Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Ubiquitin E3 Ligase in Atherosclerosis

Author(s): Zhi-Xiang Zhou, Zhong Ren, Bin-Jie Yan, Shun-Lin Qu, Zhi-Han Tang , Dang-Heng Wei, Lu-Shan Liu, Min-Gui Fu and Zhi-Sheng Jiang*

Volume 28, Issue 1, 2021

Published on: 06 March, 2020

Page: [152 - 168] Pages: 17

DOI: 10.2174/0929867327666200306124418

Price: $65

Abstract

Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.

Keywords: Atherosclerosis, ubiquitin E3 ligases, vascular inflammation, endothelial dysfunction, vascular smooth muscle cell function, lipid metabolism.

[1]
Gao, S.; Liu, J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med., 2017, 3(2), 89-94.
[http://dx.doi.org/10.1016/j.cdtm.2017.02.008] [PMID: 29063061]
[2]
Zimmer, S.; Grebe, A.; Latz, E. Danger signaling in atherosclerosis. Circ. Res., 2015, 116(2), 323-340.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.301135] [PMID: 25593277]
[3]
Habas, K.; Shang, L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell, 2018, 54, 139-143.
[http://dx.doi.org/10.1016/j.tice.2018.09.002] [PMID: 30309503]
[4]
Raffai, R.L. MicroRNA-146a & hematopoiesis: friend or foe in atherosclerosis. Non-coding RNA Investig., 2018, 2, 43.
[http://dx.doi.org/10.21037/ncri.2018.06.08 ] [PMID: 30101215]
[5]
Sozen, E.; Karademir, B.; Yazgan, B.; Bozaykut, P.; Ozer, N.K. Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis. Redox Biol., 2014, 2, 732-738.
[http://dx.doi.org/10.1016/j.redox.2014.02.007] [PMID: 25009774]
[6]
Bekkering, S.; Quintin, J.; Joosten, L.A.; van der Meer, J.W.; Netea, M.G.; Riksen, N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol., 2014, 34(8), 1731-1738.
[http://dx.doi.org/10.1161/ATVBAHA.114.303887] [PMID: 24903093]
[7]
Shah, P.K. Inflammation, infection and atherosclerosis. Trends Cardiovasc. Med., 2019, 29(8), 468-472.
[http://dx.doi.org/10.1016/j.tcm.2019.01.004] [PMID: 30733074]
[8]
Park, J.G.; Oh, G.T. Current pharmacotherapies for atherosclerotic cardiovascular diseases. Arch. Pharm. Res., 2019, 42(3), 206-223.
[http://dx.doi.org/10.1007/s12272-019-01116-1] [PMID: 30725249]
[9]
Lv, Z.; Yuan, L.; Atkison, J.H.; Aldana-Masangkay, G.; Chen, Y.; Olsen, S.K. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. J. Biol. Chem., 2017, 292(29), 12089-12099.
[http://dx.doi.org/10.1074/jbc.M117.787622] [PMID: 28572513]
[10]
Alpi, A.F.; Chaugule, V.; Walden, H. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem. J., 2016, 473(20), 3401-3419.
[http://dx.doi.org/10.1042/BCJ20160028] [PMID: 27729585]
[11]
Middleton, A.J.; Wright, J.D.; Day, C.L. Regulation of E2s: a role for additional Ubiquitin binding sites? J. Mol. Biol., 2017, 429(22), 3430-3440.
[http://dx.doi.org/10.1016/j.jmb.2017.06.008] [PMID: 28625848]
[12]
Demasi, M.; Laurindo, F.R. Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell. Cardiovasc. Res., 2012, 95(2), 183-193.
[http://dx.doi.org/10.1093/cvr/cvs128] [PMID: 22451513]
[13]
Kim, S.Y.; Baek, K.H. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell. Mol. Life Sci., 2019, 76(4), 653-665.
[http://dx.doi.org/10.1007/s00018-018-2949-y] [PMID: 30349992]
[14]
Gupta, I.; Singh, K.; Varshney, N.K.; Khan, S. Delineating crosstalk mechanisms of the ubiquitin proteasome system that regulate apoptosis. Front. Cell Dev. Biol., 2018, 6, 11.
[http://dx.doi.org/10.3389/fcell.2018.00011 ] [PMID: 29479529]
[15]
Ji, C.H.; Kwon, Y.T. Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol. Cells, 2017, 40(7), 441-449.
[http://dx.doi.org/10.14348/molcells.2017.0115] [PMID: 28743182]
[16]
Morreale, F.E.; Walden, H. Types of ubiquitin ligases. Cell, 2016, 165(1), 248-248.e1.
[http://dx.doi.org/10.1016/j.cell.2016.03.003 ] [PMID: 27015313]
[17]
Wilck, N.; Ludwig, A. Targeting the ubiquitin-proteasome system in atherosclerosis:status quo, challenges, and perspectives. Antioxid. Redox Signal., 2014, 21(17), 2344-2363.
[http://dx.doi.org/10.1089/ars.2013.5805] [PMID: 24506455]
[18]
Zhang, W.; Xu, W.; Chen, W.; Zhou, Q. Interplay of autophagy inducer rapamycin and proteasome inhibitor mg132 in reduction of foam cell formation and inflammatory cytokine expression. Cell Transplant., 2018, 27(8), 1235-1248.
[http://dx.doi.org/10.1177/0963689718786229] [PMID: 30001636]
[19]
Ogura, M.; Ayaori, M.; Terao, Y.; Hisada, T.; Iizuka, M.; Takiguchi, S. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 1980-1987.
[http://dx.doi.org/10.1161/ATVBAHA.111.228478] [PMID: 21817095]
[20]
Sluimer, J.; Distel, B. Regulating the human HECT E3 ligases. Cell. Mol. Life Sci., 2018, 75(17), 3121-3141.
[http://dx.doi.org/10.1007/s00018-018-2848-2] [PMID: 29858610]
[21]
Wang, D.; Ma, L.; Wang, B.; Liu, J.; Wei, W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev., 2017, 36(4), 683-702.
[http://dx.doi.org/10.1007/s10555-017-9703-z] [PMID: 29043469]
[22]
Walden, H.; Rittinger, K. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns. Nat. Struct. Mol. Biol., 2018, 25(6), 440-445.
[http://dx.doi.org/10.1038/s41594-018-0063-3] [PMID: 29735995]
[23]
Reiter, K.H.; Klevit, R.E. Characterization of RING-between-RING E3 ubiquitin transfer mechanisms. Methods Mol. Biol., 2018, 1844, 3-17.
[http://dx.doi.org/10.1007/978-1-4939-8706-1_1] [PMID: 30242699]
[24]
Lu, Y.; Thavarajah, T.; Gu, W.; Cai, J.; Xu, Q. Impact of miRNA in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2018, 38(9), e159-e170.
[http://dx.doi.org/10.1161/ATVBAHA.118.310227] [PMID: 30354259]
[25]
Hedin, U.; Matic, L.P. Recent advances in therapeutic targeting of inflammation in atherosclerosis. J. Vasc. Surg., 2019, 69(3), 944-951.
[http://dx.doi.org/10.1016/j.jvs.2018.10.051] [PMID: 30591299]
[26]
Zhou, T.; Ding, J.W.; Wang, X.A.; Zheng, X.X. Long noncoding RNAs and atherosclerosis. Atherosclerosis, 2016, 248, 51-61.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.025] [PMID: 26987066]
[27]
Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28.
[http://dx.doi.org/10.1111/jcmm.12689] [PMID: 26493158]
[28]
Stöhr, R.; Mavilio, M.; Marino, A.; Casagrande, V.; Kappel, B.; Möllmann, J.; Menghini, R.; Melino, G.; Federici, M. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Sci. Rep., 2015, 5, 9023.
[http://dx.doi.org/10.1038/srep09023] [PMID: 25777360]
[29]
Calkin, A.C.; Lee, S.D.; Kim, J.; Van Stijn, C.M.W.; Wu, X-H.; Lusis, A.J.; Hong, C.; Tangirala, R.I.; Tontonoz, P. Transgenic expression of dominant-active IDOL in liver causes diet-induced hypercholesterolemia and atherosclerosis in mice. Circ. Res., 2014, 115(4), 442-449.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304440] [PMID: 24935961]
[30]
Hong, C.; Duit, S.; Jalonen, P.; Out, R.; Scheer, L.; Sorrentino, V.; Boyadjian, R.; Rodenburg, K.W.; Foley, E.; Korhonen, L.; Lindholm, D.; Nimpf, J.; van Berkel, T.J.C.; Tontonoz, P.; Zelcer, N. The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2. J. Biol. Chem., 2010, 285(26), 19720-19726.
[http://dx.doi.org/10.1074/jbc.M110.123729] [PMID: 20427281]
[31]
Tsai, Y.C.; Leichner, G.S.; Pearce, M.M.P.; Wilson, G.L.; Wojcikiewicz, R.J.H.; Roitelman, J.; Weissman, A.M. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol. Biol. Cell, 2012, 23(23), 4484-4494.
[http://dx.doi.org/10.1091/mbc.e12-08-0631] [PMID: 23087214]
[32]
Liu, T-F.; Tang, J-J.; Li, P-S.; Shen, Y.; Li, J-G.; Miao, H-H.; Li, B-L.; Song, B-L. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab., 2012, 16(2), 213-225.
[http://dx.doi.org/10.1016/j.cmet.2012.06.014] [PMID: 22863805]
[33]
Loregger, A.; Cook, E.C.; Nelson, J.K.; Moeton, M.; Sharpe, L.J.; Engberg, S.; Karimova, M.; Lambert, G.; Brown, A.J.; Zelcer, N.A. MARCH6 and IDOL E3 ubiquitin ligase circuit uncouples cholesterol synthesis from lipoprotein Uptake in hepatocytes. Mol. Cell. Biol., 2015, 36(2), 285-294.
[http://dx.doi.org/10.1128/MCB.00890-15] [PMID: 26527619]
[34]
Zelcer, N.; Sharpe, L.J.; Loregger, A.; Kristiana, I.; Cook, E.C.; Phan, L.; Stevenson, J.; Brown, A.J. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol. Cell. Biol., 2014, 34(7), 1262-1270.
[http://dx.doi.org/10.1128/MCB.01140-13] [PMID: 24449766]
[35]
Cook, E.C.; Nelson, J.K.; Sorrentino, V.; Koenis, D.; Moeton, M.; Scheij, S. Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLoS One, 2017, 12(2)e0172721
[http://dx.doi.org/10.1371/journal.pone.0172721] [PMID: 28231341]
[36]
Jiang, L.Y.; Jiang, W.; Tian, N.; Xiong, Y.N.; Liu, J.; Wei, J. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J. Biol. Chem., 2018, 293(11), 4047-4055.
[http://dx.doi.org/10.1074/jbc.RA117.001260 ] [PMID: 29374057]
[37]
Jin, P.; Bian, Y.; Wang, K.; Cong, G.; Yan, R.; Sha, Y.; Ma, X.; Zhou, J.; Yuan, Z.; Jia, S. Homocysteine accelerates atherosclerosis via inhibiting LXRα-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Life Sci., 2018, 214, 41-50.
[http://dx.doi.org/10.1016/j.lfs.2018.10.060 ] [PMID: 30393020]
[38]
Aleidi, S.M.; Howe, V.; Sharpe, L.J.; Yang, A.; Rao, G.; Brown, A.J.; Gelissen, I.C. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J. Biol. Chem., 2015, 290(40), 24604-24613.
[http://dx.doi.org/10.1074/jbc.M115.675579] [PMID: 26296893]
[39]
Schumacher, T.; Benndorf, R.A. ABC transport proteins in cardiovascular disease-a brief summary. Molecules, 2017, 22(4)E589
[http://dx.doi.org/10.3390/molecules22040589] [PMID: 28383515`]
[40]
Aleidi, S.M.; Yang, A.; Sharpe, L.J.; Rao, G.; Cochran, B.J.; Rye, K.A.; Kockx, M.; Brown, A.J.; Gelissen, I.C. The E3 ubiquitin ligase, HECTD1, is involved in ABCA1-mediated cholesterol export from macrophages. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(4), 359-368.
[http://dx.doi.org/10.1016/j.bbalip.2017.12.011] [PMID: 29306077]
[41]
Li, S.; Shao, J.; Xia, M.; Zhang, N.; Yang, J.; Li, H.; Jiang, H. Thrombopoietin and its receptor expression in pediatric patients with chronic immune thrombocytopenia. Hematology., 2018, 23(7), 433-438.
[http://dx.doi.org/10.1080/10245332.2017.1422316] [PMID: 29313460]
[42]
Saur, S.J.; Sangkhae, V.; Geddis, A.E.; Kaushansky, K.; Hitchcock, I.S. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood, 2010, 115(6), 1254-1263.
[http://dx.doi.org/10.1182/blood-2009-06-227033] [PMID: 19880496]
[43]
Murphy, A.J.; Bijl, N.; Yvan-Charvet, L.; Welch, C.B.; Bhagwat, N.; Reheman, A.; Wang, Y.; Shaw, J.A.; Levine, R.L.; Ni, H.; Tall, A.R.; Wang, N. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med., 2013, 19(5), 586-594.
[http://dx.doi.org/10.1038/nm.3150] [PMID: 23584088]
[44]
Raghavan, S.; Singh, N.K.; Mani, A.M.; Rao, G.N. Protease-activated receptor 1 inhibits cholesterol efflux and promotes atherogenesis via cullin 3-mediated degradation of the ABCA1 transporter. J. Biol. Chem., 2018, 293(27), 10574-10589.
[http://dx.doi.org/10.1074/jbc.RA118.003491] [PMID: 29777060]
[45]
Pi, X.; Xie, L.; Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res., 2018, 123(4), 477-494.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313237] [PMID: 30355249]
[46]
Amado-Azevedo, J.; de Menezes, R.X.; van Nieuw Amerongen, G.P.; van Hinsbergh, V.W.M.; Hordijk, P.L. A functional siRNA screen identifies RhoGTPase-associated genes involved in thrombin-induced endothelial permeability. PLoS One, 2018, 13(7)e0201231
[http://dx.doi.org/10.1371/journal.pone.0201231] [PMID: 30048510]
[47]
Kovačević, I.; Sakaue, T.; Majoleé, J.; Pronk, M.C.; Maekawa, M.; Geerts, D.; Fernandez-Borja, M.; Higashiyama, S.; Hordijk, P.L. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB. J. Cell Biol., 2018, 217(3), 1015-1032.
[http://dx.doi.org/10.1083/jcb.201606055] [PMID: 29358211]
[48]
Choi, K.S.; Choi, H.J.; Lee, J.K. Im, S.; Zhang, H.; Jeong, Y.; Park, J.A.; Lee, I.-K.; Kim, Y.-M.; Kwon, Y.-G. The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell. Signal., 2016, 28(11), 1642-1651.
[http://dx.doi.org/10.1016/j.cellsig.2016.07.015] [PMID: 27498087]
[49]
Li, Y.; Huang, X.; Guo, F.; Lei, T.; Li, S.; Monaghan-Nichols, P.; Jiang, Z.; Xin, H.B.; Fu, M. TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. J. Mol. Cell Biol., 2019.
[http://dx.doi.org/10.1093/jmcb/mjz077] [PMID: 31310649]
[50]
Wu, W.; Xu, H.; Wang, Z.; Mao, Y.; Yuan, L.; Luo, W. PINK1-parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PLoS One, 2015, 10(7)e0132499
[http://dx.doi.org/10.1371/journal.pone.0132499] [PMID: 26161534]
[51]
Babaev, V.R.; Ding, L.; Zhang, Y.; May, J.M.; Ramsey, S.A.; Vickers, K.C. Loss of 2 Akt (protein kinase B) isoforms in hematopoietic cells diminished monocyte and macrophage survival and reduces atherosclerosis in Ldl receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2019, 39(2), 156-169.
[http://dx.doi.org/10.1161/ATVBAHA.118.312206] [PMID: 30567482]
[52]
Ding, L.; Biswas, S.; Morton, R.E.; Smith, J.D.; Hay, N.; Byzova, T.V. Febbraio, M.; Podrez, E.A. Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice. Cell Metab., 2012, 15, 861-872.
[http://dx.doi.org/10.1016/j.cmet.2012.04.020] [PMID: 22632897]
[53]
Rensing, K.L.; de Jager, S.C.; Stroes, E.S.; Vos, M.; Twickler, M.T.; Dallinga-Thie, G.M.; de Vries, C.J.M.; Kuiper, J. Bot, von der Thüsen, J.H. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice. Cardiovasc. Res., 2014, 101, 277-287.
[http://dx.doi.org/10.1093/cvr/cvt252] [PMID: 24220638]
[54]
Kim, S.Y.; Lee, J.H.; Huh, J.W.; Ro, J.Y.; Oh, Y.M.; Lee, S.D.; An, S.; Lee, Y-S. Cigarette smoke induces Akt protein degradation by the ubiquitin-proteasome system. J. Biol. Chem., 2011, 286, 31932-31943.
[http://dx.doi.org/10.1074/jbc.M111.267633] [PMID: 21778238]
[55]
Kim, S.Y.; Kim, H.J.; Park, M.K.; Huh, J.W.; Park, H.Y.; Ha, S.Y. Mitochondrial E3 ubiquitin protein ligase 1 mediates cigarette smoke-induced endothelial cell death and dysfunction. Am. J. Respir. Cell Mol. Biol., 2016, 54(2), 284-296.
[http://dx.doi.org/10.1165/rcmb.2014-0377OC] [PMID: 26203915]
[56]
Mudau, M.; Genis, A.; Lochner, A.; Strijdom, H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Afr., 2012, 23, 222-231.
[http://dx.doi.org/10.5830/CVJA-2011-068] [PMID: 22614668]
[57]
Lee, S.H.; Seo, J.; Park, S.Y.; Jeong, M.H.; Choi, H.K.; Lee, C.J.; Kim, M.J.; Guk, G.; Lee, S.Y.; Park, H.; Jeong, J-W.; Ha, C.H. Park, Yoon, H.-G. Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4672-4677.
[http://dx.doi.org/10.1073/pnas.1712918115] [PMID: 29588416]
[58]
Xia, W.; Yin, J.; Zhang, S.; Guo, C.; Li, Y.; Zhang, Y. Parkin modulates ERRα/eNOS signaling pathway in endothelial cells. Cell. Physiol. Biochem., 2018, 49(5), 2022-2034.
[http://dx.doi.org/10.1159/000493713] [PMID: 30244249]
[59]
Matsumoto, K.; Nishiya, T.; Maekawa, S.; Horinouchi, T.; Ogasawara, K.; Uehara, T. The ECS(SPSB) E3 ubiquitin ligase is the master regulator of the lifetime of inducible nitric-oxide synthase. Biochem. Biophys. Res. Commun., 2011, 409(1), 46-51.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.103] [PMID: 21549100]
[60]
Xia, X.D.; Zhou, Z.; Yu, X.H.; Zheng, X.L.; Tang, C.K. Myocardin: A novel player in atherosclerosis. Atherosclerosis, 2017, 257, 266-278.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.12.002] [PMID: 28012646]
[61]
Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res., 2016, 118(4), 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361]
[62]
Arndt, V.; Rogon, C.; Hohfeld, J. To be or not to be-molecular chaperones in protein degradation. Cell. Mol. Life Sci., 2007, 64, 2525-2541.
[http://dx.doi.org/10.1007/s00018-007-7188-6] [PMID: 17565442]
[63]
Xie, P.; Fan, Y.; Zhang, H.; Zhang, Y.; She, M.; Gu, D.; Patterson, C.; Li, H. CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation. Mol. Cell. Biol., 2009, 29(9), 2398-2408.
[http://dx.doi.org/10.1128/MCB.01737-08] [PMID: 19237536]
[64]
Lee, G.L.; Yeh, C.C.; Wu, J.Y.; Lin, H.C.; Wang, Y.F.; Kuo, Y.Y. TLR2 promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction. Arterioscler. Thromb. Vasc. Biol., 2019, 39(3), 432-445.
[http://dx.doi.org/10.1161/ATVBAHA.118.311874] [PMID: 30626205]
[65]
Zhan, J.K.; Wang, Y.J.; Wang, Y.; Tang, Z.Y.; Tan, P.; Huang, W.; Liu, Y-S. Adiponectin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the AMPK/mTOR pathway. Exp. Cell Res., 2014, 323, 352-358.
[http://dx.doi.org/10.1016/j.yexcr.2014.02.016] [PMID: 24607448]
[66]
Shao, C.; Li, Z. Ahmad, N.; Liu, X. Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb. Cell Cycle, 2017, 16(10), 957-967.
[http://dx.doi.org/10.1080/15384101.2017.1310351] [PMID: 28437168]
[67]
Salah, Z.; Cohen, S.; Itzhaki, E.; Aqeilan, R. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation. Cell Cycle, 2013, 12(24), 3817-3823.
[http://dx.doi.org/10.4161/cc.26672] [PMID: 24107629]
[68]
Lee, J.H.; Jeon, S.A.; Kim, B.G.; Takeda, M.; Cho, J.J.; Kim, D.I.; Kawabe, H.; Cho, J-Y. Nedd4 deficiency in vascular smooth muscle promotes vascular calcification by stabilizing pSmad1. J. Bone Miner. Res., 2017, 32(5), 927-938.
[http://dx.doi.org/10.1002/jbmr.3073] [PMID: 28029182]
[69]
Miao, S.B.; Xie, X.L.; Yin, Y.J.; Zhao, L.L.; Zhang, F.; Shu, Y.N.; Chen, R.; Chen, P.; Dong, L-H.; Lin, Y-L.; Lv, P.; Zhang, D-D.; Nie, X.; Xue, Z-Y.; Han, M. Accumulation of smooth muscle 22α protein accelerates senescence of vascular smooth muscle cells via stabilization of p53 in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2017, 37(10), 1849-1859.
[http://dx.doi.org/10.1161/ATVBAHA.117.309378] [PMID: 28798142]
[70]
Hashimoto, T.; Ichiki, T.; Ikeda, J.; Narabayashi, E.; Matsuura, H.; Miyazaki, R. Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation. Cardiovasc. Res., 2011, 91(4), 711-719.
[http://dx.doi.org/10.1093/cvr/cvr108]
[71]
Li, Y.; Ma, C.; Zhou, T.; Liu, Y.; Sun, L.; Yu, Z. TRIM65 negatively regulates p53 through ubiquitination. Biochem. Biophys. Res. Commun., 2016, 473(1), 278-282.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.093] [PMID: 27012201]
[72]
Swiader, A.; Nahapetyan, H.; Faccini, J.; D’Angelo, R.; Mucher, E.; Elbaz, M.; Boya, P.; Vindis, C. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget, 2016, 7, 28821-28835.
[http://dx.doi.org/10.18632/oncotarget.8936] [PMID: 27119505]
[73]
Madonna, R.; De Caterina, R. Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascul. Pharmacol., 2012, 57(1), 41-47.
[http://dx.doi.org/10.1016/j.vph.2012.02.005] [PMID: 22366375]
[74]
Qiu, H.; Huang, F.; Xiao, H.; Sun, B.; Yang, R. TRIM22 inhibits the TRAF6-stimulated NF-κB pathway by targeting TAB2 for degradation. Virol. Sin., 2013, 28(4), 209-215.
[http://dx.doi.org/10.1007/s12250-013-3343-4] [PMID: 23818111]
[75]
Brigant, B.; Metzinger-Le Meuth, V.; Rochette, J.; Metzinger, L. TRIMming down to TRIM37: relevance to inflammation, cardiovascular disorders, and cancer in MULIBREY Nanism. Int. J. Mol. Sci., 2018, 20(1), 67.
[http://dx.doi.org/10.3390/ijms20010067] [PMID: 30586926]
[76]
Wang, Y.; Li, J.; Huang, Y.; Dai, X.; Liu, Y.; Liu, Z.; Wang, Y.; Wang, N.; Zhang, P. Tripartite motif-containing 28 bridges endothelial inflammation and angiogenic activity by retaining expression of TNFR-1 and -2 and VEGFR2 in endothelial cells. FASEB J., 2017, 31(5), 2026-2036.
[http://dx.doi.org/10.1096/fj.201600988RR] [PMID: 28159803]
[77]
Chandra, D.; Londino, J.; Alexander, S.; Bednash, J.S.; Zhang, Y.; Friedlander, R.M.; Daskivich, G.; Carlisle, D.L.; Lariviere, W.R.; Carolina, A.; Nakassa, I.; Ross, M.; Croix, C.S.; Nyunoya, T.; Sciurba, F.; Chen, B.; Mallampalli, R.K. The SCFFBXO3 ubiquitin E3 ligase regulates inflammation in atherosclerosis. J. Mol. Cell. Cardiol., 2019, 126, 50-59.
[http://dx.doi.org/10.1016/j.yjmcc.2018.11.006] [PMID: 30448480]
[78]
Gu, H.F.; Li, N.; Xu, Z.Q.; Hu, L.; Li, H.; Zhang, R.J.; Chen, R-M.; Zheng, X-L.; Tang, Y-L.; Liao, D-F. Chronic unpredictable mild stress promotes atherosclerosis via HMGB1/TLR4-Mediated downregulation of PPARγ/LXRα/ABCA1 in ApoE Mice. Front. Physiol., 2019, 10, 165.
[http://dx.doi.org/10.3389/fphys.2019.00165] [PMID: 30881312]
[79]
Liu, J.; He, C.; Zhou, H.; Xu, Y.; Zhang, X.; Yan, J.; Xie, H.; Cheng, S. Effects of TLR4 on β2-glycoprotein I-induced bone marrow-derived dendritic cells maturation. Cell. Immunol., 2014, 290(2), 226-232.
[http://dx.doi.org/10.1016/j.cellimm.2014.07.006] [PMID: 25108557]
[80]
Ní Gabhann, J.; Jefferies, C.A. TLR-induced activation of Btk -- role for endosomal MHC class II molecules revealed. Cell Res., 2011, 21(7), 998-1001.
[http://dx.doi.org/10.1038/cr.2011.88] [PMID: 21606951]
[81]
Galbas, T.; Raymond, M.; Sabourin, A.; Bourgeois-Daigneault, M.C.; Guimont-Desrochers, F.; Yun, T.J. MARCH1 E3 ubiquitin ligase dampens the innate inflammatory response by modulating monocyte functions in mice. J. Immunol., 2017, 198(2), 852-861.
[http://dx.doi.org/10.4049/jimmunol.1601168 ] [PMID: 27940660]
[82]
Hu, M.M.; Shu, H.B. Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cell. Mol. Immunol., 2017, 14(4), 331-338.
[http://dx.doi.org/10.1038/cmi.2016.66] [PMID: 28194022]
[83]
Song, M.; Xu, S.; Zhong, A.; Zhang, J. Crosstalk between macrophage and T cell in atherosclerosis: Potential therapeutic targets for cardiovascular diseases. Clin. Immunol., 2019, 202, 11-17.
[http://dx.doi.org/10.1016/j.clim.2019.03.001] [PMID: 30844443]
[84]
Gistera, A.; Robertson, A.K.; Andersson, J.; Ketelhuth, D.F.; Ovchinnikova, O.; Nilsson, S.K. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl. Med., 2013, 5(196), ra100.
[http://dx.doi.org/10.1126/scitranslmed.3006133] [PMID: 23903754]
[85]
Tanaka, S.; Jiang, Y.; Martinez, G.J.; Tanaka, K.; Yan, X.; Kurosaki, T.; Kaartinen, V.; Feng, X-H.; Tian, Q.; Wang, X.; Dong, C. Trim33 mediates the proinflammatory function of Th17 cells. J. Exp. Med., 2018, 215(7), 1853-1868.
[http://dx.doi.org/10.1084/jem.20170779] [PMID: 29930104]
[86]
Oke, V.; Wahren-Herlenius, M. The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J. Autoimmun., 2012, 39, 77-82.
[http://dx.doi.org/10.1016/j.jaut.2012.01.014] [PMID: 22402340]
[87]
Brauner, S.; Jiang, X.; Thorlacius, G.E.; Lundberg, A.M.; Östberg, T.; Yan, Z.Q.; Kuchroo, V.K.; Hansson, G.K.; Wahren-Herlenius, M. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc. Res., 2018, 114(1), 158-167.
[http://dx.doi.org/10.1093/cvr/cvx181] [PMID: 29016728]
[88]
Zhou, G.; Wu, W.; Yu, L.; Yu, T.; Yang, W.; Wang, P. Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting T1/T17 cell differentiation in patients with inflammatory bowel diseases. J. Allergy Clin. Immunol., 2018, 142(4), 1218-1228.e12.
[http://dx.doi.org/10.1016/j.jaci.2017.09.038 ] [PMID: 29113905]
[89]
Triantafyllou, C.; Nikolaou, M.; Ikonomidis, I.; Bamias, G.; Papaconstantinou, I. Endothelial and cardiac dysfunction in inflammatory bowel diseases: does treatment modify the inflammatory load on arterial and cardiac structure and function? Curr. Vasc. Pharmacol., 2020, 8(1), 27-37.
[http://dx.doi.org/10.2174/1570161117666181129095941 ] [PMID: 30488796]
[90]
Jiang, Y.; Liu, Y.; Lu, H.; Sun, S.C.; Jin, W.; Wang, X.; Dong, C. Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nat. Commun., 2018, 9(1), 1424.
[http://dx.doi.org/10.1038/s41467-018-03852-2] [PMID: 29651155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy