Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Synthesis, In silico and In vitro Analysis of Hydrazones as Potential Antituberculosis Agents

Author(s): Bapu R. Thorat*, Suraj N. Mali*, Deepa Rani and Ramesh S. Yamgar

Volume 17, Issue 2, 2021

Published on: 02 March, 2020

Page: [294 - 306] Pages: 13

DOI: 10.2174/1573409916666200302120942

Price: $65

Abstract

Tuberculosis (TB) is a major cause of mortality and illness as reported by the W.H.O in 2019. The WHO report also mentioned the fact that about 10.0 million people fell ill with tuberculosis in the year 2018. Hydrazide–hydrazones having azomethine group (–NH–N=CH–) connected with carbonyl group is reported for the number of bioactivities like anti-inflammatory, anticonvulsant, anticancer, antiviral and antiprotozoal.

Objective: The objective of our current study is to design and synthesise more potent hydrazide– hydrazones, containing anti-tubercular agents.

Methods: In the current study, we synthesized 10 hydrazones (3a-3j) by stirring corresponding benzohydrazides (2) with substituted aldehydes (1a-j) in ethanol as a solvent and acetic acid as a catalyst at room temperature. All synthesized compounds were characterized by various spectroscopic techniques including elemental analysis, ultraviolet–visible spectroscopy, fluorescence, fourier- transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Compounds (3a-3j) were tested for in vitro anti-TB activity using Microplate Alamar Blue Assay (MABA).

Results: All our synthesized compounds (3a-3j) were found to be potent against Mycobacteria tuberculosis (H37RV strain) with MIC (minimum inhibitory concentrations) values of 3.125-50 μg/mL. The hydrazide CO-NH protons in (3a-j) compounds are highly deshielded and showed broad singlet at 9.520-9.168 ppm. All the compounds were found to have more intense emission in the 416 – 429 nm regions and strong absorption in the regions of 316 – 327 nm. Synthesized compounds were also tested for in silico analysis using different software for their Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis. All the compounds were found to be in silico non-carcinogenic.

Conclusion: It will be worth saying that our in silico and in vitro approaches used in the current study will become a guide for medicinal chemists to make structural modifications and synthesize more effective and potent hydrazone containing anti-tubercular agents.

Keywords: Hydrazide-hydrazones, antituberculosis activity, in silico analysis, tuberculosis, synthesis, ADMET.

Graphical Abstract
[1]
Mali, S.N.; Chaudhari, H.K. Computational studies on imidazo [1,2-a] Pyridine-3-carboxamide analogues as antimycobacterial agents: common pharmacophore generation, atom-based 3DQSAR, molecular dynamics simulation, QikProp, molecular docking and prime MMGBSA approaches. Open Pharm. Sci. J., 2018, 5, 12-23.
[http://dx.doi.org/10.2174/1874844901805010012]
[3]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[4]
Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Foye’s principles of medicinal chemistry, 7th ed; Wolters Kluwer: New Delhi, 2013, p. 1177.
[5]
Bhat, M.A.; Al-Omar, M.A. Synthesis, characterization, and in vitro anti-Mycobacterium tuberculosis activity of terpene Schiff bases. Med. Chem. Res., 2013, 22(9), 4522-4528.
[http://dx.doi.org/10.1007/s00044-012-0458-3]
[6]
Paidi, K.R.; Tatipamula, V.B.; Kolli, M.K.; Pedakotla, V.R. benzohydrazide incorporated imidazo [1, 2-b] pyridazine: synthesis, characterization and in vitro anti-tubercular activity. Int. J. Chem. Sci., 2017, 15(3), 172.
[7]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno [1, 2-c] quinoline derivatives as potent dual antituberculosis and anti-Inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[8]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[9]
Nusrath Unissa, A.; Hanna, L.E.; Swaminathan, S. A note on derivatives of isoniazid, Rifampicin, and pyrazinamide showing activity against resistant Mycobacterium tuberculosis. Chem. Biol. Drug Des., 2016, 87(4), 537-550.
[http://dx.doi.org/10.1111/cbdd.12684] [PMID: 26613382]
[10]
Sriram, D.; Yogeeswari, P.; Vyas, D.R.K.; Senthilkumar, P.; Bhat, P.; Srividya, M. 5-Nitro-2-furoic acid hydrazones: design, synthesis and in vitro antimycobacterial evaluation against log and starved phase cultures. Bioorg. Med. Chem. Lett., 2010, 20(15), 4313-4316.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.096] [PMID: 20615698]
[11]
Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett., 2016, 26(3), 978-985.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.049] [PMID: 26725953]
[12]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and Anti-mycobacterium Study of halo-substituted 2-aryloxyacetohydrazones. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[13]
Coelho, T.S.; Cantos, J.B.; Bispo, M.L.F.; Gonçalves, R.S.B.; Lima, C.H.S.; da Silva, P.E.A.; Souza, M.V. In vitro anti-mycobacterial activity of (E)-N′-(monosubstituted-benzylidene) isonicotinohydrazide derivatives against isoniazid-resistant strains. Infect. Dis. Rep., 2012, 4(1)e13
[http://dx.doi.org/10.4081/idr.2012.e13] [PMID: 24470920]
[14]
de Souza, M.V.N. Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia, 2009, 80(8), 453-460.
[http://dx.doi.org/10.1016/j.fitote.2009.07.010] [PMID: 19698768]
[15]
Smieja, M.J.; Marchetti, C.A.; Cook, D.J.; Smaill, F.M. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst. Rev., 2000, (2)CD001363
[PMID: 10796642]
[16]
Akolo, C.; Adetifa, I.; Shepperd, S.; Volmink, J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst. Rev., 2010, 1CD000171
[http://dx.doi.org/10.1002/14651858.CD000171.pub3] [PMID: 20091503]
[17]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med., 2003, 198(5), 693-704.
[http://dx.doi.org/10.1084/jem.20030846] [PMID: 12953091]
[18]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: a review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[19]
Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 2010, 45(7), 3019-3026.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.031] [PMID: 20403645]
[20]
Rane, R.A.; Telvekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(19), 5681-5685.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.026] [PMID: 20800487]
[21]
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Synthesis and antimicrobial activity of 2-chloro-6- methylquinoline hydrazone derivatives. J. Pharm. Bioallied Sci., 2009, 1, 27-31.
[http://dx.doi.org/10.4103/0975-7406.62683]
[22]
Kaplancikli, Z.A.; Altintop, M.D.; Özdemir, A.; Turan-Zitounia, G.; Khan, S.I.; Tabanca, N. Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Lett. Drug Des. Discov., 2012, 9, 310-315.
[http://dx.doi.org/10.2174/157018012799129828]
[23]
Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16(8), 2213-2218.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.048] [PMID: 16458509]
[24]
Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592-6599.
[http://dx.doi.org/10.1016/j.bmc.2013.08.026] [PMID: 24071449]
[25]
Vicini, P.; Incerti, M.; La Colla, P.; Loddo, R. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem., 2009, 44(4), 1801-1807.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.030] [PMID: 18614259]
[26]
Rocha, L.T.S.; Costa, K.A.; Oliveira, A.C.P.; Nascimento, E.B., Jr; Bertollo, C.M.; Araújo, F.; Teixeira, L.R.; Andrade, S.P.; Beraldo, H.; Coelho, M.M. Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci., 2006, 79(5), 499-505.
[http://dx.doi.org/10.1016/j.lfs.2006.01.027] [PMID: 16600310]
[27]
Krishnan, K.; Prathiba, K.; Jayaprakash, V.; Basu, A.; Mishra, N.; Zhou, B.; Hu, S.; Yen, Y. Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2008, 18(23), 6248-6250.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.097] [PMID: 18976907]
[28]
Thanigaimalai, P.; Lee, K.C.; Sharma, V.K.; Roh, E.; Kim, Y.; Jung, S.H. Ketonethiosemicarbazones: structure-activity relationships for their melanogenesis inhibition. Bioorg. Med. Chem. Lett., 2011, 21(12), 3527-3530.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.146] [PMID: 21601449]
[29]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[30]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[31]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[32]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. in silico appraisal, synthesis, antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative. Curr. Comput. Aided Drug Des., 2019, 15(5), 445-455.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[33]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[34]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[35]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 38(6), 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[36]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, In-Silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr. Comput. Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[37]
Kshatriya, R.; Kambale, D.; Mali, S.N.; Jejurkar, V.P.; Lokhande, P.; Chaudhari, H.K.; Saha, S.S. Brønsted acid catalyzed domino synthesis of functionalized 4H‐Chromens and Their ADMET, molecular docking and antibacterial studies. ChemistrySelect, 2019, 4, 7943-7948.
[http://dx.doi.org/10.1002/slct.201901775]
[38]
Shelke, P.B.; Mali, S.N.; Chaudhari, H.K.; Pratap, A.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3048-3054.
[http://dx.doi.org/10.1002/jhet.3700]
[39]
Kapale, S.S.; Mali, S.N.; Chaudhari, H.K. Molecular modelling studies for 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as anticancer agents. Med. Drug Discov., 2019, 2100008
[http://dx.doi.org/10.1016/j.medidd.2019.100008]
[40]
Anuse, D.G.; Thorat, B.R.; Sawant, S.; Yamgar, R.S.; Chaudhari, H.K.; Mali, S.N. Synthesis, SAR, Molecular Docking and Anti-Microbial Study of substituted N-bromoamido-2-aminobenzothiazoles. Curr. Comput. Aided Drug Des., 2019, 15(6), 530-540.
[http://dx.doi.org/10.2174/1573409915666190902143648] [PMID: 31475902]
[41]
Jejurkar, V.P.; Mali, S.N.; Kshatriya, R.; Chaudhari, H.K.; Saha, S. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives. ChemistrySelect, 2019, 4(32), 9470-9475.
[http://dx.doi.org/10.1002/slct.201901890]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy