Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Discovery of Anticancer Agents from 2-Pyrazoline-Based Compounds

Author(s): Qing-Shan Li*, Bang-Nian Shen, Zhen Zhang, Shuying Luo* and Ban-Feng Ruan*

Volume 28 , Issue 5 , 2021

Published on: 06 March, 2020

Page: [940 - 962] Pages: 23

DOI: 10.2174/0929867327666200306120151

Price: $65

Abstract

As nitrogen-containing five-membered heterocyclic structural units, the substituted pyrazole derivatives have a broad spectrum of pharmacological activities, especially 4,5-dihydro-1H-pyrazoles that also commonly known as 2-pyrazolines. Since 2010, considerable studies have been found that the 2-pyrazoline derivatives possess potent anticancer activities. In the present review, it covers the pyrazoline derivatives reported by literature from 2010 till date (2010-2019). This review aims to establish the relationship between the anticancer activities variation and different substituents introduced into a 2-pyrazoline core, which could provide important pharmacophore clues for the discovery of new anticancer agents containing 2-pyrazoline scaffold.

Keywords: 2-pyrazoline, 4, 5-dihydro-1H-pyrazole, derivatives, anticancer activities, synthesis, SAR, Nitrogencontaining heterocyclic structural units.

[1]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[2]
Dai, H.X.; Stepan, A.F.; Plummer, M.S.; Zhang, Y.H.; Yu, J.Q. Divergent C.-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc., 2011, 133(18), 7222-7228.
[http://dx.doi.org/10.1021/ja201708f] [PMID: 21488638]
[3]
Jones, L.H.; Allan, G.; Corbau, R.; Middleton, D.S.; Mowbray, C.E.; Newman, S.D.; Phillips, C.; Webster, R.; Westby, M. Comparison of the non-nucleoside reverse transcriptase inhibitor lersivirine with its pyrazole and imidazole isomers. Chem. Biol. Drug Des., 2011, 77(5), 393-397.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01113.x] [PMID: 21352504]
[4]
Lominac, W.J.; D’Angelo, M.L.; Smith, M.D.; Ollison, D.A.; Hanna, J.M. Jr. Construction of pyrazolo[3,4-b]pyridines and pyrazolo[4,3-c]pyridines by ring closure of 3-acylpyridine N-oxide tosylhydrazones. Tetrahedron Lett., 2012, 53(8), 906-909.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.055] [PMID: 22345825]
[5]
Tang, M.; Kong, Y.; Chu, B.; Feng, D. Copper (I) oxide-mediated cyclization of o‐haloaryl n-tosylhydrazones: efficient synthesis of indazoles. Adv. Synth. Catal., 2016, 358(6), 926-939.
[http://dx.doi.org/10.1002/adsc.201500953]
[6]
Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Copper-catalyzed C(sp2)-H amidation with azides as amino sources. Org. Lett., 2014, 16(18), 4702-4705.
[http://dx.doi.org/10.1021/ol502010g] [PMID: 25191696]
[7]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[8]
Chang, S-Y.; Chen, J-L.; Chi, Y.; Cheng, Y-M.; Lee, G-H.; Jiang, C-M.; Chou, P-T. Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: synthesis, structures, and photophysical properties. Inorg. Chem., 2007, 46(26), 11202-11212.
[http://dx.doi.org/10.1021/ic701586c] [PMID: 18027932]
[9]
Zhang, B-H.; Lei, L-S.; Liu, S-Z.; Mou, X-Q.; Liu, W-T.; Wang, S-H.; Wang, J.; Bao, W.; Zhang, K. Zinc-promoted cyclization of tosylhydrazones and 2-(dimethylamino)malononitrile: an efficient strategy for the synthesis of substituted 1-tosyl-1H-pyrazoles. Chem. Commun. (Camb.), 2017, 53(61), 8545-8548.
[http://dx.doi.org/10.1039/C7CC04610C] [PMID: 28707696]
[10]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, GD Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[11]
Terrett, N.K.; Bell, A.S.; Brown, D.; Ellis, P. Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. Lett., 1996, 6(15), 1819-1824.
[http://dx.doi.org/10.1016/0960-894X(96)00323-X]
[12]
Seltzman, H.H.; Carroll, F.I.; Burgess, J.P.; Wyrick, C.D.; Burch, D.F. Synthesis, spectral studies and tritiation of the cannabinoid antagonist SR141716A. J. Chem. Soc. Chem. Commun., 1995, (15), 1549-1550.
[http://dx.doi.org/10.1039/c39950001549]
[13]
Bardalai, D.B.; Panneerselvam, P.; Panneerselvam, P. Pyrazole and 2-pyrazoline derivatives: potential antiinflammatory and analgesic agents. Int. Res. J. Pharm. App. Sci., 2012, 2, 1-8.https://scienztech.org/irjpas/article/view/300
[14]
Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem., 2014, 7(5), 553-596.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013]
[15]
Higgs, G.A.; Flower, R.J.; Vane, J.R. A new approach to anti-inflammatory drugs. Biochem. Pharmacol., 1979, 28(12), 1959-1961.
[http://dx.doi.org/10.1016/0006-2952(79)90651-8] [PMID: 110332]
[16]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives--a recent development. Recent Pat. Antiinfect. Drug Discov., 2009, 4(3), 154-163.
[http://dx.doi.org/10.2174/157489109789318569] [PMID: 19545230]
[17]
Rahman, M.A.; Siddiqui, A.A. Pyrazoline derivatives: a worthy insight into the recent advances and potential pharmacological activities. Int. J. Pharm. Sci. Drug Res., 2010, 2(3), 165-175.https://ijpsdr.com/index.php/ijpsdr/article/view/113
[18]
Alex, J.M.; Kumar, R. 4,5-Dihydro-1H-pyrazole: an indispensable scaffold. J. Enzyme Inhib. Med. Chem., 2014, 29(3), 427-442.
[http://dx.doi.org/10.3109/14756366.2013.795956] [PMID: 23808806]
[19]
Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5839-5844.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.080] [PMID: 22901385]
[20]
Abeed, A.A.O.; Jaleel, G.A.A.; Youssef, M.S.K. Novel heterocyclic hybrids based on 2-pyrazoline: synthesis and assessment of anti-inflammatory and analgesic activities. Curr. Org. Synth., 2019, 16(6), 921-930.
[http://dx.doi.org/10.2174/1570179416666190703115133] [PMID: 31984913]
[21]
Babu, V.H.; Sridevi, C.; Joseph, A.; Srinivasan, K. Synthesis and biological evaluation of some novel pyrazolines. Indian J. Pharm. Sci., 2007, 69(3), 470.
[http://dx.doi.org/10.4103/0250-474X.34569]
[22]
Bhat, M.; Nagaraja, G.K.; Divyaraj, P.; Harikrishna, N.; Pai, S.R.K.; Biswas, S.; Peethamber, S.K. Design, synthesis, characterization of some new 1,2,3-triazolyl chalcone derivatives as potential anti-microbial, anti-oxidant and anti-cancer agents via a Claisen-Schmidt reaction approach. Rsc Adv., 2016, 6(102), 99794-99808.
[http://dx.doi.org/10.1039/C6RA22705H]
[23]
Lone, I.H.; Khan, K.Z.; Fozdar, B.I. Synthesis, physicochemical properties, antimicrobial and antioxidant studies of pyrazoline derivatives bearing a pyridyl moiety. Med. Chem. Res., 2014, 23(1), 363-369.
[http://dx.doi.org/10.1007/s00044-013-0643-z]
[24]
Abdel-Ghaffar, S.A.; Mpango, G.B.; Ismail, M.A.; Nanyonga, S.K. Synthesis, characterization and antifungal activities of some benzenesulphonylamino acid derivatives. Boll. Chim. Farm., 2002, 141(5), 389-393.
[PMID: 12481383]
[25]
Behalo, M.S. Synthesis of 3-(phenoxathiin-2-yl)-2-pyrazoline derivatives as new antibacterial and antifungal agents. J. Sulfur Chem., 2010, 31(4), 287-297.
[http://dx.doi.org/10.1080/17415993.2010.497537]
[26]
Coskun, D.; Ahmedzade, M.; Kirbag, S. 3-(Substituted Aryl)-1-benzofuranyl-2-propenones: antimicrobial properties of some chalcones-type compounds and their 2-pyrazoline derivatives. E-J. Chem., 2011, 8(4), 1574-1581.
[http://dx.doi.org/10.1155/2011/806854]
[27]
Desai, N.C.; Joshi, V.V.; Rajpara, K.M. Synthesis of new quinoline-2-pyrazoline-based thiazolinone derivatives as potential antimicrobial agents. Med. Chem. Res., 2013, 22(8), 3663-3674.
[http://dx.doi.org/10.1007/s00044-012-0377-3]
[28]
Zhang, T.; Dong, M.; Zhao, J.; Zhang, X.; Mei, X. Synthesis and antifungal activity of novel pyrazolines and isoxazolines derived from cuminaldehyde. J. Pestic. Sci., 2019, 44(3), 181-185.
[http://dx.doi.org/10.1584/jpestics.D19-028] [PMID: 31530976]
[29]
Kocyigit-Kaymakcioglu, B.; Beyhan, N.; Tabanca, N.; Ali, A.; Wedge, D.E.; Duke, S.O.; Bernier, U.R.; Khan, I.A. Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Med. Chem. Res., 2015, 24(10), 3632-3644.
[http://dx.doi.org/10.1007/s00044-015-1415-8]
[30]
Kreutzberger, A.; Kolter, K. [Antiviral agents. 27. The aminomethinylation of 5-oxo-2-pyrazoline-3-carboxylic acid derivatives] Arch. Pharm. (Weinheim), 1986, 319(1), 18-25.
[http://dx.doi.org/10.1002/ardp.19863190106] [PMID: 3008686]
[31]
Montoya, A.; Quiroga, J.; Abonia, R.; Derita, M.; Sortino, M.; Ornelas, A.; Zacchino, S.; Insuasty, B. Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules, 2016, 21(8), E969.
[http://dx.doi.org/10.3390/molecules21080969] [PMID: 27472314]
[32]
Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Sharma, C.; Kaushik, D.; Aneja, K.R. Synthesis of 1-(4-aminosulfonylphenyl)-3,5-diarylpyrazoline derivatives as potent antiinflammatory and antimicrobial agents. Med. Chem. Res., 2012, 21(10), 2945-2954.
[http://dx.doi.org/10.1007/s00044-011-9823-x]
[33]
Thakar, A.; Joshi, K.; Pandya, K.; Pancholi, A. Coordination modes of a schiff base derived from substituted 2-aminothiazole with Chromium(III), Manganese(II), Iron(II), Cobalt(II), Nickel(II) and Copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. E-J. Chem., 2011, 8(4), 1750-1764.
[http://dx.doi.org/10.1155/2011/282061]
[34]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[35]
Rizvi, S.U.F.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21(11), 3741-3749.
[http://dx.doi.org/10.1007/s00044-011-9912-x]
[36]
Siddiqui, S.M.; Salahuddin, A.; Azam, A. Thiosemicarbazone fragment embedded within 1,2,4-triazole ring as inhibitors of Entamoeba histolytica. Bioorg. Med. Chem. Lett., 2012, 22(8), 2768-2771.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.084] [PMID: 22444681]
[37]
Sowmya, P.V.; Poojary, B.; Revanasiddappa, B.C.; Vijayakumar, M.; Nikil, P.; Kumar, V. Novel 2-methyl-6-arylpyridines carrying active pharmacophore 4,5-dihydro 2-pyrazolines: synthesis, antidepressant, and anti-tuberculosis evaluation. Res. Chem. Intermed., 2017, 43(12), 7399-7422.
[http://dx.doi.org/10.1007/s11164-017-3083-4]
[38]
Asad, M.; Beevi, F.; Ganesan, S.P.; Oo, C-W.; Kumar, R.S.; Laxmipathi, V.; Osman, H.; Ali, M.A. Synthesis of novel and highly functionalized 4-hydroxycoumarin chalcone and their pyrazoline derivatives as anti-tuberculosis agents. Lett. Drug Des. Discov., 2014, 11(2), 222-230.
[http://dx.doi.org/10.2174/15701808113109990055]
[39]
Güniz Küçükgüzel, S.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Cevdet Ekinci, A.; Vidin, A. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur. J. Med. Chem., 2000, 35(7-8), 761-771.
[http://dx.doi.org/10.1016/S0223-5234(00)90179-X] [PMID: 10960193]
[40]
Turan-Zitouni, G.; Ozdemir, A.; Güven, K. Synthesis of some 1-[(N, N-disubstituted thiocar bamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial and antifungal activities. Arch. Pharm. (Weinheim), 2005, 338(2-3), 96-104.
[http://dx.doi.org/10.1002/ardp.200400935] [PMID: 15765490]
[41]
D’Andrea, S.; Zheng, Z.B.; Denbleyker, K.; Fung-Tomc, J.C.; Yang, H.; Clark, J.; Taylor, D.; Bronson, J. Synthesis and antibacterial activity of dihydro-1,2-oxazine and 2-pyrazoline oxazolidinones: novel analogs of linezolid. Bioorg. Med. Chem. Lett., 2005, 15(11), 2834-2839.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.099] [PMID: 15911264]
[42]
Kahriman, N.; Haşimoğlu, Z.; Serdaroğlu, V.; Beriş, F.Ş.; Barut, B.; Yaylı, N. Synthesis of novel pyrazolines, their boron-fluorine complexes, and investigation of antibacterial, antioxidant, and enzyme inhibition activities. Arch. Pharm. (Weinheim), 2017, 350(2)e1600285
[http://dx.doi.org/10.1002/ardp.201600285] [PMID: 28032664]
[43]
Shekarchi, M.; Pirali-Hamedani, M.; Navidpour, L.; Adib, N.; Shafiee, A. Synthesis, antibacterial and antifungal activities of 3-aryl-5-(pyridin-3-y1)-4,5-dihydropyrazole-1-carbothioamide derivatives. J. Iran. Chem. Soc., 2008, 5(1), 150-158.
[http://dx.doi.org/10.1007/BF03245828]
[44]
Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[45]
Sivakumar, P.M.; Ganesan, S.; Veluchamy, P.; Doble, M. Novel chalcones and 1,3,5-triphenyl-2-pyrazoline derivatives as antibacterial agents. Chem. Biol. Drug Des., 2010, 76(5), 407-411.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01020.x] [PMID: 20925692]
[46]
Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Vélez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino] chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem., 2013, 67, 252-262.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.049] [PMID: 23871905]
[47]
Aggarwal, S.; Paliwa, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Synthesis, antimalarial evaluation and SAR study of some 1,3,5-trisubstituted pyrazoline derivatives. Lett. Org. Chem., 2019, 16(10), 807-817.
[http://dx.doi.org/10.2174/1570178616666190212145754]
[48]
Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C.R.; Alam, M.M.; Zama, M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: a mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.082] [PMID: 29499486]
[49]
Bhandari, S.; Tripathi, A.C.; Saraf, S.K. Novel 2-pyrazoline derivatives as potential anticonvulsant agents. Med. Chem. Res., 2013, 22(11), 5290-5296.
[http://dx.doi.org/10.1007/s00044-013-0530-7]
[50]
Ozdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Caliş, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[51]
Ruhoğlu, O.; Ozdemir, Z.; Caliş, U.; Gümüşel, B.; Bilgin, A.A. Synthesis of and pharmacological studies on the antidepressant and anticonvulsant activities of some 1,3,5-trisubstituted pyrazolines. Arzneimittelforschung, 2005, 55(8), 431-436.
[PMID: 16149709]
[52]
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 6135-6138.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.005] [PMID: 20974503]
[53]
Aggarwal, R.; Bansal, A.; Rozas, I.; Kelly, B.; Kaushik, P.; Kaushik, D. Synthesis, biological evaluation and molecular modeling study of 5-trifluoromethyl-Δ2-pyrazoline and isomeric 5/3-trifluoromethylpyrazole derivatives as anti-inflammatory agents. Eur. J. Med. Chem., 2013, 70, 350-357.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.052] [PMID: 24177361]
[54]
Girisha, K.S.; Kalluraya, B.; Narayana, V. Padmashree, Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline. Eur. J. Med. Chem., 2010, 45(10), 4640-4644.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.032] [PMID: 20702008]
[55]
Shoman, M.E.; Abdel-Aziz, M.; Aly, O.M.; Farag, H.H.; Morsy, M.A. Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(7), 3068-3076.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.008] [PMID: 18722034]
[56]
Nasr, M.N.A.; Said, S.A. Novel 3,3a,4,5,6,7-hexahydroindazole and arylthiazolylpyrazoline derivatives as anti-inflammatory agents. Arch. Pharm. (Weinheim), 2003, 336(12), 551-559.
[http://dx.doi.org/10.1002/ardp.200300796] [PMID: 14677148]
[57]
Kumar, A.; Rout, S.; Panda, J.; Sahoo, B.M.; Banik, B.K. Microwave-irradiated synthesis and biological evaluation of 3,5-diaryl-1-phenyl-2-pyrazolines as antibacterial and anti-inflammatory agents. J. Indian Chem. Soc., 2018, 95(11), 1321-1326.
[58]
Lokeshwari, D.M.; Achutha, D.K.; Srinivasan, B.; Shivalingegowda, N.; Krishnappagowda, L.N.; Kariyappa, A.K. Synthesis of novel 2-pyrazoline analogues with potent anti-inflammatory effect mediated by inhibition of phospholipase A2: Crystallographic, in silico docking and QSAR analysis. Bioorg. Med. Chem. Lett., 2017, 27(16), 3806-3811.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.063] [PMID: 28676270]
[59]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[60]
Herbet, M.; Natorska-Chomicka, D.; Ostrowska, M.; Gawronska-Grzywacz, M.; Izdebska, M.; Piatkowska-Chmiel, I.; Korga, A.; Wrobel, A.; Dudka, J. Edaravone presents antidepressant-like activity in corticosterone model of depression in mice with possible role of Fkbp5, Comt, Adora1 and Slc6a15 genes. Toxicol. Appl. Pharm., 2019, 380114689
[http://dx.doi.org/10.1016/j.taap.2019.114689] [PMID: 31344373]
[61]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. Derivatives of 4,5-dihydro (1H) pyrazoles as possible MAO-A inhibitors in depression and anxiety disorders: synthesis, biological evaluation and molecular modeling studies. Med. Chem. Res., 2018, 27(5), 1485-1503.
[http://dx.doi.org/10.1007/s00044-018-2167-z]
[62]
Gok, S.; Demet, M.M.; Ozdemir, A.; Turan-Zitouni, G. Evaluation of antidepressant-like effect of 2-pyrazoline derivatives. Med. Chem. Res., 2010, 19(1), 94-101.
[http://dx.doi.org/10.1007/s00044-009-9176-x]
[63]
Evranos-Aksoz, B.; Ucar, G.; Tas, S.T.; Aksoz, E.; Yelekci, K.; Erikci, A.; Sara, Y.; Iskit, A.B. New human monoamine oxidase A inhibitors with potential anti- depressant activity: design, synthesis, biological screening and evaluation of pharmacological activity. Comb. Chem. High Throughput Screen., 2017, 20(6), 461-473.
[http://dx.doi.org/10.2174/1386207320666170504113158] [PMID: 28474547]
[64]
Brzozowski, Z.; Saczewski, F.; Gdaniec, M. Synthesis, structural characterization and antitumor activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2000, 35(12), 1053-1064.
[http://dx.doi.org/10.1016/S0223-5234(00)01194-6] [PMID: 11248404]
[65]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 2009, 44(4), 1396-1404.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.032] [PMID: 19000643]
[66]
O’Shaughnessy, J.; Cunningham, D.; Kavanagh, P.; Leech, D.; McArdle, P.; Aldabbagh, F. Synthesis of benzimidazolequinone analogue of cyclopropamitosene antitumor agents. Synlett, 2004, (13), 2382-2384.
[http://dx.doi.org/10.1055/s-2004-831341]
[67]
Rathinasamy, S.; Karki, S.S.; Bhattacharya, S.; Manikandan, L.; Prabakaran, S.G.; Gupta, M.; Mazumder, U.K. Synthesis and anticancer activity of certain mononuclear Ru (II) complexes. J. Enzyme Inhib. Med. Chem., 2006, 21(5), 501-507.
[http://dx.doi.org/10.1080/14756360600703396] [PMID: 17194018]
[68]
Humne, V.T.; Hasanzadeh, K.; Lokhande, P.D. Selective O-deallylation of dihydropyrazoles by molecular iodine in the presence of active N-allyl and formyl groups. Res. Chem. Intermed., 2012, 39(2), 585-595.
[http://dx.doi.org/10.1007/s11164-012-0581-2]
[69]
Trofimov, B.; Schmidt, E.; Ivanova, E.; Tatarinova, I.; Semenova, N.; Ushakov, I. Base-catalyzed addition of ketones to alkynes as a key step in the one-pot synthesis of 1-formyl-2-pyrazolines. Synthesis, 2015, 47(09), 1329-1336.
[http://dx.doi.org/10.1055/s-0034-1378687]
[70]
Ritter, M.; Martins, R.M.; Rosa, S.A.; Malavolta, J.L.; Lund, R.G.; Flores, A.F.C.; Pereira, C.M.P. Green synthesis of chalcones and microbiological evaluation. J. Braz. Chem. Soc., 2015, 26(6), 1201-1210.
[http://dx.doi.org/10.5935/0103-5053.20150084]
[71]
Mohammadzadeh, A.; Mirza-Aghazadeh-Attari, M.; Hallaj, S.; Saei, A.A.; Alivand, M.R.; Valizadeh, A.; Yousefi, B.; Majidinia, M. Crosstalk between P53 and DNA damage response in ageing. DNA Repair (Amst.), 2019, 80, 8-15.
[http://dx.doi.org/10.1016/j.dnarep.2019.05.004] [PMID: 31176959]
[72]
Miyashita, T.; Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995, 80(2), 293-299.
[http://dx.doi.org/10.1016/0092-8674(95)90412-3] [PMID: 7834749]
[73]
Rahimi, A.; Lee, Y.Y.; Abdella, H.; Doerflinger, M.; Gangoda, L.; Srivastava, R.; Xiao, K.; Ekert, P.G.; Puthalakath, H. Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis, 2013, 18(12), 1492-1499.
[http://dx.doi.org/10.1007/s10495-013-0895-6] [PMID: 24002658]
[74]
Chen, L.; Yang, R.; Qiao, W.; Zhang, W.; Chen, J.; Mao, L.; Goltzman, D.; Miao, D. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell, 2019, 18(3)e12951
[http://dx.doi.org/10.1111/acel.12951] [PMID: 30907059]
[75]
Lee, J.M.; Shin, S.Y.; Yoon, H.; Lee, M.S.; Lee, Y.R.; Koh, D.; Lee, Y.H. Synthesis and biological evaluation of a novel pyrazolecarbothioamide derivative (DK115) inducing cell cycle arrest at the G1 phase in HCT116 human colon cancer cells. J. Korean Soc. Appl. Bi., 2013, 56(3), 343-347.
[http://dx.doi.org/10.1007/s13765-013-3065-1]
[76]
Adjei, A.A. Blocking oncogenic RAS signaling for cancer therapy. J. Natl. Cancer Inst., 2001, 93(14), 1062-1074.
[http://dx.doi.org/10.1093/jnci/93.14.1062] [PMID: 11459867]
[77]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[78]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[79]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[80]
Kim, H.; Muller, W.J. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res., 1999, 253(1), 78-87.
[http://dx.doi.org/10.1006/excr.1999.4706] [PMID: 10579913]
[81]
Moscatello, D.K.; Holgado-Madruga, M.; Godwin, A.K.; Ramirez, G.; Gunn, G.; Zoltick, P.W.; Biegel, J.A.; Hayes, R.L.; Wong, A.J. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res., 1995, 55(23), 5536-5539.
[PMID: 7585629]
[82]
Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2010, 18(13), 4606-4614.
[http://dx.doi.org/10.1016/j.bmc.2010.05.034] [PMID: 20627597]
[83]
Insuasty, B.; Chamizo, L.; Muñoz, J.; Tigreros, A.; Quiroga, J.; Abonía, R.; Nogueras, M.; Cobo, J. Synthesis of 1-substituted 3-aryl-5-aryl(hetaryl)-2-pyrazolines and study of their antitumor activity. Arch. Pharm. (Weinheim), 2012, 345(4), 275-286.
[http://dx.doi.org/10.1002/ardp.201100170] [PMID: 22105771]
[84]
Manzoor, S.; Bilal, A.; Khan, S.; Ullah, R.; Iftikhar, S.; Emwas, A.H.; Alazmi, M.; Gao, X.; Jawaid, A.; Saleem, R.S.Z.; Faisal, A. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance. Sci. Rep., 2018, 8(1), 3305.
[http://dx.doi.org/10.1038/s41598-018-21642-0] [PMID: 29459693]
[85]
Tessmann, J.W.; Buss, J.; Begnini, K.R.; Berneira, L.M.; Paula, F.R.; de Pereira, C.M.P.; Collares, T.; Seixas, F.K. Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells. Biomed. Pharmacother., 2017, 94, 37-46.
[http://dx.doi.org/10.1016/j.biopha.2017.07.060] [PMID: 28750358]
[86]
Elmeligie, S.; Khalil, N.A.; Ahmed, E.M.; Emam, S.H.; Zaitone, S.A-B. Synthesis of new N1-substituted-5-aryl-3-(3, 4, 5-trimethoxyphenyl)-2-pyrazoline derivatives as antitumor agents targeting the colchicine site on tubulin. Biol. Pharm. Bull., 2016, 39(10), 1611-1622.
[http://dx.doi.org/10.1248/bpb.b16-00277] [PMID: 27725438]
[87]
Yang, W.; Hu, Y.; Yang, Y.S.; Zhang, F.; Zhang, Y-B.; Wang, X-L.; Tang, J-F.; Zhong, W-Q.; Zhu, H-L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[http://dx.doi.org/10.1016/j.bmc.2013.01.013] [PMID: 23391364]
[88]
Wang, H.; Zheng, J.; Xu, W.; Chen, C.; Wei, D.; Ni, W.; Pan, Y. A new series of cytotoxic pyrazoline derivatives as potential anticancer agents that induce cell cycle arrest and apoptosis. Molecules, 2017, 22(10)E1635
[http://dx.doi.org/10.3390/molecules22101635] [PMID: 28961210]
[89]
Cao, J.; Zang, J.; Ma, C.; Li, X.; Hou, J.; Li, J.; Huang, Y.; Xu, W.; Wang, B.; Zhang, Y. Design, synthesis, and biological evaluation of pyrazoline-based hydroxamic acid derivatives as aminopeptidase N (APN) inhibitors. ChemMedChem, 2018, 13(5), 431-436.
[http://dx.doi.org/10.1002/cmdc.201700690] [PMID: 29377564]
[90]
Li, H-L.; Su, M-M.; Xu, Y-J.; Xu, C.; Yang, Y-S.; Zhu, H-L. Design and biological evaluation of novel triaryl pyrazoline derivatives with dioxane moiety for selective BRAFV600E inhibition. Eur. J. Med. Chem., 2018, 155, 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.043] [PMID: 29940463]
[91]
Bashir, R.; Ovais, S.; Yaseen, S.; Hamid, H.; Alam, M.S.; Samim, M.; Singh, S.; Javed, K. Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2011, 21(14), 4301-4305.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.061] [PMID: 21664130]
[92]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021] [PMID: 29427856]
[93]
Yang, Y-S.; Zhang, F.; Tang, D-J.; Yang, Y-H.; Zhu, H-L. Modification, biological evaluation and 3D QSAR studies of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-yl)phenol derivatives as inhibitors of B-Raf kinase. PLoS One, 2014, 9(5)e95702
[http://dx.doi.org/10.1371/journal.pone.0095702] [PMID: 24827980]
[94]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8)E1956
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[95]
Congiu, C.; Onnis, V.; Vesci, L.; Castorina, M.; Pisano, C. Synthesis and in vitro antitumor activity of new 4,5-dihydropyrazole derivatives. Bioorg. Med. Chem., 2010, 18(17), 6238-6248.
[http://dx.doi.org/10.1016/j.bmc.2010.07.037] [PMID: 20702096]
[96]
Al-Abdullah, E.S. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecules, 2011, 16(4), 3410-3419.
[http://dx.doi.org/10.3390/molecules16043410] [PMID: 21512449]
[97]
Abdel-Aziz, M.; Aly, O.M.; Khan, S.S.; Mukherjee, K.; Bane, S. Synthesis, cytotoxic properties and tubulin polymerization inhibitory activity of novel 2-pyrazoline derivatives. Arch. Pharm. (Weinheim), 2012, 345(7), 535-548.
[http://dx.doi.org/10.1002/ardp.201100471] [PMID: 22592968]
[98]
Bai, X.; Shi, W.Q.; Chen, H.F.; Zhang, P.; Li, Y.; Yin, S.F. Synthesis and antitumor activity of 1-acetyl-3-(4-phenyl)-4, 5-dihydro-2-pyrazoline-5-phenylursolate and 4-chalcone ursolate derivatives. Chem. Nat. Compd., 2012, 48(1), 60-65.
[http://dx.doi.org/10.1007/s10600-012-0159-7]
[99]
Montoya, A.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. Synthesis and in vitro antitumor activity of a novel series of 2-pyrazoline derivatives bearing the 4-aryloxy-7-chloroquinoline fragment. Molecules, 2014, 19(11), 18656-18675.
[http://dx.doi.org/10.3390/molecules191118656] [PMID: 25405285]
[100]
Kankanala, K.; Ranga Reddy, V.; Devi, Y.P.; Mangamoori, L.N.; Rambabu, D.; Mukkanti, K.; Pal, S. Nonsteroidal anti-inflammatory drug-basedn-allylidene benzohydrazides and 1-acyl-2-pyrazolines: their synthesis as potential cytotoxic agents in vitro. J. Heterocycl. Chem., 2015, 52(1), 105-113.
[http://dx.doi.org/10.1002/jhet.1993]
[101]
Yang, Y.S.; Li, Q.S.; Sun, S.; Zhang, Y.B.; Wang, X.L.; Zhang, F.; Tang, J.F.; Zhu, H.L. Design, modification and 3D QSAR studies of novel 2,3-dihydrobenzo [b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives as inhibitors of B-Raf kinase. Bioorg. Med. Chem., 2012, 20(20), 6048-6058.
[http://dx.doi.org/10.1016/j.bmc.2012.08.043] [PMID: 22985962]
[102]
Schmitt, F.; Draut, H.; Biersack, B.; Schobert, R. Halogenated naphthochalcones and structurally related naphthopyrazolines with antitumor activity. Bioorg. Med. Chem. Lett., 2016, 26(21), 5168-5171.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.076] [PMID: 27727127]
[103]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[104]
Rastija, V.; Brahmbhatt, H.; Molnar, M.; Lončarić, M.; Strelec, I.; Komar, M.; Pavić, V. Synthesis, tyrosinase inhibiting activity and molecular docking of fluorinated pyrazole aldehydes as phosphodiesterase inhibitors. Appl. Sci. (Basel), 2019, 9(8), 1704.
[http://dx.doi.org/10.3390/app9081704]
[105]
Zhang, Y-L.; Li, B-Y.; Yang, R.; Xia, L-Y.; Fan, A-L.; Chu, Y-C.; Wang, L-J.; Wang, Z-C.; Jiang, A-Q.; Zhu, H-L. A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. Eur. J. Med. Chem., 2019, 163, 896-910.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.030] [PMID: 30580241]
[106]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[107]
Li, C.Y.; Li, Q.S.; Yan, L.; Sun, X.G.; Wei, R.; Gong, H.B.; Zhu, H.L. Synthesis, biological evaluation and 3D-QSAR studies of novel 4,5-dihydro-1H-pyrazole niacinamide derivatives as BRAF inhibitors. Bioorg. Med. Chem., 2012, 20(12), 3746-3755.
[http://dx.doi.org/10.1016/j.bmc.2012.04.047] [PMID: 22583669]
[108]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer and antiviral activities of new 2-pyrazoline-substituted 4-thiazolidinones. J. Heterocycl. Chem., 2013, 50, E55-E62.
[http://dx.doi.org/10.1002/jhet.1056]
[109]
Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182111648
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[110]
Wang, Y.; Wang, K.H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. Cascade oxidation/halogenoaminocyclization reaction of trifluoromethylated homoallylic N-acylhydrazines: metal-free synthesis of CF3-substituted pyrazolines. J. Org. Chem., 2018, 83(2), 939-950.
[http://dx.doi.org/10.1021/acs.joc.7b02934] [PMID: 29268606]
[111]
Cin, G.T.; Topel, S.D.; Cakici, A.; Yildirim, A.O.; Karadag, A. Synthesis, Crystal Structure and Thermal Properties of N-Acetyl-3-(2-furyl)-5-ferrocenyl-2-pyrazoline and N-Acetyl-3-(2-thienyl)-5-ferrocenyl-2-pyrazoline. J. Chem. Crystallogr., 2012, 42(4), 372-380.
[http://dx.doi.org/10.1007/s10870-011-0256-7]
[112]
Kitawat, B.S.; Singh, M. Synthesis, characterization, antibacterial, antioxidant, DNA binding and SAR study of a novel pyrazine moiety bearing 2-pyrazoline derivatives. New J. Chem., 2014, 38(9)
[http://dx.doi.org/10.1039/C4NJ00594E]
[113]
Banday, A.H.; Mir, B.P.; Lone, I.H.; Suri, K.A.; Kumar, H.M. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 2010, 75(12), 805-809.
[http://dx.doi.org/10.1016/j.steroids.2010.02.014] [PMID: 20206644]
[114]
Özdemir, A.; Altıntop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Ciftçi, G.A.; Yıldırım, S.U. Synthesis of 1-acetyl-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and evaluation of their anticancer activity. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1221-1227.
[http://dx.doi.org/10.3109/14756366.2012.724682] [PMID: 23020635]
[115]
Alex, J.M.; Singh, S.; Kumar, R. 1-Acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles: exhibiting anticancer activity through intracellular ROS scavenging and the mitochondria-dependent death pathway. Arch. Pharm. (Weinheim), 2014, 347(10), 717-727.
[http://dx.doi.org/10.1002/ardp.201400199] [PMID: 25139842]
[116]
Karabacak, M.; Altıntop, M.D.; İbrahim Çiftçi, H.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20(10), 19066-19084.
[http://dx.doi.org/10.3390/molecules201019066] [PMID: 26492233]
[117]
Zhang, Y.L.; Qin, Y.J.; Tang, D.J.; Yang, M.R.; Li, B.Y.; Wang, Y.T.; Cai, H.Y.; Wang, B.Z.; Zhu, H.L. Synthesis and biological evaluation of 1-methyl-1h-indole-pyrazoline hybrids as potential tubulin polymerization inhibitors. ChemMedChem, 2016, 11(13), 1446-1458.
[http://dx.doi.org/10.1002/cmdc.201600137] [PMID: 27159418]
[118]
Fan, A.; Wei, J.; Yang, M.; Zhang, Q.; Zhang, Y.; Liu, Q.; Li, N.; Zhao, D.; Lu, Y.; Li, J.; Zhao, J.; Deng, S.; Zhang, B.; Zhu, H.; Chen, X. Pharmacodynamic and pharmacokinetic characteristics of YMR-65, a tubulin inhibitor, in tumor-bearing mice. Eur. J. Pharm. Sci., 2018, 121, 74-84.
[http://dx.doi.org/10.1016/j.ejps.2018.05.011] [PMID: 29772274]
[119]
Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, N.; Jamalis, J.; Rosli, M.; Fun, H-K. Synthesis, molecular structure, Hirshfeld surface, spectral investigations and molecular docking study of 3-(5-bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) by DFT method. J. Mol. Struct., 2018, 1164, 420-437.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.004]
[120]
Ciupa, A. De Bank, P.A.; Mahon, M.F.; Wood, P.J.; Caggiano, L. Synthesis and antiproliferative activity of some 3-(pyrid-2-yl)-pyrazolines. MedChemComm, 2013, 4(6)
[http://dx.doi.org/10.1039/c3md00077j]
[121]
Shamsuzzaman; Khanam, H.; Dar, A. M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20(1), 7-12.
[http://dx.doi.org/10.1016/j.jscs.2012.05.004]
[122]
Shaharyar, M.; Abdullah, M.M.; Bakht, M.A.; Majeed, J. Pyrazoline bearing benzimidazoles: search for anticancer agent. Eur. J. Med. Chem., 2010, 45(1), 114-119.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.032] [PMID: 19883957]
[123]
Thalassitis, A.; Katsori, A.M.; Dimas, K.; Hadjipavlou-Litina, D.J.; Pyleris, F.; Sakellaridis, N.; Litinas, K.E. Synthesis and biological evaluation of modified purine homo-N-nucleosides containing pyrazole or 2-pyrazoline moiety. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 109-117.
[http://dx.doi.org/10.3109/14756366.2012.755623] [PMID: 23339428]
[124]
Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell, 2001, 93(1-2), 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[125]
Tuveson, D.A.; Weber, B.L.; Herlyn, M. BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell, 2003, 4(2), 95-98.
[http://dx.doi.org/10.1016/S1535-6108(03)00189-2] [PMID: 12957284]
[126]
Riesco-Eizaguirre, G.; Santisteban, P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr. Relat. Cancer, 2007, 14(4), 957-977.
[http://dx.doi.org/10.1677/ERC-07-0085] [PMID: 18045949]
[127]
Li, Y.; Nakamura, M.; Kakudo, K. Targeting of the BRAF gene in papillary thyroid carcinoma (review). Oncol. Rep., 2009, 22(4), 671-681.
[http://dx.doi.org/10.3892/or_00000487] [PMID: 19724843]
[128]
Zhao, M-Y.; Yin, Y.; Yu, X-W.; Sangani, C.B.; Wang, S. -.F.; Lu, A.-M.; Yang, L.-F.; Lv, P.-C.; Jiang, M.-G.; Zhu, H.-L. Synthesis, biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as BRAF(V600E0) inhibitors. Bioorg. Med. Chem., 2015, 23(1), 46-54.
[http://dx.doi.org/10.1016/j.bmc.2014.11.029] [PMID: 25496804]
[129]
Abdelhamid, A.O.; Gomha, S.M.; Abdelriheem, N.A.; Kandeel, S.M. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules, 2016, 21(7)E929
[http://dx.doi.org/10.3390/molecules21070929] [PMID: 27438822]
[130]
Zaki, Y.H.; Al-Gendey, M.S.; Abdelhamid, A.O. A facile synthesis, and antimicrobial and anticancer activities of some pyridines, thioamides, thiazole, urea, quinazoline, β-naphthyl carbamate, and pyrano[2,3-d]thiazole derivatives. Chem. Cent. J., 2018, 12(1), 70.
[http://dx.doi.org/10.1186/s13065-018-0439-9] [PMID: 29926299]
[131]
dos Santos, E.F.S.; Cury, N. M.; Nascimento, T.A.d.; Raminelli, C.; Casagrande, G.A.; Pereira, C.M.P.; Simionatto, E.; Yunes, J.A.; Pizzuti, L. Ultrasound-promoted synthesis of 3-(thiophen-2-yl)-4,5-dihydro-1h-pyrazole-1-carboximidamides and anticancer activity evaluation in leukemia cell lines. J. Brazil. Chem. Soc., 2016, 28(2)
[http://dx.doi.org/10.5935/0103-5053.20160166]
[132]
Gomha, S.M.; Edrees, M.M.; Altalbawy, F.M. Synthesis and characterization of some new bis-pyrazolyl-thiazoles incorporating the thiophene moiety as potent anti-tumor agents. Int. J. Mol. Sci., 2016, 17(9)E1499
[http://dx.doi.org/10.3390/ijms17091499] [PMID: 27618013]
[133]
Barluenga, J.; Fernández‐Marí, F.; González, R.; Aguilar, E.; Revelli, G.A.; Viado, A.L.; Fañanás, F.J.; Olano, B. α, β-unsaturated fischer carbene complexes vs. 1, 3-dipoles: reactions with nitrones and nitrilimines. Eur. J. Org. Chem., 2000, 2000(9), 1773-1783.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200005)2000:9 <1773:AID-EJOC1773>3.0.CO;2-E]
[134]
Kano, T.; Hashimoto, T.; Maruoka, K. Enantioselective 1,3-dipolar cycloaddition reaction between diazoacetates and α-substituted acroleins: total synthesis of manzacidin A. J. Am. Chem. Soc., 2006, 128(7), 2174-2175.
[http://dx.doi.org/10.1021/ja056851u] [PMID: 16478146]
[135]
Simovic, D.; Di, M.; Marks, V.; Chatfield, D.C.; Rein, K.S. 1,3-dipolar cycloadditions of trimethylsilyldiazomethane revisited: steric demand of the dipolarophile and the influence on product distribution. J. Org. Chem., 2007, 72(2), 650-653.
[http://dx.doi.org/10.1021/jo061838t] [PMID: 17221990]
[136]
Miqdad, O.A.; Abunada, N.M.; Hassaneen, H.M. Regioselectivity of nitrilimines 1, 3-dipolar cycloaddition: Novel synthesis of spiro [4, 4] nona-2, 8-dien-6-one derivatives. Heteroatom Chem., 2011, 22(2), 131-136.
[http://dx.doi.org/10.1002/hc.20666]
[137]
Li, Y.; Hong, D.; Zhu, Y.; Lu, P.; Wang, Y. One-pot synthesis of 5-sulfonamidopyrazole from terminal alkynes, sulfonyl azides and hydrozones. Tetrahedron, 2011, 67(42), 8086-8091.
[http://dx.doi.org/10.1016/j.tet.2011.08.067]
[138]
Girgis, A.S.; Farag, H.; Ismail, N.S.; George, R.F. Synthesis, hypnotic properties and molecular modeling studies of 1,2,7,9-tetraaza-spiro[4.5]dec-2-ene-6,8,10-triones. Eur. J. Med. Chem., 2011, 46(10), 4964-4969.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.058] [PMID: 21872366]
[139]
Farag, A.M.; Elkholy, Y.M.; Ali, K.A. Regioselective synthesis of diazaspiro [4.4] nona-and tetrazaspiro [4.5] deca-2, 9-diene-6-one derivatives. J. Heterocycl. Chem., 2008, 45(1), 279-283.
[http://dx.doi.org/10.1002/jhet.5570450134]
[140]
Kupcewicz, B.; Małecka, M.; Zapadka, M.; Krajewska, U.; Rozalski, M.; Budzisz, E. Quantitative relationships between structure and cytotoxic activity of flavonoid derivatives. An application of Hirshfeld surface derived descriptors. Bioorg. Med. Chem. Lett., 2016, 26(14), 3336-3341.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.038] [PMID: 27234147]
[141]
Insuasty, D.; Abonia, R.; Insuasty, B.; Quiroga, J.; Laali, K.K.; Nogueras, M.; Cobo, J. Microwave-assisted synthesis of diversely substituted quinoline-based dihydropyridopyrimidine and dihydropyrazolopyridine hybrids. ACS Comb. Sci., 2017, 19(8), 555-563.
[http://dx.doi.org/10.1021/acscombsci.7b00091] [PMID: 28723092]
[142]
Kuwabara, T.; Hsieh, J.; Muotri, A.; Yeo, G.; Warashina, M.; Lie, D.C.; Moore, L.; Nakashima, K.; Asashima, M.; Gage, F.H. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci., 2009, 12(9), 1097-1105.
[http://dx.doi.org/10.1038/nn.2360] [PMID: 19701198]
[143]
Lie, D-C.; Colamarino, S.A.; Song, H-J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.; Jessberger, S.; Lansford, H.; Dearie, A.R.; Gage, F.H. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063), 1370-1375.
[http://dx.doi.org/10.1038/nature04108] [PMID: 16251967]
[144]
Jiang, X.; Yu, Y.; Yang, H.W.; Agar, N.Y.; Frado, L.; Johnson, M.D. The imprinted gene PEG3 inhibits Wnt signaling and regulates glioma growth. J. Biol. Chem., 2010, 285(11), 8472-8480.
[http://dx.doi.org/10.1074/jbc.M109.069450] [PMID: 20064927]
[145]
Gao, H.; Le, Y.; Wu, X.; Silberstein, L.E.; Giese, R.W.; Zhu, Z.; Vent, X. VentX, a novel lymphoid-enhancing factor/T-cell factor-associated transcription repressor, is a putative tumor suppressor. Cancer Res., 2010, 70(1), 202-211.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2668] [PMID: 20028861]
[146]
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[147]
Staal, F.J.; Clevers, H.C. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat. Rev. Immunol., 2005, 5(1), 21-30.
[http://dx.doi.org/10.1038/nri1529] [PMID: 15630426]
[148]
Takahashi-Yanaga, F.; Sasaguri, T. The Wnt/β-catenin signaling pathway as a target in drug discovery. J. Pharmacol. Sci., 2007, 104(4), 293-302.
[http://dx.doi.org/10.1254/jphs.CR0070024] [PMID: 17721040]
[149]
Ding, F.; Wang, M.; Du, Y.; Du, S.; Zhu, Z.; Yan, Z. BHX inhibits the WNT signaling pathway by suppressing β-catenin transcription in the nucleus. Sci. Rep., 2016, 6, 38331.
[http://dx.doi.org/10.1038/srep38331] [PMID: 27910912]
[150]
Bao, H.; Zhang, Q.; Zhu, Z.; Xu, H.; Ding, F.; Wang, M.; Du, S.; Du, Y.; Yan, Z. BHX, a novel pyrazoline derivative, inhibits breast cancer cell invasion by reversing the epithelial-mesenchymal transition and down-regulating Wnt/β-catenin signalling. Sci. Rep., 2017, 7(1), 9153.
[http://dx.doi.org/10.1038/s41598-017-09655-7] [PMID: 28831201]
[151]
Bao, H.; Zhang, Q.; Du, Y.; Zhang, C.; Xu, H.; Zhu, Z.; Yan, Z. Apoptosis induction in K562 human myelogenous leukaemia cells is connected to the modulation of Wnt/β-catenin signalling by BHX, a novel pyrazoline derivative. Cell Prolif., 2018, 51(3)e12433
[http://dx.doi.org/10.1111/cpr.12433] [PMID: 29341317]
[152]
Yan, Z.; Zhu, Z.; Wang, J.; Sun, J.; Chen, Y.; Yang, G.; Chen, W.; Deng, Y. Synthesis, characterization, and evaluation of a novel inhibitor of WNT/β-catenin signaling pathway. Mol. Cancer, 2013, 12(1), 116.
[http://dx.doi.org/10.1186/1476-4598-12-116] [PMID: 24098916]
[153]
Liu, T.; Cui, R.; Chen, J.; Zhang, J.; He, Q.; Yang, B.; Hu, Y. 4,5-Diaryl-3-aminopyrazole derivatives as analogs of Combretastatin A-4: synthesis and biological evaluation. Arch. Pharm. (Weinheim), 2011, 344(5), 279-286.
[http://dx.doi.org/10.1002/ardp.201000069] [PMID: 21290430]
[154]
Mohan, G.; Santhisudha, S.; Murali, S.; Reddy, N.B.; Sravya, G.; Zyryanov, G.V.; Reddy, C.S. One-pot green synthesis and bio-assay of pyrazolylphosphonates. Res. Chem. Intermed., 2018, 44(5), 3475-3491.
[http://dx.doi.org/10.1007/s11164-018-3319-y]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy