Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Effect of CB1 Antagonism on Hepatic Oxidative/Nitrosative Stress and Inflammation in Nonalcoholic Fatty Liver Disease

Author(s): Bojan Jorgačević, Danijela Vučević, Janko Samardžić, Dušan Mladenović, Milena Vesković, Dušan Vukićević, Rada Ješić and Tatjana Radosavljević*

Volume 28 , Issue 1 , 2021

Published on: 03 March, 2020

Page: [169 - 180] Pages: 12

DOI: 10.2174/0929867327666200303122734

Price: $65

Abstract

Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.

Keywords: NAFLD, endocannabinoids, CB receptors, CB1 antagonism, oxidative/nitrosative stress, inflammation, endocannabinoid system (ES).

[1]
Kuipers, E.N.; Kantae, V.; Maarse, B.C.E.; van den Berg, S.M.; van Eenige, R.; Nahon, K.J.; Reifel-Miller, A.; Coskun, T.; de Winther, M.P.J.; Lutgens, E.; Kooijman, S.; Harms, A.C.; Hankemeier, T.; van der Stelt, M.; Rensen, P.C.N.; Boon, M.R. High fat diet increases circulating endocannabinoids accompanied by increased synthesis enzymes in adipose tissue. Front. Physiol., 2019, 9, 1913.
[http://dx.doi.org/10.3389/fphys.2018.01913] [PMID: 30687125]
[2]
Shrestha, N.; Cuffe, J.S.M.; Hutchinson, D.S.; Headrick, J.P.; Perkins, A.V.; McAinch, A.J.; Hryciw, D.H. Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov. Today, 2018, 23(3), 592-604.
[http://dx.doi.org/10.1016/j.drudis.2018.01.029] [PMID: 29331500]
[3]
Kim, D.; Kim, W.; Kwak, M.S.; Chung, G.E.; Yim, J.Y.; Ahmed, A. Inverse association of marijuana use with nonalcoholic fatty liver disease among adults in the United States. PLoS One, 2017, 12(10)e0186702
[http://dx.doi.org/10.1371/journal.pone.0186702] [PMID: 29049354]
[4]
Alswat, K.A. The role of endocannabinoids system in fatty liver disease and therapeutic potentials. Saudi J. Gastroenterol., 2013, 19(4), 144-151.
[http://dx.doi.org/10.4103/1319-3767.114505] [PMID: 23828743]
[5]
Di Marzo, V. CB(1) receptor antagonism: biological basis for metabolic effects. Drug Discov. Today, 2008, 13(23-24), 1026-1041.
[http://dx.doi.org/10.1016/j.drudis.2008.09.001] [PMID: 18824122]
[6]
Huffman, J.W.; Yu, S.; Showalter, V.; Abood, M.E.; Wiley, J.L.; Compton, D.R.; Martin, B.R.; Bramblett, R.D.; Reggio, P.H. Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J. Med. Chem., 1996, 39(20), 3875-3877.
[http://dx.doi.org/10.1021/jm960394y] [PMID: 8831752]
[7]
Svízenská, I.; Dubový, P.; Sulcová, A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures--a short review. Pharmacol. Biochem. Behav., 2008, 90(4), 501-511.
[http://dx.doi.org/10.1016/j.pbb.2008.05.010] [PMID: 18584858]
[8]
Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes., 2006, 30(Suppl. 1), S13-S18.
[http://dx.doi.org/10.1038/sj.ijo.0803272] [PMID: 16570099]
[9]
Bermudez-Silva, F.J.; Viveros, M.P.; McPartland, J.M.; Rodriguez de Fonseca, F. The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacol. Biochem. Behav., 2010, 95(4), 375-382.
[http://dx.doi.org/10.1016/j.pbb.2010.03.012] [PMID: 20347862]
[10]
Silvestri, C.; Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab., 2013, 17(4), 475-490.
[http://dx.doi.org/10.1016/j.cmet.2013.03.001] [PMID: 23562074]
[11]
Matias, I.; Gonthier, M.P.; Orlando, P.; Martiadis, V.; De Petrocellis, L.; Cervino, C.; Petrosino, S.; Hoareau, L.; Festy, F.; Pasquali, R.; Roche, R.; Maj, M.; Pagotto, U.; Monteleone, P.; Di Marzo, V. Regulation, function, and dysregulation of endocannabinoids in models of adipose and β-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab., 2006, 91(8), 3171-3180.
[http://dx.doi.org/10.1210/jc.2005-2679] [PMID: 16684820]
[12]
Di Marzo, V.; De Petrocellis, L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr. Med. Chem., 2010, 17(14), 1430-1449.
[http://dx.doi.org/10.2174/092986710790980078] [PMID: 20166923]
[13]
Pertwee, R.G. Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc. Nutr. Soc., 2014, 73(1), 96-105.
[http://dx.doi.org/10.1017/S0029665113003649] [PMID: 24135210]
[14]
Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E.M. Biased type 1 cannabinoid receptor signaling influences neuronal viability in a cell culture model of Huntington disease. Mol. Pharmacol., 2016, 89(3), 364-375.
[http://dx.doi.org/10.1124/mol.115.101980] [PMID: 26700564]
[15]
Soethoudt, M.; Grether, U.; Fingerle, J.; Grim, T.W.; Fezza, F.; de Petrocellis, L.; Ullmer, C.; Rothenhäusler, B.; Perret, C.; van Gils, N.; Finlay, D.; MacDonald, C.; Chicca, A.; Gens, M.D.; Stuart, J.; de Vries, H.; Mastrangelo, N.; Xia, L.; Alachouzos, G.; Baggelaar, M.P.; Martella, A.; Mock, E.D.; Deng, H.; Heitman, L.H.; Connor, M.; Di Marzo, V.; Gertsch, J.; Lichtman, A.H.; Maccarrone, M.; Pacher, P.; Glass, M.; van der Stelt, M. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun., 2017, 8, 13958.
[http://dx.doi.org/10.1038/ncomms13958] [PMID: 28045021]
[16]
Hudson, B.D.; Hébert, T.E.; Kelly, M.E.M. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol. Pharmacol., 2010, 77(1), 1-9.
[http://dx.doi.org/10.1124/mol.109.060251] [PMID: 19837905]
[17]
Jorgačević, B.; Mladenović, D.; Ninković, M.; Vesković, M.; Dragutinović, V.; Vatazević, A.; Vučević, D.; Ješić Vukićević, R.; Radosavljević, T. Rimonabant improves oxidative/nitrosative stress in mice with nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2015, 2015842108
[http://dx.doi.org/10.1155/2015/842108] [PMID: 26078820]
[18]
Jorgačević, B.; Vučević, D.; Đuričić, I.; Šobajić, S.; Mladenović, D.; Vesković, M.; Vukićević, R.J.; Radosavljević, T. The effect of cannabinoid receptor 1 blockade on hepatic free fatty acid profile in mice with nonalcoholic fatty liver disease. Chem. Phys. Lipids, 2017, 204, 85-93.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.03.009] [PMID: 28363784]
[19]
Jorgačević, B.; Vučević, D.; Vesković, M.; Mladenović, D.; Vukićević, D.; Vukićević, R.J.; Todorović, V.; Radosavljević, T. The effect of cannabinoid receptor 1 blockade on adipokine and proinflammatory cytokine concentration in adipose and hepatic tissue in mice with nonalcoholic fatty liver disease. Can. J. Physiol. Pharmacol., 2019, 97(2), 120-129.
[http://dx.doi.org/10.1139/cjpp-2018-0607] [PMID: 30673308]
[20]
Jeong, W.I.; Osei-Hyiaman, D.; Park, O.; Liu, J.; Bátkai, S.; Mukhopadhyay, P.; Horiguchi, N.; Harvey-White, J.; Marsicano, G.; Lutz, B.; Gao, B.; Kunos, G. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab., 2008, 7(3), 227-235.
[http://dx.doi.org/10.1016/j.cmet.2007.12.007] [PMID: 18316028]
[21]
Mukhopadhyay, B.; Liu, J.; Osei-Hyiaman, D.; Godlewski, G.; Mukhopadhyay, P.; Wang, L.; Jeong, W.I.; Gao, B.; Duester, G.; Mackie, K.; Kojima, S.; Kunos, G. Transcriptional regulation of cannabinoid receptor-1 expression in the liver by retinoic acid acting via retinoic acid receptor-gamma. J. Biol. Chem., 2010, 285(25), 19002-19011.
[http://dx.doi.org/10.1074/jbc.M109.068460] [PMID: 20410309]
[22]
Zelber-Sagi, S.; Azar, S.; Nemirovski, A.; Webb, M.; Halpern, Z.; Shibolet, O.; Tam, J. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease. Obesity (Silver Spring), 2017, 25(1), 94-101.
[http://dx.doi.org/10.1002/oby.21687] [PMID: 27863097]
[23]
Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med., 2012, 52(1), 59-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.003] [PMID: 22064361]
[24]
Gornicka, A.; Morris-Stiff, G.; Thapaliya, S.; Papouchado, B.G.; Berk, M.; Feldstein, A.E. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis. Antioxid. Redox Signal., 2011, 15(2), 437-445.
[http://dx.doi.org/10.1089/ars.2010.3815] [PMID: 21194384]
[25]
Sureshbabu, A.; Ryter, S.W.; Choi, M.E. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol., 2015, 4, 208-214.
[http://dx.doi.org/10.1016/j.redox.2015.01.001] [PMID: 25613291]
[26]
Mukhopadhyay, P.; Pan, H.; Rajesh, M.; Bátkai, S.; Patel, V.; Harvey-White, J.; Mukhopadhyay, B.; Haskó, G.; Gao, B.; Mackie, K.; Pacher, P. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br. J. Pharmacol., 2010, 160(3), 657-668.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00769.x] [PMID: 20590569]
[27]
Lipina, C.; Hundal, H.S. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol., 2016, 6(4)150276
[http://dx.doi.org/10.1098/rsob.150276] [PMID: 27248801]
[28]
Mukhopadhyay, P.; Rajesh, M.; Bátkai, S.; Patel, V.; Kashiwaya, Y.; Liaudet, L.; Evgenov, O.V.; Mackie, K.; Haskó, G.; Pacher, P. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc. Res., 2010, 85(4), 773-784.
[http://dx.doi.org/10.1093/cvr/cvp369] [PMID: 19942623]
[29]
Vettor, R.; Pagano, C. The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(1), 51-63.
[http://dx.doi.org/10.1016/j.beem.2008.10.002] [PMID: 19285260]
[30]
Jorgačević, B.; Mladenović, D.; Ninković, M.; Prokić, V.; Stanković, M.N.; Aleksić, V.; Cerović, I.; Vukićević, R.J.; Vučević, D.; Stanković, M.; Radosavljević, T. Dynamics of oxidative/nitrosative stress in mice with methionine-choline-deficient diet-induced nonalcoholic fatty liver disease. Hum. Exp. Toxicol., 2014, 33(7), 701-709.
[http://dx.doi.org/10.1177/0960327113506723] [PMID: 24130212]
[31]
Bermudez-Silva, F.J.; Cardinal, P.; Cota, D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J. Psychopharmacol. (Oxford), 2012, 26(1), 114-124.
[http://dx.doi.org/10.1177/0269881111408458] [PMID: 21824982]
[32]
Bartelt, A.; Orlando, P.; Mele, C.; Ligresti, A.; Toedter, K.; Scheja, L.; Heeren, J.; Di Marzo, V. Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-) mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia, 2011, 54(11), 2900-2910.
[http://dx.doi.org/10.1007/s00125-011-2274-6] [PMID: 21847582]
[33]
De Laurentiis, A.; Fernández Solari, J.; Mohn, C.; Zorrilla Zubilete, M.; Rettori, V. Endocannabinoid system participates in neuroendocrine control of homeostasis. Neuroimmunomodulation, 2010, 17(3), 153-156.
[http://dx.doi.org/10.1159/000258711] [PMID: 20134190]
[34]
Jalan, R.; Olde Damink, S.W.; Ter Steege, J.C.; Redhead, D.N.; Lee, A.; Hayes, P.C.; Deutz, N.E. Acute endotoxemia following transjugular intrahepatic stent-shunt insertion is associated with systemic and cerebral vasodilatation with increased whole body nitric oxide production in critically ill cirrhotic patients. J. Hepatol., 2011, 54(2), 265-271.
[http://dx.doi.org/10.1016/j.jhep.2010.06.042] [PMID: 21067839]
[35]
Pacher, P.; Kunos, G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J., 2013, 280(9), 1918-1943.
[http://dx.doi.org/10.1111/febs.12260] [PMID: 23551849]
[36]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[37]
Yuzefovych, L.V.; Musiyenko, S.I.; Wilson, G.L.; Rachek, L.I. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One, 2013, 8(1)e54059
[http://dx.doi.org/10.1371/journal.pone.0054059] [PMID: 23342074]
[38]
Ha, S.K.; Chae, C. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp. Anim., 2010, 59(5), 595-604.
[http://dx.doi.org/10.1538/expanim.59.595] [PMID: 21030787]
[39]
Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[40]
Nam, D.H.; Lee, M.H.; Kim, J.E.; Song, H.K.; Kang, Y.S.; Lee, J.E.; Kim, H.W.; Cha, J.J.; Hyun, Y.Y.; Kim, S.H.; Han, S.Y.; Han, K.H.; Han, J.Y.; Cha, D.R. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology, 2012, 153(3), 1387-1396.
[http://dx.doi.org/10.1210/en.2011-1423] [PMID: 22234468]
[41]
Kunos, G.; Tam, J. The case for peripheral CB1 receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br. J. Pharmacol., 2011, 163(7), 1423-1431.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01352.x] [PMID: 21434882]
[42]
Jourdan, T.; Djaouti, L.; Demizieux, L.; Gresti, J.; Vergès, B.; Degrace, P. CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice. Diabetes, 2010, 59(4), 926-934.
[http://dx.doi.org/10.2337/db09-1482] [PMID: 20110567]
[43]
DeLeve, L.D.; Wang, X.; Kanel, G.C.; Atkinson, R.D.; McCuskey, R.S. Prevention of hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic steatohepatitis. Am. J. Pathol., 2008, 173(4), 993-1001.
[http://dx.doi.org/10.2353/ajpath.2008.070720] [PMID: 18772330]
[44]
Handa, P.; Thomas, S.; Morgan-Stevenson, V.; Maliken, B.D.; Gochanour, E.; Boukhar, S.; Yeh, M.M.; Kowdley, K.V. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J. Leukoc. Biol., 2019, 105(5), 1015-1026.
[http://dx.doi.org/10.1002/JLB.3A0318-108R] [PMID: 30835899]
[45]
Ahmed, U.; Latham, P.S.; Oates, P.S. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World J. Gastroenterol., 2012, 18(34), 4651-4658.
[http://dx.doi.org/10.3748/wjg.v18.i34.4651] [PMID: 23002334]
[46]
Otogawa, K.; Kinoshita, K.; Fujii, H.; Sakabe, M.; Shiga, R.; Nakatani, K.; Ikeda, K.; Nakajima, Y.; Ikura, Y.; Ueda, M.; Arakawa, T.; Hato, F.; Kawada, N. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am. J. Pathol., 2007, 170(3), 967-980.
[http://dx.doi.org/10.2353/ajpath.2007.060441] [PMID: 17322381]
[47]
Miranda, K.; Mehrpouya-Bahrami, P.; Nagarkatti, P.S.; Nagarkatti, M. Cannabinoid receptor 1 blockade attenuates obesity and adipose tissue type 1 inflammation through miR-30e-5p regulation of delta-like-4 in macrophages and consequently downregulation of Th1 cells. Front. Immunol., 2019, 10, 1049.
[http://dx.doi.org/10.3389/fimmu.2019.01049] [PMID: 31134094]
[48]
Amano, S.U.; Cohen, J.L.; Vangala, P.; Tencerova, M.; Nicoloro, S.M.; Yawe, J.C.; Shen, Y.; Czech, M.P.; Aouadi, M. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab., 2014, 19(1), 162-171.
[http://dx.doi.org/10.1016/j.cmet.2013.11.017] [PMID: 24374218]
[49]
Boutens, L.; Stienstra, R. Adipose tissue macrophages: going off track during obesity. Diabetologia, 2016, 59(5), 879-894.
[http://dx.doi.org/10.1007/s00125-016-3904-9] [PMID: 26940592]
[50]
Morris, D.L.; Cho, K.W.; Delproposto, J.L.; Oatmen, K.E.; Geletka, L.M.; Martinez-Santibanez, G.; Singer, K.; Lumeng, C.N. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes, 2013, 62(8), 2762-2772.
[http://dx.doi.org/10.2337/db12-1404] [PMID: 23493569]
[51]
Mehrpouya-Bahrami, P.; Chitrala, K.N.; Ganewatta, M.S.; Tang, C.; Murphy, E.A.; Enos, R.T.; Velazquez, K.T.; McCellan, J.; Nagarkatti, M.; Nagarkatti, P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep., 2017, 7(1), 15645.
[http://dx.doi.org/10.1038/s41598-017-15154-6] [PMID: 29142285]
[52]
Guruharsha, K.G.; Kankel, M.W.; Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet., 2012, 13(9), 654-666.
[http://dx.doi.org/10.1038/nrg3272] [PMID: 22868267]
[53]
Nakano, T.; Fukuda, D.; Koga, J.; Aikawa, M. Delta-like Ligand 4-notch signaling in macrophage activation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(10), 2038-2047.
[http://dx.doi.org/10.1161/ATVBAHA.116.306926] [PMID: 27562914]
[54]
Xu, H.; Zhu, J.; Smith, S.; Foldi, J.; Zhao, B.; Chung, A.Y.; Outtz, H.; Kitajewski, J.; Shi, C.; Weber, S.; Saftig, P.; Li, Y.; Ozato, K.; Blobel, C.P.; Ivashkiv, L.B.; Hu, X. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol., 2012, 13(7), 642-650.
[http://dx.doi.org/10.1038/ni.2304] [PMID: 22610140]
[55]
Bi, P.; Shan, T.; Liu, W.; Yue, F.; Yang, X.; Liang, X.R.; Wang, J.; Li, J.; Carlesso, N.; Liu, X.; Kuang, S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat. Med., 2014, 20(8), 911-918.
[http://dx.doi.org/10.1038/nm.3615] [PMID: 25038826]
[56]
Skokos, D.; Nussenzweig, M.C. CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J. Exp. Med., 2007, 204(7), 1525-1531.
[http://dx.doi.org/10.1084/jem.20062305] [PMID: 17576775]
[57]
Amsen, D.; Blander, J.M.; Lee, G.R.; Tanigaki, K.; Honjo, T.; Flavell, R.A. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 2004, 117(4), 515-526.
[http://dx.doi.org/10.1016/S0092-8674(04)00451-9] [PMID: 15137944]
[58]
Pagotto, U.; Pasquali, R. Fighting obesity and associated risk factors by antagonising cannabinoid type 1 receptors. Lancet, 2005, 365(9468), 1363-1364.
[http://dx.doi.org/10.1016/S0140-6736(05)66348-9] [PMID: 15836868]
[59]
Di Marzo, V.; Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci., 2005, 8(5), 585-589.
[http://dx.doi.org/10.1038/nn1457] [PMID: 15856067]
[60]
Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. RIO-Europe Study Group Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet, 2005, 365(9468), 1389-1397.
[http://dx.doi.org/10.1016/S0140-6736(05)66374-X] [PMID: 15836887]
[61]
Després, J.P.; Golay, A.; Sjöström, L. Rimonabant in obesity-lipids study group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med., 2005, 353(20), 2121-2134.
[http://dx.doi.org/10.1056/NEJMoa044537] [PMID: 16291982]
[62]
Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, J.; Rosenstock, J. RIO-North America study group Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA, 2006, 295(7), 761-775.
[http://dx.doi.org/10.1001/jama.295.7.761] [PMID: 16478899]
[63]
Scheen, A.J.; Finer, N.; Hollander, P.; Jensen, M.D.; Van Gaal, L.F. RIO-Diabetes Study Group Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet, 2006, 368(9548), 1660-1672.
[http://dx.doi.org/10.1016/S0140-6736(06)69571-8] [PMID: 17098084]
[64]
Cheung, B.M.Y.; Cheung, T.T.; Samaranayake, N.R. Safety of antiobesity drugs. Ther. Adv. Drug Saf., 2013, 4(4), 171-181.
[http://dx.doi.org/10.1177/2042098613489721] [PMID: 25114779]
[65]
Kenakin, T.P. Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br. J. Pharmacol., 2012, 165(6), 1659-1669.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01749.x] [PMID: 22023017]
[66]
Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov., 2014, 13(9), 692-708.
[http://dx.doi.org/10.1038/nrd4308] [PMID: 25176435]
[67]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[68]
Burford, N.T.; Clark, M.J.; Wehrman, T.S.; Gerritz, S.W.; Banks, M.; O’Connell, J.; Traynor, J.R.; Alt, A. Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10830-10835.
[http://dx.doi.org/10.1073/pnas.1300393110] [PMID: 23754417]
[69]
Wild, C.; Cunningham, K.A.; Zhou, J. Allosteric modulation of G proteincoupled receptors: an emerging approach of drug discovery. J. Pharmacol. Ther, 2013, 2, 1.
[PMID: 27148592]
[70]
Price, M.R.; Baillie, G.L.; Thomas, A.; Stevenson, L.A.; Easson, M.; Goodwin, R.; McLean, A.; McIntosh, L.; Goodwin, G.; Walker, G.; Westwood, P.; Marrs, J.; Thomson, F.; Cowley, P.; Christopoulos, A.; Pertwee, R.G.; Ross, R.A. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol., 2005, 68(5), 1484-1495.
[http://dx.doi.org/10.1124/mol.105.016162] [PMID: 16113085]
[71]
Ahn, K.H.; Mahmoud, M.M.; Kendall, D.A. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J. Biol. Chem., 2012, 287(15), 12070-12082.
[http://dx.doi.org/10.1074/jbc.M111.316463] [PMID: 22343625]
[72]
Turu, G.; Hunyady, L. Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol., 2010, 44(2), 75-85.
[http://dx.doi.org/10.1677/JME-08-0190] [PMID: 19620237]
[73]
Wieckowska, A.; Papouchado, B.G.; Li, Z.; Lopez, R.; Zein, N.N.; Feldstein, A.E. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol., 2008, 103(6), 1372-1379.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01774.x] [PMID: 18510618]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy