.1371/journal.pone.0119073]] [PMID: 25760760]
[32]
Iftikhar, I.H.; Hoyos, C.M.; Phillips, C.L.; Magalang, U.J. Meta-analyses of the Association of Sleep Apnea with Insulin Resistance, and the Effects of CPAP on HOMA-IR, Adiponectin, and Visceral Adipose Fat. J. Clin. Sleep Med., 2015, 11(4), 475-485.
[http://dx.doi.org/10.5664/jcsm.4610] [PMID: 25700870]
[33]
Llanos, O.L.; Galiatsatos, P.; Guzmán-Vélez, E.; Patil, S.P.; Smith, P.L.; Magnuson, T.; Schweitzer, M.; Steele, K.; Polotsky, V.Y.; Schwartz, A.R. Pharyngeal collapsibility during sleep is elevated in insulin-resistant females with morbid obesity. Eur. Respir. J., 2016, 47(6), 1718-1726.
[http://dx.doi.org/10.1183/13993003.00918-2015] [PMID: 27103392]
[34]
Louis, M.; Punjabi, N.M. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J. Appl. Physiol., 2009, 106(5), 1538-1544.
[35]
Barceló, A.; Barbé, F.; de la Peña, M.; Martinez, P.; Soriano, J.B.; Piérola, J.; Agustí, A.G. Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax, 2008, 63(11), 946-950.
[http://dx.doi.org/10.1136/thx.2007.093740] [PMID: 18535117]
[36]
Nena, E.; Steiropoulos, P.; Papanas, N.; Tsara, V.; Fitili, C.; Froudarakis, M.E.; Maltezos, E.; Bouros, D. Sleepiness as a marker of glucose deregulation in obstructive sleep apnea. Sleep Breath., 2012, 16(1), 181-186.
[http://dx.doi.org/10.1007/s11325-010-0472-y] [PMID: 21207173]
[37]
Garbarino, S.; Scoditti, E.; Lanteri, P.; Conte, L.; Magnavita, N.; Toraldo, D.M. Obstructive sleep apnea with or without excessive daytime sleepiness: Clinical and experimental data-driven phenotyping. Front. Neurol., 2018, 9, 505.
[http://dx.doi.org/10.3389/fneur.2018.00505] [PMID: 29997573]
[38]
Martínez-Cerón, E.; Barquiel, B.; Bezos, A.M.; Casitas, R.; Galera, R.; García-Benito, C.; Hernanz, A.; Alonso-Fernández, A.; Garcia-Rio, F. Effect of continuous positive airway pressure on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. Am. J. Respir. Crit. Care Med., 2016, 194(4), 476-485.
[http://dx.doi.org/10.1164/rccm.201510-1942OC] [PMID: 26910598]
[39]
Abud, R.; Salgueiro, M.; Drake, L.; Reyes, T.; Jorquera, J.; Labarca, G. Efficacy of continuous positive airway pressure (CPAP) preventing type 2 diabetes mellitus in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and insulin resistance: a systematic review and meta-analysis. Sleep Med., 2019, 62, 14-21.
[http://dx.doi.org/10.1016/j.sleep.2018.12.017] [PMID: 31518943]
[40]
Muraki, I.; Wada, H.; Tanigawa, T. Sleep apnea and type 2 diabetes. J. Diabetes Investig., 2018, 9(5), 991-997.
[http://dx.doi.org/10.1111/jdi.12823] [PMID: 29453905]
[41]
Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin. Ther., 2018, 40(6), 828-849.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[42]
Khawaja, N.; Abu-Shennar, J.; Saleh, M.; Dahbour, S.S.; Khader, Y.S.; Ajlouni, K.M. The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus; the case of Jordan. Diabetol. Metab. Syndr., 2018, 10, 8.
[http://dx.doi.org/10.1186/s13098-018-0309-6] [PMID: 29483946]
[43]
Malik, R.A.; Aldinc, E.; Chan, S.P.; Deerochanawong, C.; Hwu, C.M.; Rosales, R.L.; Yeung, C.Y.; Fujii, K.; Parsons, B. Perceptions of painful diabetic peripheral neuropathy in south-east asia: Results from patient and physician surveys. Adv. Ther., 2017, 34(6), 1426-1437.
[http://dx.doi.org/10.1007/s12325-017-0536-5] [PMID: 28502036]
[44]
Won, J.C.; Im, Y.J.; Lee, J.H.; Kim, C.H.; Kwon, H.S.; Cha, B.Y.; Park, T.S. Clinical phenotype of diabetic peripheral neuropathy and relation to symptom patterns: cluster and factor analysis in patients with Type 2 Diabetes in Korea. J. Diabetes Res., 2017, 20175751687
[http://dx.doi.org/10.1155/2017/5751687]] [PMID: 29387729]
[45]
Bouhassira, D.; Letanoux, M.; Hartemann, A. Chronic pain with neuropathic characteristics in diabetic patients: a French cross-sectional study. PLoS One, 2013, 8(9)e74195
[http://dx.doi.org/10.1371/journal.pone.0074195]] [PMID: 24058527]
[46]
Kim, S.S.; Won, J.C.; Kwon, H.S.; Kim, C.H.; Lee, J.H.; Park, T.S.; Ko, K.S.; Cha, B.Y. Prevalence and clinical implications of painful diabetic peripheral neuropathy in type 2 diabetes: results from a nationwide hospital-based study of diabetic neuropathy in Korea. Diabetes Res. Clin. Pract., 2014, 103(3), 522-529.
[http://dx.doi.org/10.1016/j.diabres.2013.12.003] [PMID: 24438877]
[47]
Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care, 2011, 34(10), 2220-2224.
[http://dx.doi.org/10.2337/dc11-1108] [PMID: 21852677]
[48]
Van Acker, K.; Bouhassira, D.; De Bacquer, D.; Weiss, S.; Matthys, K.; Raemen, H.; Mathieu, C.; Colin, I.M. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab., 2009, 35(3), 206-213.
[http://dx.doi.org/10.1016/j.diabet.2008.11.004] [PMID: 19297223]
[49]
Zhu, B.; Quinn, L.; Fritschi, C. Relationship and variation of diabetes related symptoms, sleep disturbance and sleep-related impairment in adults with type 2 diabetes. J. Adv. Nurs., 2018, 74(3), 689-697.
[http://dx.doi.org/10.1111/jan.13482] [PMID: 29114911]
[50]
Furukawa, S.; Sakai, T.; Niiya, T.; Miyaoka, H.; Miyake, T.; Yamamoto, S.; Maruyama, K.; Tanaka, K.; Ueda, T.; Senba, H.; Torisu, M.; Minami, H.; Tanigawa, T.; Matsuura, B.; Hiasa, Y.; Miyake, Y. Dietary intake habits and the prevalence of nocturia in Japanese patients with type 2 diabetes mellitus. J. Diabetes Investig., 2018, 9(2), 279-285.
[http://dx.doi.org/10.1111/jdi.12709] [PMID: 28667795]
[51]
Liu, H.Y.; Chung, M.S.; Wang, H.J.; Liu, R.T.; Chuang, Y.C. Nocturia indicates a poor health status and increases mortality in male patients with type 2 diabetes mellitus. Int. Urol. Nephrol., 2016, 48(8), 1209-1214.
[http://dx.doi.org/10.1007/s11255-016-1310-3] [PMID: 27156073]
[52]
Chiang, G.S.H.; Sim, B.L.H.; Lee, J.J.M.; Quah, J.H.M. Determinants of poor sleep quality in elderly patients with diabetes mellitus, hyperlipidemia and hypertension in Singapore. Prim. Health Care Res. Dev., 2018, 19(6), 610-615.
[http://dx.doi.org/10.1017/S146342361800018X] [PMID: 29580302]
[53]
Chang, C.J.; Pei, D.; Wu, C.C.; Palmer, M.H.; Su, C.C.; Kuo, S.F.; Liao, Y.M. Correlates of nocturia and relationships of nocturia with sleep quality and glycemic control in women with type 2 diabetes. J. Nurs. Scholarsh., 2017, 49(4), 400-410.
[http://dx.doi.org/10.1111/jnu.12302] [PMID: 28544465]
[54]
Trigg, A.; Andersson, F.L.; Aldhouse, N.V.J.; Bliwise, D.L.; Kitchen, H. Patients’ lived experiences of nocturia: A qualitative study of the evening, the night, and the next day. Patient, 2017, 10(6), 711-718.
[http://dx.doi.org/10.1007/s40271-017-0241-0] [PMID: 28425062]
[55]
Kalra, S.; Gupta, A. Diabetic painful neuropathy and restless legs syndrome in diabetes. Diabetes Ther., 2018, 9(2), 441-447.
[http://dx.doi.org/10.1007/s13300-018-0376-6] [PMID: 29427229]
[56]
Cho, Y.W.; Na, G.Y.; Lim, J.G.; Kim, S.H.; Kim, H.S.; Earley, C.J.; Allen, R.P. Prevalence and clinical characteristics of restless legs syndrome in diabetic peripheral neuropathy: comparison with chronic osteoarthritis. Sleep Med., 2013, 14(12), 1387-1392.
[http://dx.doi.org/10.1016/j.sleep.2013.09.013] [PMID: 24210603]
[57]
Sabic, A.; Sinanovic, O.; Sabic, D.; Galic, G. Restless legs syndrome in patients with hypertension and diabetes mellitus. Med. Arh., 2016, 70(2), 116-118.
[http://dx.doi.org/10.5455/medarh.2016.70.116-118] [PMID: 27147785]
[58]
Bagheri, R.; Abedi, P.; Mousavi, P.; Azimi, N. The prevalence of restless legs syndrome and its relationship with demographic characteristics and medical disorders in postmenopausal Iranian women. Health Care Women Int., 2018, 39(12), 1317-1325.
[http://dx.doi.org/10.1080/07399332.2018.1435662] [PMID: 29419360]
[59]
Figorilli, M.; Puligheddu, M.; Congiu, P.; Ferri, R. The clinical importance of periodic leg movements in sleep. Curr. Treat. Options Neurol., 2017, 19(3), 10.
[http://dx.doi.org/10.1007/s11940-017-0446-5] [PMID: 28349352]
[60]
American Diabetes Association. Comprehensive medical evaluation and assessment of comorbidities. Diabetes Care, 2017, 40(Suppl. 1), S25-S32.
[http://dx.doi.org/10.2337/dc17-S006] [PMID: 27979890]
[61]
Xue, M.; Xu, W.; Ou, Y.N.; Cao, X.P.; Tan, M.S.; Tan, L.; Yu, J.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev., 2019, 55100944
[http://dx.doi.org/10.1016/j.arr.2019.100944]] [PMID: 31430566]
[62]
Abo Hagar, A.; Ashour, Y.; Abd El-Razek, R.; Elsamahy, M.; Shehab, O. Quantitative electroencephalographic changes and hippocampal atrophy in diabetic patients with mild cognitive impairment in Ismailia region. Egypt. J. Neurol. Psychiat. Neurosurg., 2018, 54(1), 15.
[http://dx.doi.org/10.1186/s41983-018-0018-y] [PMID: 29899657]
[63]
Tian, S.; Huang, R.; Han, J.; Cai, R.; Guo, D.; Lin, H.; Wang, J.; Wang, S. Increased plasma Interleukin-1β level is associated with memory deficits in type 2 diabetic patients with mild cognitive impairment. Psychoneuroendocrinology, 2018, 96, 148-154.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.014] [PMID: 29957442]
[64]
Liu, Z.Q.; Zhang, M.X.; Wang, J.; Ding, N. Analysis of correlation between the mild cognitive impairment (MCI) and level of adiponectin in elderly patients with type 2 diabetes mellitus (T2DM). Eur. Rev. Med. Pharmacol. Sci., 2017, 21(23), 5471-5477.
[http://dx.doi.org/10.26355/eurrev_201712_13937] [PMID: 29243792]
[65]
Natovich, R.; Gayus, N.; Azmon, M.; Michal, H.; Twito, O.G.; Yair, T.; Achiron, R.N.; Kraviz, N.; Mordenfeld, N.; Cukierman-Yaffe, T. Supporting a comprehensive and coordinated evaluation of the elderly with diabetes by integrating cognitive and physical assessment in the evaluation process. Diabetes Metab. Res. Rev., 2018, 34(7)e3030
[http://dx.doi.org/10.1002/dmrr.3030]] [PMID: 29896891]
[66]
Chaytor, N.S.; Barbosa-Leiker, C.; Ryan, C.M.; Germine, L.T.; Hirsch, I.B.; Weinstock, R.S. Clinically significant cognitive impairment in older adults with type 1 diabetes. J. Diabetes Complications, 2019, 33(1), 91-97.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.04.003] [PMID: 29728302]
[67]
Wargny, M.; Gallini, A.; Hanaire, H.; Nourhashemi, F.; Andrieu, S.; Gardette, V. Diabetes care and dementia among older adults: a nationwide 3-year longitudinal study. J. Am. Med. Dir. Assoc., 2018, 19(7), 601-606.e2.
[http://dx.doi.org/10.1016/j.jamda.2017.12.006] [PMID: 29396187]
[68]
Zhou, Y.; Huang, L.; Zheng, W.; An, J.; Zhan, Z.; Wang, L.; Chen, Z.; Liu, L. Recurrent nonsevere hypoglycemia exacerbates imbalance of mitochondrial homeostasis leading to synapse injury and cognitive deficit in diabetes. Am. J. Physiol. Endocrinol. Metab., 2018, 315(5), E973-E986.
[http://dx.doi.org/10.1152/ajpendo.00133.2018] [PMID: 29969317]
[69]
Bharadwaj, P.; Wijesekara, N.; Liyanapathirana, M.; Newsholme, P.; Ittner, L.; Fraser, P.; Verdile, G. The Link between Type 2 Diabetes and neurodegeneration: Roles for amyloid-β, amylin, and tau proteins. J. Alzheimers Dis., 2017, 59(2), 421-432.
[http://dx.doi.org/10.3233/JAD-161192] [PMID: 28269785]
[70]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373-379.
[PMID: 20030463]
[71]
Zhao, W-Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim. Biophys. Acta, 2009, 1792(5), 482-496.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.014] [PMID: 19026743]
[72]
Li, L.; Hölscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res. Brain Res. Rev., 2007, 56(2), 384-402.
[http://dx.doi.org/10.1016/j.brainresrev.2007.09.001] [PMID: 17920690]
[73]
DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am., 2004, 88(4), 787-835, ix..
[http://dx.doi.org/ 10.1016/j.mcna.2004.04.013] [PMID: 15308380]
[74]
Goldstein, B.J. Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol., 2002, 90(5A), 3G-10G.
[http://dx.doi.org/10.1016/S0002-9149(02)02553-5] [PMID: 12231073]
[75]
Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat. Rev. Endocrinol., 2018, 14(10), 591-604.
[http://dx.doi.org/10.1038/s41574-018-0048-7] [PMID: 30022099]
[76]
Kulstad, J.J.; Green, P.S.; Cook, D.G.; Watson, G.S.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Rhoads, K.; Mehta, P.D.; Craft, S. Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology, 2006, 66(10), 1506-1510.
[http://dx.doi.org/10.1212/01.wnl.0000216274.58185.09] [PMID: 16717209]
[77]
Freude, S.; Plum, L.; Schnitker, J.; Leeser, U.; Udelhoven, M.; Krone, W.; Bruning, J.C.; Schubert, M. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes, 2005, 54(12), 3343-3348.
[http://dx.doi.org/10.2337/diabetes.54.12.3343] [PMID: 16306348]
[78]
Al Haj Ahmad, R.M.; Al-Domi, H.A. Thinking about brain insulin resistance. Diabetes Metab. Syndr., 2018, 12(6), 1091-1094.
[http://dx.doi.org/10.1016/j.dsx.2018.05.003] [PMID: 29778668]
[79]
Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[80]
Schrijvers, E.M.; Witteman, J.C.; Sijbrands, E.J.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology, 2010, 75(22), 1982-1987.
[http://dx.doi.org/10.1212/WNL.0b013e3181ffe4f6] [PMID: 21115952]
[81]
Fan, Y.C.; Hsu, J.L.; Tung, H.Y.; Chou, C.C.; Bai, C.H. Increased dementia risk predominantly in diabetes mellitus rather than in hypertension or hyperlipidemia: a population-based cohort study. Alzheimers Res. Ther., 2017, 9(1), 7.
[http://dx.doi.org/10.1186/s13195-017-0236-z] [PMID: 28162091]
[82]
Kuo, S.C.; Lai, S.W.; Hung, H.C.; Muo, C.H.; Hung, S.C.; Liu, L.L.; Chang, C.W.; Hwu, Y.J.; Chen, S.L.; Sung, F.C. Association between comorbidities and dementia in diabetes mellitus patients: population-based retrospective cohort study. J. Diabetes Complications, 2015, 29(8), 1071-1076.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.06.010] [PMID: 26233574]
[83]
Riederer, P.; Korczyn, A.D.; Ali, S.S.; Bajenaru, O.; Choi, M.S.; Chopp, M.; Dermanovic-Dobrota, V.; Grünblatt, E.; Jellinger, K.A.; Kamal, M.A.; Kamal, W.; Leszek, J.; Sheldrick-Michel, T.M.; Mushtaq, G.; Meglic, B.; Natovich, R.; Pirtosek, Z.; Rakusa, M.; Salkovic-Petrisic, M.; Schmidt, R.; Schmitt, A.; Sridhar, G.R.; Vécsei, L.; Wojszel, Z.B.; Yaman, H.; Zhang, Z.G.; Cukierman-Yaffe, T. The diabetic brain and cognition. J. Neural Transm. (Vienna), 2017, 124(11), 1431-1454.
[http://dx.doi.org/10.1007/s00702-017-1763-2] [PMID: 28766040]
[84]
Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J. Diabetes Investig., 2013, 4(6), 640-650.
[http://dx.doi.org/10.1111/jdi.12087] [PMID: 24843720]
[85]
Won, S.J.; Yoo, B.H.; Kauppinen, T.M.; Choi, B.Y.; Kim, J.H.; Jang, B.G.; Lee, M.W.; Sohn, M.; Liu, J.; Swanson, R.A.; Suh, S.W. Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. J. Neuroinflammation, 2012, 9, 182.
[http://dx.doi.org/10.1186/1742-2094-9-182] [PMID: 22830525]
[86]
Lee, A.K.; Rawlings, A.M.; Lee, C.J.; Gross, A.L.; Huang, E.S.; Sharrett, A.R.; Coresh, J.; Selvin, E. Severe hypoglycaemia, mild cognitive impairment, dementia and brain volumes in older adults with type 2 diabetes: the atherosclerosis risk in communities (ARIC) cohort study. Diabetologia, 2018, 61(9), 1956-1965.
[http://dx.doi.org/10.1007/s00125-018-4668-1] [PMID: 29961106]
[87]
Ebadi, S.A.; Darvish, P.; Fard, A.J.; Lima, B.S.; Ahangar, O.G. Hypoglycemia and cognitive function in diabetic patients. Diabetes Metab. Syndr., 2018, 12(6), 893-896.
[http://dx.doi.org/10.1016/j.dsx.2018.05.011] [PMID: 29887517]
[88]
Zhou, Y.; Lian, S.; Zhang, J.; Lin, D.; Huang, C.; Liu, L.; Chen, Z. Mitochondrial perturbation contributing to cognitive decline in Streptozotocin-Induced Type 1 Diabetic rats. Cell. Physiol. Biochem., 2018, 46(4), 1668-1682.
[http://dx.doi.org/10.1159/000489243] [PMID: 29694977]
[89]
Gonder-Frederick, L.A.; Zrebiec, J.F.; Bauchowitz, A.U.; Ritterband, L.M.; Magee, J.C.; Cox, D.J.; Clarke, W.L. Cognitive function is disrupted by both hypo- and hyperglycemia in school-aged children with type 1 diabetes: a field study. Diabetes Care, 2009, 32(6), 1001-1006.
[http://dx.doi.org/10.2337/dc08-1722] [PMID: 19324943]
[90]
Cox, D.J.; Kovatchev, B.P.; Gonder-Frederick, L.A.; Summers, K.H.; McCall, A.; Grimm, K.J.; Clarke, W.L. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care, 2005, 28(1), 71-77.
[http://dx.doi.org/10.2337/diacare.28.1.71] [PMID: 15616236]
[91]
Perfect, M.M.; Patel, P.G.; Scott, R.E.; Wheeler, M.D.; Patel, C.; Griffin, K.; Sorensen, S.T.; Goodwin, J.L.; Quan, S.F. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep (Basel), 2012, 35(1), 81-88.
[http://dx.doi.org/10.5665/sleep.1590] [PMID: 22215921]
[92]
Foland-Ross, L.C.; Reiss, A.L.; Mazaika, P.K.; Mauras, N.; Weinzimer, S.A.; Aye, T.; Tansey, M.J.; White, N.H. Longitudinal assessment of hippocampus structure in children with type 1 diabetes. Pediatr. Diabetes, 2018, 19
[http://dx.doi.org/10.1111/pedi.12683]
[93]
Carvalho, C.; Katz, P.S.; Dutta, S.; Katakam, P.V.; Moreira, P.I.; Busija, D.W. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J. Alzheimers Dis., 2014, 38(1), 75-83.
[http://dx.doi.org/10.3233/JAD-130464] [PMID: 23948922]
[94]
Mansur, R.B.; Lee, Y.; Zhou, A.J.; Carmona, N.E.; Cha, D.S.; Rosenblat, J.D.; Bruins, R.; Kakar, R.; Rasgon, N.L.; Lovshin, J.A.; Wroolie, T.E.; Sim, K.; Brietzke, E.; Gerstein, H.C.; Rong, C.; McIntyre, R.S. Determinants of cognitive function in individuals with type 2 diabetes mellitus: A meta-analysis. Ann. Clin. Psychiatry, 2018, 30(1), 38-50.
[PMID: 29373617]
[95]
Stanisławska-Kubiak, M.; Mojs, E.; Wójciak, R.W.; Piasecki, B.; Matecka, M.; Sokalski, J.; Kopczyński, P.; Fichna, P. An analysis of cognitive functioning of children and youth with type 1 diabetes (T1DM) in the context of glycemic control. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3453-3460.
[PMID: 29917198]
[96]
Folch, J.; Ettcheto, M.; Busquets, O.; Sánchez-López, E.; Castro-Torres, R.D.; Verdaguer, E.; Manzine, P.R.; Poor, S.R.; García, M.L.; Olloquequi, J.; Beas-Zarate, C.; Auladell, C.; Camins, A. The implication of the brain insulin receptor in late onset alzheimer’s disease dementia. Pharmaceuticals (Basel), 2018, 11(1)E11
[http://dx.doi.org/10.3390/ph11010011]] [PMID: 29382127]
[97]
Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev., 2009, 30(6), 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[98]
Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci., 2012, 13(4), 225-239.
[http://dx.doi.org/10.1038/nrn3209] [PMID: 22430016]
[99]
Brüning, J.C.; Gautam, D.; Burks, D.J.; Gillette, J.; Schubert, M.; Orban, P.C.; Klein, R.; Krone, W.; Müller-Wieland, D.; Kahn, C.R. Role of brain insulin receptor in control of body weight and reproduction. Science, 2000, 289(5487), 2122-2125.
[http://dx.doi.org/10.1126/science.289.5487.2122] [PMID: 11000114]
[100]
Kleinridders, A.; Ferris, H.A.; Cai, W.; Kahn, C.R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 2014, 63(7), 2232-2243.
[http://dx.doi.org/10.2337/db14-0568] [PMID: 24931034]
[101]
Park, C.R.; Seeley, R.J.; Craft, S.; Woods, S.C. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav., 2000, 68(4), 509-514.
[http://dx.doi.org/10.1016/S0031-9384(99)00220-6] [PMID: 10713291]
[102]
Craft, S.; Newcomer, J.; Kanne, S.; Dagogo-Jack, S.; Cryer, P.; Sheline, Y.; Luby, J.; Dagogo-Jack, A.; Alderson, A. Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol. Aging, 1996, 17(1), 123-130.
[http://dx.doi.org/10.1016/0197-4580(95)02002-0] [PMID: 8786794]
[103]
Kopf, S.R.; Baratti, C.M. Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol. Learn. Mem., 1999, 71(1), 50-61.
[http://dx.doi.org/10.1006/nlme.1998.3831] [PMID: 9889072]
[104]
Kopf, S.R.; Baratti, C.M. Memory modulation by post-training glucose or insulin remains evident at long retention intervals. Neurobiol. Learn. Mem., 1996, 65(2), 189-191.
[http://dx.doi.org/10.1006/nlme.1996.0020] [PMID: 8833107]
[105]
Kopf, S.R.; Baratti, C.M. The impairment of retention induced by insulin in mice may be mediated by a reduction in central cholinergic activity. Neurobiol. Learn. Mem., 1995, 63(3), 220-228.
[http://dx.doi.org/10.1006/nlme.1995.1026] [PMID: 7670835]
[106]
Kern, W.; Peters, A.; Fruehwald-Schultes, B.; Deininger, E.; Born, J.; Fehm, H.L. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology, 2001, 74(4), 270-280.
[http://dx.doi.org/10.1159/000054694] [PMID: 11598383]
[107]
Voll, C.L.; Whishaw, I.Q.; Auer, R.N. Postischemic insulin reduces spatial learning deficit following transient forebrain ischemia in rats. Stroke, 1989, 20(5), 646-651.
[http://dx.doi.org/10.1161/01.STR.20.5.646] [PMID: 2655186]
[108]
Blanchard, J.G.; Duncan, P.M. Effect of combinations of insulin, glucose and scopolamine on radial arm maze performance. Pharmacol. Biochem. Behav., 1997, 58(1), 209-214.
[http://dx.doi.org/10.1016/S0091-3057(97)00064-6] [PMID: 9264093]
[109]
Duelli, R.; Kuschinsky, W. Brain glucose transporters: relationship to local energy demand. News Physiol. Sci., 2001, 16, 71-76.
[http://dx.doi.org/10.1152/physiologyonline.2001.16.2.71] [PMID: 11390952]
[110]
Simpson, I.A.; Appel, N.M.; Hokari, M.; Oki, J.; Holman, G.D.; Maher, F.; Koehler-Stec, E.M.; Vannucci, S.J.; Smith, Q.R. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J. Neurochem., 1999, 72(1), 238-247.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720238.x] [PMID: 9886075]
[111]
Pessin, J.E.; Bell, G.I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol., 1992, 54, 911-930.
[http://dx.doi.org/10.1146/annurev.ph.54.030192.004403] [PMID: 1562197]
[112]
Sugimoto, K.; Murakawa, Y.; Zhang, W.; Xu, G.; Sima, A.A.F. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab. Res. Rev., 2000, 16(5), 354-363.
[http://dx.doi.org/10.1002/1520-7560(200009/10)16:5<354:AID-DMRR149>3.0.CO;2-H] [PMID: 11025559]
[113]
Goldstein, B.J.; Dudley, A.L. Heterogeneity of messenger RNA that encodes the rat insulin receptor is limited to the domain of exon 11. Analysis by RNA heteroduplex mapping, amplification of cDNA, and in vitro translation. Diabetes, 1992, 41(10), 1293-1300.
[http://dx.doi.org/10.2337/diab.41.10.1293] [PMID: 1397703]
[114]
Heidenreich, K.A.; Zahniser, N.R.; Berhanu, P.; Brandenburg, D.; Olefsky, J.M. Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem., 1983, 258(14), 8527-8530.
[PMID: 6345543]
[115]
Chatterjee, S.; Mudher, A. Alzheimer’s Disease and Type 2 Diabetes: A critical assessment of the shared pathological traits. Front. Neurosci., 2018, 12, 383.
[http://dx.doi.org/10.3389/fnins.2018.00383] [PMID: 29950970]
[116]
van Bussel, F.C.; Backes, W.H.; Hofman, P.A.; Puts, N.A.; Edden, R.A.; van Boxtel, M.P.; Schram, M.T.; Stehouwer, C.D.; Wildberger, J.E.; Jansen, J.F. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning. Medicine (Baltimore), 2016, 95(36)e4803
[http://dx.doi.org/10.1097/MD.0000000000004803]] [PMID: 27603392]
[117]
Skeberdis, V.A.; Lan, J.; Zheng, X.; Zukin, R.S.; Bennett, M.V. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3561-3566.
[http://dx.doi.org/10.1073/pnas.051634698] [PMID: 11248117]
[118]
Nakazawa, K.; Quirk, M.C.; Chitwood, R.A.; Watanabe, M.; Yeckel, M.F.; Sun, L.D.; Kato, A.; Carr, C.A.; Johnston, D.; Wilson, M.A.; Tonegawa, S. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 2002, 297(5579), 211-218.
[http://dx.doi.org/10.1126/science.1071795] [PMID: 12040087]
[119]
Huerta, P.T.; Sun, L.D.; Wilson, M.A.; Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 2000, 25(2), 473-480.
[http://dx.doi.org/10.1016/S0896-6273(00)80909-5] [PMID: 10719900]
[120]
Beeri, M.S.; Schmeidler, J.; Silverman, J.M.; Gandy, S.; Wysocki, M.; Hannigan, C.M.; Purohit, D.P.; Lesser, G.; Grossman, H.T.; Haroutunian, V. Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology, 2008, 71(10), 750-757.
[http://dx.doi.org/10.1212/01.wnl.0000324925.95210.6d] [PMID: 18765651]
[121]
Escribano, L.; Simón, A.M.; Gimeno, E.; Cuadrado-Tejedor, M.; López de Maturana, R.; García-Osta, A.; Ricobaraza, A.; Pérez-Mediavilla, A.; Del Río, J.; Frechilla, D. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 2010, 35(7), 1593-1604.
[http://dx.doi.org/10.1038/npp.2010.32] [PMID: 20336061]
[122]
Korol, S.V.; Tafreshiha, A.; Bhandage, A.K.; Birnir, B.; Jin, Z. Insulin enhances GABAA receptor-mediated inhibitory currents in rat central amygdala neurons. Neurosci. Lett., 2018, 671, 76-81.
[http://dx.doi.org/10.1016/j.neulet.2018.02.022] [PMID: 29447952]
[123]
De Felice, F.G.; Vieira, M.N.; Bomfim, T.R.; Decker, H.; Velasco, P.T.; Lambert, M.P.; Viola, K.L.; Zhao, W.Q.; Ferreira, S.T.; Klein, W.L. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1971-1976.
[http://dx.doi.org/10.1073/pnas.0809158106] [PMID: 19188609]
[124]
Zhao, W.Q.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J., 2008, 22(1), 246-260.
[http://dx.doi.org/10.1096/fj.06-7703com] [PMID: 17720802]
[125]
Gupta, S.; Singhal, N.K.; Ganesh, S.; Sandhir, R. Extending arms of insulin resistance from diabetes to Alzheimer’s Disease: identification of potential therapeutic targets. CNS Neurol. Disord. Drug Targets, 2019, 18(3), 172-184.
[http://dx.doi.org/10.2174/1871527317666181114163515] [PMID: 30430949]
[126]
Gąsiorowski, K.; Brokos, B.; Leszek, J.; Tarasov, V.V.; Ashraf, G.M.; Aliev, G. Insulin resistance in alzheimer disease: p53 and micrornas as important players. Curr. Top. Med. Chem., 2017, 17(12), 1429-1437.
[http://dx.doi.org/10.2174/1568026617666170103161233] [PMID: 28049397]
[127]
Neth, B.J.; Craft, S. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages. Front. Aging Neurosci., 2017, 9, 345.
[http://dx.doi.org/10.3389/fnagi.2017.00345] [PMID: 29163128]
[128]
Deak, F.; Sonntag, W.E. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J. Gerontol. A Biol. Sci. Med. Sci., 2012, 67(6), 611-625.
[http://dx.doi.org/10.1093/gerona/gls118] [PMID: 22503992]
[129]
Martín-Segura, A.; Ahmed, T.; Casadomé-Perales, Á.; Palomares-Perez, I.; Palomer, E.; Kerstens, A.; Munck, S.; Balschun, D.; Dotti, C.G. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell, 2019, 18(3)e12932
[http://dx.doi.org/10.1111/acel.12932]] [PMID: 30884121]
[130]
Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; Arvanitakis, Z.; Schneider, J.A.; Wolf, B.A.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest., 2012, 122(4), 1316-1338.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[131]
Tumminia, A.; Vinciguerra, F.; Parisi, M.; Frittitta, L. Type 2 diabetes mellitus and alzheimer’s disease: role of insulin signalling and therapeutic implications. Int. J. Mol. Sci., 2018, 19(11)E3306
[http://dx.doi.org/10.3390/ijms19113306]] [PMID: 30355995]
[132]
Folch, J.; Olloquequi, J.; Ettcheto, M.; Busquets, O.; Sánchez-López, E.; Cano, A.; Espinosa-Jiménez, T.; García, M.L.; Beas-Zarate, C.; Casadesús, G.; Bulló, M.; Auladell, C.; Camins, A. The involvement of peripheral and brain insulin resistance in late onset Alzheimer’s Dementia. Front. Aging Neurosci., 2019, 11, 236.
[http://dx.doi.org/10.3389/fnagi.2019.00236] [PMID: 31551756]
[133]
Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 1996, 271(5249), 665-668.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[134]
Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; Holscher, C.; Arnold, S.E.; Talbot, K.; Klein, W.L.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J. Clin. Invest., 2012, 122(4), 1339-1353.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[135]
Hirosumi, J.; Tuncman, G.; Chang, L.; Görgün, C.Z.; Uysal, K.T.; Maeda, K.; Karin, M.; Hotamisligil, G.S. A central role for JNK in obesity and insulin resistance. Nature, 2002, 420(6913), 333-336.
[http://dx.doi.org/10.1038/nature01137] [PMID: 12447443]
[136]
Morfini, G.A.; You, Y.M.; Pollema, S.L.; Kaminska, A.; Liu, K.; Yoshioka, K.; Björkblom, B.; Coffey, E.T.; Bagnato, C.; Han, D.; Huang, C.F.; Banker, G.; Pigino, G.; Brady, S.T. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci., 2009, 12(7), 864-871.
[http://dx.doi.org/10.1038/nn.2346] [PMID: 19525941]
[137]
Joly-Amado, A.; Gratuze, M.; Benderradji, H.; Vieau, D.; Buée, L.; Blum, D. Brain insulin signaling and Tau: impact for Alzheimer’s disease and Tauopathies. Med. Sci. (Paris), 2018, 34(11), 929-935.
[http://dx.doi.org/10.1051/medsci/2018238] [PMID: 30526837]
[138]
Wang, H.; Chen, F.; Du, Y.F.; Long, Y.; Reed, M.N.; Hu, M.; Suppiramaniam, V.; Hong, H.; Tang, S.S. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology, 2018, 131, 143-153.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.026] [PMID: 29248482]
[139]
Chen, F.; Ghosh, A.; Hu, M.; Long, Y.; Sun, H.; Kong, L.; Hong, H.; Tang, S. RAGE-NF-κB-PPARγ signaling is involved in AGEs-induced upregulation of amyloid-β Influx transport in an In Vitro BBB Model. Neurotox. Res., 2018, 33(2), 284-299.
[http://dx.doi.org/10.1007/s12640-017-9784-z] [PMID: 28871412]
[140]
Yermakov, L.M.; Drouet, D.E.; Griggs, R.B.; Elased, K.M.; Susuki, K. Type 2 Diabetes leads to axon initial segment shortening in db/db Mice. Front. Cell. Neurosci., 2018, 12, 146.
[http://dx.doi.org/10.3389/fncel.2018.00146] [PMID: 29937715]
[141]
Yin, H.; Tian, S.; Huang, R.; Cai, R.; Guo, D.; Lin, H.; Wang, J.; Wang, S. Low plasma leptin and high soluble leptin receptor levels are associated with mild cognitive impairment in type 2 diabetic patients. Front. Aging Neurosci., 2018, 10, 132.
[http://dx.doi.org/10.3389/fnagi.2018.00132] [PMID: 29867443]
[142]
Huang, R.; Han, J.; Tian, S.; Cai, R.; Sun, J.; Shen, Y.; Wang, S. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients. Oncotarget, 2017, 8(9), 15126-15135.
[http://dx.doi.org/10.18632/oncotarget.14852] [PMID: 28146431]
[143]
Chen, S.; Zuo, X.; Li, Y.; Jiang, T.; Zhang, N.; Dai, F.; Chen, Q.; Zhang, Q. Ghrelin is a possible new predictor associated with executive function in patients with type 2 diabetes mellitus. J. Diabetes Investig., 2017, 8(3), 306-313.
[http://dx.doi.org/10.1111/jdi.12580] [PMID: 27689345]
[144]
Wang, J.; Yuan, Y.; Cai, R.; Huang, R.; Tian, S.; Lin, H.; Guo, D.; Wang, S. Association between plasma levels of PAI-1, tPA/PAI-1 molar ratio, and mild cognitive impairment in Chinese patients with Type 2 Diabetes Mellitus. J. Alzheimers Dis., 2018, 63(2), 835-845.
[http://dx.doi.org/10.3233/JAD-171038] [PMID: 29689724]
[145]
Kim, H.G. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ. J. Med., 2019, 36(3), 183-191.
[http://dx.doi.org/10.12701/yujm.2019.00255]] [PMID: 31620632]
[146]
van Sloten, T.T.; Sedaghat, S.; Carnethon, M.R.; Launer, L.J.; Stehouwer, C.D.A. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol., 2020, 8(4), 325-336.
[http://dx.doi.org/10.1016/S2213-8587(19)30405-X.]]
[147]
Kim, O.Y.; Song, J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol. Res., 2020, 160105083
[http://dx.doi.org/10.1016/j.phrs.2020.105083]] [PMID: 32679182]
[148]
Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda, T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.; Morishita, R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA, 2010, 107(15), 7036-7041.
[http://dx.doi.org/10.1073/pnas.1000645107] [PMID: 20231468]
[149]
Yakushiji, Y.; Charidimou, A.; Noguchi, T.; Nishihara, M.; Eriguchi, M.; Nanri, Y.; Kawaguchi, A.; Hirotsu, T.; Werring, D.J.; Hara, H. Total small vessel disease score in neurologically healthy japanese adults in the Kashima Scan Study. Intern. Med., 2018, 57(2), 189-196.
[http://dx.doi.org/10.2169/internalmedicine.8393-16] [PMID: 29033410]
[150]
Kim, J.; Park, E.; An, M. The Cognitive impact of chronic diseases on functional capacity in community-dwelling adults. J. Nurs. Res., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1097/JNR.0000000000000345] [PMID: 29985821]
[151]
Thein, F.S.; Li, Y.; Nyunt, M.S.Z.; Gao, Q.; Wee, S.L.; Ng, T.P. Physical frailty and cognitive impairment is associated with diabetes and adversely impact functional status and mortality. Postgrad. Med., 2018, 130(6), 561-567.
[http://dx.doi.org/10.1080/00325481.2018.1491779] [PMID: 29949390]
[152]
Malhotra, R.K. Neurodegenerative disorders and sleep. Sleep Med. Clin., 2018, 13(1), 63-70.
[http://dx.doi.org/10.1016/j.jsmc.2017.09.006] [PMID: 29412984]
[153]
Brzecka, A.; Leszek, J.; Ashraf, G.M.; Ejma, M.; Ávila-Rodriguez, M.F.; Yarla, N.S.; Tarasov, V.V.; Chubarev, V.N.; Samsonova, A.N.; Barreto, G.E.; Aliev, G. Sleep disorders associated with alzheimer’s disease: a perspective. Front. Neurosci., 2018, 12, 330.
[http://dx.doi.org/10.3389/fnins.2018.00330] [PMID: 29904334]
[154]
Sharma, R.A.; Varga, A.W.; Bubu, O.M.; Pirraglia, E.; Kam, K.; Parekh, A.; Wohlleber, M.; Miller, M.D.; Andrade, A.; Lewis, C.; Tweardy, S.; Buj, M.; Yau, P.L.; Sadda, R.; Mosconi, L.; Li, Y.; Butler, T.; Glodzik, L.; Fieremans, E.; Babb, J.S.; Blennow, K.; Zetterberg, H.; Lu, S.E.; Badia, S.G.; Romero, S.; Rosenzweig, I.; Gosselin, N.; Jean-Louis, G.; Rapoport, D.M.; de Leon, M.J.; Ayappa, I.; Osorio, R.S. Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. a longitudinal study. Am. J. Respir. Crit. Care Med., 2018, 197(7), 933-943.
[http://dx.doi.org/10.1164/rccm.201704-0704OC] [PMID: 29125327]
[155]
Bucks, R.S.; Olaithe, M.; Eastwood, P. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology, 2013, 18(1), 61-70.
[http://dx.doi.org/10.1111/j.1440-1843.2012.02255.x]] [PMID: 22913604]
[156]
Olaithe, M.; Bucks, R.S.; Hillman, D.R.; Eastwood, P.R. Cognitive deficits in obstructive sleep apnea: Insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation. Sleep Med. Rev., 2018, 38, 39-49.
[http://dx.doi.org/10.1016/j.smrv.2017.03.005] [PMID: 28760549]
[157]
Sung, P.S.; Yeh, C.C.; Wang, L.C.; Hung, P.H.; Muo, C.H.; Sung, F.C.; Chen, C.H.; Tsai, K.J. Increased risk of dementia in patients with non-apnea sleep disorder. Curr. Alzheimer Res., 2017, 14(3), 309-316.
[http://dx.doi.org/10.2174/1567205013666161108104703] [PMID: 27829341]
[158]
Mander, B.A.; Winer, J.R.; Jagust, W.J.; Walker, M.P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci., 2016, 39(8), 552-566.
[http://dx.doi.org/10.1016/j.tins.2016.05.002] [PMID: 27325209]
[159]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147)147ra111
[http://dx.doi.org/10.1126/scitranslmed.3003748]] [PMID: 22896675]
[160]
Jagust, W. Is amyloid-β harmful to the brain? Insights from human imaging studies. Brain, 2016, 139(Pt 1), 23-30.
[http://dx.doi.org/10.1093/brain/awv326] [PMID: 26614753]
[161]
Boespflug, E.L.; Iliff, J.J. The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-β, and sleep. Biol. Psychiatry, 2018, 83(4), 328-336.
[http://dx.doi.org/10.1016/j.biopsych.2017.11.031] [PMID: 29279202]
[162]
Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; Takano, T.; Deane, R.; Nedergaard, M. Sleep drives metabolite clearance from the adult brain. Science, 2013, 342(6156), 373-377.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[163]
Kang, J.E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science, 2009, 326(5955), 1005-1007.
[http://dx.doi.org/10.1126/science.1180962] [PMID: 19779148]
[164]
Zhao, B.; Liu, P.; Wei, M.; Li, Y.; Liu, J.; Ma, L.; Shang, S.; Jiang, Y.; Huo, K.; Wang, J.; Qu, Q. Chronic sleep restriction induces aβ accumulation by disrupting the balance of Aβ production and clearance in rats. Neurochem. Res., 2019, 44(4), 859-873.
[http://dx.doi.org/10.1007/s11064-019-02719-2] [PMID: 30632087]
[165]
Ooms, S.; Overeem, S.; Besse, K.; Rikkert, M.O.; Verbeek, M.; Claassen, J.A. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol., 2014, 71(8), 971-977.
[http://dx.doi.org/10.1001/jamaneurol.2014.1173] [PMID: 24887018]
[166]
Shokri-Kojori, E.; Wang, G.J.; Wiers, C.E.; Demiral, S.B.; Guo, M.; Kim, S.W.; Lindgren, E.; Ramirez, V.; Zehra, A.; Freeman, C.; Miller, G.; Manza, P.; Srivastava, T.; De Santi, S.; Tomasi, D.; Benveniste, H.; Volkow, N.D. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. USA, 2018, 115(17), 4483-4488.
[http://dx.doi.org/10.1073/pnas.1721694115] [PMID: 29632177]
[167]
Zhang, L.; Chopp, M.; Jiang, Q.; Zhang, Z. Role of the glymphatic system in ageing and diabetes mellitus impaired cognitive function. Stroke Vasc. Neurol., 2019, 4(2), 90-92.
[http://dx.doi.org/10.1136/svn-2018-000203] [PMID: 31338217]
[168]
Jiang, Q.; Zhang, L.; Ding, G.; Davoodi-Bojd, E.; Li, Q.; Li, L.; Sadry, N.; Nedergaard, M.; Chopp, M.; Zhang, Z. Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab., 2017, 37(4), 1326-1337.
[http://dx.doi.org/10.1177/0271678X16654702] [PMID: 27306755]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy