Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

IGF1信号通路和IGF1相关长非编码rna在肿瘤化疗耐药性研究进展

卷 20, 期 5, 2020

页: [325 - 334] 页: 10

弟呕挨: 10.2174/1568009620666200228123754

价格: $65

摘要

癌症仍然是人类面临的一个严重的公共问题。化疗耐药性是复发和预后不良的重要原因之一。积累的数据支持IGF1的多态性与循环IGF1水平和癌症风险相关,且IGF1信号的激活促进了癌症的进展。在此,我们强调IGF1在各种化疗耐药性中的作用。IGF1相关的lncRNAs的失调也可能在IGF1的化疗耐药性调控中扮演重要角色。最后,靶向IGF1通路和lncrna可以有效提高癌细胞对化疗的敏感性。针对IGF1和IGF1相关的lncrna在恢复化疗敏感性中的价值,还需要进行更多的基础和临床研究

关键词: CDK9

图形摘要
[1]
Heron, M. Deaths: Leading Causes for 2015. Natl. Vital Stat. Rep., 2017, 66(5), 1-76.
[PMID: 29235984]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[5]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[6]
Santos, J.C.; Ribeiro, M.L.; Sarian, L.O.; Ortega, M.M.; Derchain, S.F. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am. J. Cancer Res., 2016, 6(10), 2129-2139.
[PMID: 27822407]
[7]
Martz, C.A.; Ottina, K.A.; Singleton, K.R.; Jasper, J.S.; Wardell, S.E.; Peraza-Penton, A.; Anderson, G.R.; Winter, P.S.; Wang, T.; Alley, H.M.; Kwong, L.N.; Cooper, Z.A.; Tetzlaff, M.; Chen, P.L.; Rathmell, J.C.; Flaherty, K.T.; Wargo, J.A.; McDonnell, D.P.; Sabatini, D.M.; Wood, K.C. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal., 2014, 7(357), ra121.
[http://dx.doi.org/10.1126/scisignal.aaa1877] [PMID: 25538079]
[8]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[PMID: 26734642]
[9]
Neirijnck, Y.; Calvel, P.; Kilcoyne, K.R.; Kühne, F.; Stévant, I.; Griffeth, R.J.; Pitetti, J.L.; Andric, S.A.; Hu, M.C.; Pralong, F.; Smith, L.B.; Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J., 2018, 32(6), 3321-3335.
[http://dx.doi.org/10.1096/fj.201700769RR] [PMID: 29401624]
[10]
Dyer, A.H.; Vahdatpour, C.; Sanfeliu, A.; Tropea, D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 2016, 325, 89-99.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.056] [PMID: 27038749]
[11]
Boguszewski, C.L.; Boguszewski, M.C.D.S. Growth Hormone’s Links to Cancer. Endocr. Rev., 2019, 40(2), 558-574.
[http://dx.doi.org/10.1210/er.2018-00166] [PMID: 30500870]
[12]
Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol., 2019, 21(5), 542-551.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[13]
Li, Z.; Wei, D.; Yang, C.; Sun, H.; Lu, T.; Kuang, D. Overexpression of long noncoding RNA, NEAT1 promotes cell proliferation, invasion and migration in endometrial endometrioid adenocarcinoma. Biomed. Pharmacother., 2016, 84, 244-251.
[http://dx.doi.org/10.1016/j.biopha.2016.09.008] [PMID: 27664948]
[14]
Chen, X.; Dong, H.; Liu, S.; Yu, L.; Yan, D.; Yao, X.; Sun, W.; Han, D.; Gao, G. Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. Am. J. Transl. Res., 2017, 9(1), 90-102.
[PMID: 28123636]
[15]
Lei, Q.; Pan, Q.; Li, N.; Zhou, Z.; Zhang, J.; He, X.; Peng, S.; Li, G.; Sidhu, K.; Chen, S.; Hua, J. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway. J. Cell. Physiol., 2018, 234(1), 915-926.
[http://dx.doi.org/10.1002/jcp.26920] [PMID: 30069947]
[16]
Chang, H-P.; Yang, S-F.; Wang, S-L.; Su, P-H. Associations among IGF-1, IGF2, IGF-1R, IGF-2R, IGFBP-3, insulin genetic polymorphisms and central precocious puberty in girls. BMC Endocr. Disord., 2018, 18(1), 66.
[http://dx.doi.org/10.1186/s12902-018-0271-1] [PMID: 30249230]
[17]
Bruchim, I.; Sarfstein, R.; Werner, H. The IGF Hormonal Network in Endometrial Cancer: Functions, Regulation, and Targeting Approaches. Front. Endocrinol. (Lausanne), 2014, 5, 76.
[http://dx.doi.org/10.3389/fendo.2014.00076] [PMID: 24904527]
[18]
Laron, Z. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency. Hormones (Athens), 2008, 7(1), 24-27.
[http://dx.doi.org/10.14310/horm.2002.1111034] [PMID: 18359741]
[19]
Bach, L.A. IGF-binding proteins. J. Mol. Endocrinol., 2018, 61(1), T11-T28.
[http://dx.doi.org/10.1530/JME-17-0254] [PMID: 29255001]
[20]
Philippou, A.; Maridaki, M.; Pneumaticos, S.; Koutsilieris, M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol. Med., 2014, 20, 202-214.
[http://dx.doi.org/10.2119/molmed.2014.00011] [PMID: 24637928]
[21]
Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[22]
Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, 68(2), 320-344.
[http://dx.doi.org/10.1128/MMBR.68.2.320-344.2004] [PMID: 15187187]
[23]
Frago, S.; Nicholls, R.D.; Strickland, M.; Hughes, J.; Williams, C.; Garner, L.; Surakhy, M.; Maclean, R.; Rezgui, D.; Prince, S.N.; Zaccheo, O.J.; Ebner, D.; Sanegre, S.; Yu, S.; Buffa, F.M.; Crump, M.P.; Hassan, A.B. Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist. Proc. Natl. Acad. Sci. USA, 2016, 113(20), E2766-E2775.
[http://dx.doi.org/10.1073/pnas.1513023113] [PMID: 27140600]
[24]
Hughes, J.; Surakhy, M.; Can, S.; Ducker, M.; Davies, N.; Szele, F.; Bühnemann, C.; Carter, E.; Trikin, R.; Crump, M.P.; Frago, S.; Hassan, A.B. Maternal transmission of an Igf2r domain 11: IGF2 binding mutant allele (Igf2rI1565A) results in partial lethality, overgrowth and intestinal adenoma progression. Sci. Rep., 2019, 9(1), 11388.
[http://dx.doi.org/10.1038/s41598-019-47827-9] [PMID: 31388182]
[25]
Guevara-Aguirre, J.; Guevara, A.; Palacios, I.; Pérez, M.; Prócel, P.; Terán, E. GH and GHR signaling in human disease. Growth Horm. IGF Res., 2018, 38, 34-38.
[http://dx.doi.org/10.1016/j.ghir.2017.12.006] [PMID: 29395968]
[26]
Varewijck, A.J.; Janssen, J.A.M.J.L. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer, 2012, 19(5), F63-F75.
[http://dx.doi.org/10.1530/ERC-12-0026] [PMID: 22420005]
[27]
Nguyen, L.K.; Kolch, W.; Kholodenko, B.N. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal., 2013, 11, 52.
[http://dx.doi.org/10.1186/1478-811X-11-52] [PMID: 23902637]
[28]
Morselli, E.; Santos, R.S.; Gao, S.; Ávalos, Y.; Criollo, A.; Palmer, B.F.; Clegg, D.J. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am. J. Physiol. Endocrinol. Metab., 2018, 315(1), E7-E14.
[http://dx.doi.org/10.1152/ajpendo.00473.2017] [PMID: 29509437]
[29]
Gu, F.; Schumacher, F.R.; Canzian, F.; Allen, N.E.; Albanes, D.; Berg, C.D.; Berndt, S.I.; Boeing, H.; Bueno-de-Mesquita, H.B.; Buring, J.E.; Chabbert-Buffet, N.; Chanock, S.J.; Clavel-Chapelon, F.; Dumeaux, V.; Gaziano, J.M.; Giovannucci, E.L.; Haiman, C.A.; Hankinson, S.E.; Hayes, R.B.; Henderson, B.E.; Hunter, D.J.; Hoover, R.N.; Johansson, M.; Key, T.J.; Khaw, K.T.; Kolonel, L.N.; Lagiou, P.; Lee, I.M.; LeMarchand, L.; Lund, E.; Ma, J.; Onland-Moret, N.C.; Overvad, K.; Rodriguez, L.; Sacerdote, C.; Sánchez, M.J.; Stampfer, M.J.; Stattin, P.; Stram, D.O.; Thomas, G.; Thun, M.J.; Tjønneland, A.; Trichopoulos, D.; Tumino, R.; Virtamo, J.; Weinstein, S.J.; Willett, W.C.; Yeager, M.; Zhang, S.M.; Kaaks, R.; Riboli, E.; Ziegler, R.G.; Kraft, P. Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer. Cancer Epidemiol. Biomarkers Prev., 2010, 19(11), 2877-2887.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0507] [PMID: 20810604]
[30]
Palles, C.; Johnson, N.; Coupland, B.; Taylor, C.; Carvajal, J.; Holly, J.; Fentiman, I.S.; Silva, Idos.S.; Ashworth, A.; Peto, J.; Fletcher, O. Identification of genetic variants that influence circulating IGF1 levels: a targeted search strategy. Hum. Mol. Genet., 2008, 17(10), 1457-1464.
[http://dx.doi.org/10.1093/hmg/ddn034] [PMID: 18250100]
[31]
Patel, A.V.; Cheng, I.; Canzian, F.; Le Marchand, L.; Thun, M.J.; Berg, C.D.; Buring, J.; Calle, E.E.; Chanock, S.; Clavel-Chapelon, F.; Cox, D.G.; Dorronsoro, M.; Dossus, L.; Haiman, C.A.; Hankinson, S.E.; Henderson, B.E.; Hoover, R.; Hunter, D.J.; Kaaks, R.; Kolonel, L.N.; Kraft, P.; Linseisen, J.; Lund, E.; Manjer, J.; McCarty, C.; Peeters, P.H.; Pike, M.C.; Pollak, M.; Riboli, E.; Stram, D.O.; Tjonneland, A.; Travis, R.C.; Trichopoulos, D.; Tumino, R.; Yeager, M.; Ziegler, R.G.; Feigelson, H.S. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3). PLoS One, 2008, 3(7) e2578
[http://dx.doi.org/10.1371/journal.pone.0002578] [PMID: 18596909]
[32]
Al-Zahrani, A.; Sandhu, M.S.; Luben, R.N.; Thompson, D.; Baynes, C.; Pooley, K.A.; Luccarini, C.; Munday, H.; Perkins, B.; Smith, P.; Pharoah, P.D.; Wareham, N.J.; Easton, D.F.; Ponder, B.A.; Dunning, A.M. IGF1 and IGFBP3 tagging polymorphisms are associated with circulating levels of IGF1, IGFBP3 and risk of breast cancer. Hum. Mol. Genet., 2006, 15(1), 1-10.
[http://dx.doi.org/10.1093/hmg/ddi398] [PMID: 16306136]
[33]
Ennishi, D.; Shitara, K.; Ito, H.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Yatabe, Y.; Yamao, K.; Tajima, K.; Tanimoto, M.; Tanaka, H.; Hamajima, N.; Matsuo, K. Association between insulin-like growth factor-1 polymorphisms and stomach cancer risk in a Japanese population. Cancer Sci., 2011, 102(12), 2231-2235.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02062.x] [PMID: 21854509]
[34]
Dong, X.; Li, Y.; Tang, H.; Chang, P.; Hess, K.R.; Abbruzzese, J.L.; Li, D. Insulin-like growth factor axis gene polymorphisms modify risk of pancreatic cancer. Cancer Epidemiol., 2012, 36(2), 206-211.
[http://dx.doi.org/10.1016/j.canep.2011.05.013] [PMID: 21852217]
[35]
Cheng, I.; Stram, D.O.; Penney, K.L.; Pike, M.; Le Marchand, L.; Kolonel, L.N.; Hirschhorn, J.; Altshuler, D.; Henderson, B.E.; Freedman, M.L. Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J. Natl. Cancer Inst., 2006, 98(2), 123-134.
[http://dx.doi.org/10.1093/jnci/djj013] [PMID: 16418515]
[36]
Xu, G.P.; Chen, W.X.; Xie, W.Y.; Wu, L.F. The association between IGF1 gene rs1520220 polymorphism and cancer susceptibility: a meta-analysis based on 12,884 cases and 58,304 controls. Environ. Health Prev. Med., 2018, 23(1), 38.
[http://dx.doi.org/10.1186/s12199-018-0727-y] [PMID: 30111277]
[37]
Wong, H.L.; Koh, W.P.; Probst-Hensch, N.M.; Van den Berg, D.; Yu, M.C.; Ingles, S.A. Insulin-like growth factor-1 promoter polymorphisms and colorectal cancer: a functional genomics approach. Gut, 2008, 57(8), 1090-1096.
[http://dx.doi.org/10.1136/gut.2007.140855] [PMID: 18308828]
[38]
Chang, C.F.; Pao, J.B.; Yu, C.C.; Huang, C.Y.; Huang, S.P.; Yang, Y.P.; Huang, C.N.; Chang, T.Y.; You, B.J.; Lee, H.Z.; Hour, T.C.; Bao, B.Y. Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy. Ann. Surg. Oncol., 2013, 20(7), 2446-2452.
[http://dx.doi.org/10.1245/s10434-013-2884-y] [PMID: 23397154]
[39]
Muendlein, A.; Lang, A.H.; Geller-Rhomberg, S.; Winder, T.; Gasser, K.; Drexel, H.; Decker, T.; Mueller-Holzner, E.; Chamson, M.; Marth, C.; Hubalek, M. Association of a common genetic variant of the IGF-1 gene with event-free survival in patients with HER2-positive breast cancer. J. Cancer Res. Clin. Oncol., 2013, 139(3), 491-498.
[http://dx.doi.org/10.1007/s00432-012-1355-3] [PMID: 23180020]
[40]
Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol., 2010, 11(6), 530-542.
[http://dx.doi.org/10.1016/S1470-2045(10)70095-4] [PMID: 20472501]
[41]
Kucera, R.; Treskova, I.; Vrzalova, J.; Svobodova, S.; Topolcan, O.; Fuchsova, R.; Rousarova, M.; Treska, V.; Kydlicek, T. Evaluation of IGF1 serum levels in malignant melanoma and healthy subjects. Anticancer Res., 2014, 34(9), 5217-5220.
[PMID: 25202118]
[42]
Olivo-Marston, S.E.; Hursting, S.D.; Lavigne, J.; Perkins, S.N.; Maarouf, R.S.; Yakar, S.; Harris, C.C. Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice. Mol. Carcinog., 2009, 48(12), 1071-1076.
[http://dx.doi.org/10.1002/mc.20577] [PMID: 19760669]
[43]
Al-Delaimy, W.K.; Flatt, S.W.; Natarajan, L.; Laughlin, G.A.; Rock, C.L.; Gold, E.B.; Caan, B.J.; Parker, B.A.; Pierce, J.P. IGF1 and risk of additional breast cancer in the WHEL study. Endocr. Relat. Cancer, 2011, 18(2), 235-244.
[PMID: 21263044]
[44]
Gao, Y.; Katki, H.; Graubard, B.; Pollak, M.; Martin, M.; Tao, Y.; Schoen, R.E.; Church, T.; Hayes, R.B.; Greene, M.H.; Berndt, S.I. Serum IGF1, IGF2 and IGFBP3 and risk of advanced colorectal adenoma. Int. J. Cancer, 2012, 131(2), E105-E113.
[http://dx.doi.org/10.1002/ijc.26438] [PMID: 21932422]
[45]
Huang, Y.F.; Cheng, W.F.; Wu, Y.P.; Cheng, Y.M.; Hsu, K.F.; Chou, C.Y. Circulating IGF system and treatment outcome in epithelial ovarian cancer. Endocr. Relat. Cancer, 2014, 21(2), 217-229.
[http://dx.doi.org/10.1530/ERC-13-0274] [PMID: 24273235]
[46]
Schumacher, F.R.; Cheng, I.; Freedman, M.L.; Mucci, L.; Allen, N.E.; Pollak, M.N.; Hayes, R.B.; Stram, D.O.; Canzian, F.; Henderson, B.E.; Hunter, D.J.; Virtamo, J.; Manjer, J.; Gaziano, J.M.; Kolonel, L.N.; Tjønneland, A.; Albanes, D.; Calle, E.E.; Giovannucci, E.; Crawford, E.D.; Haiman, C.A.; Kraft, P.; Willett, W.C.; Thun, M.J.; Le Marchand, L.; Kaaks, R.; Feigelson, H.S.; Bueno-de-Mesquita, H.B.; Palli, D.; Riboli, E.; Lund, E.; Amiano, P.; Andriole, G.; Dunning, A.M.; Trichopoulos, D.; Stampfer, M.J.; Key, T.J.; Ma, J. A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among Caucasians. Hum. Mol. Genet., 2010, 19(15), 3089-3101.
[http://dx.doi.org/10.1093/hmg/ddq210] [PMID: 20484221]
[47]
Shiratsuchi, I.; Akagi, Y.; Kawahara, A.; Kinugasa, T.; Romeo, K.; Yoshida, T.; Ryu, Y.; Gotanda, Y.; Kage, M.; Shirouzu, K. Expression of IGF-1 and IGF-1R and their relation to clinicopathological factors in colorectal cancer. Anticancer Res., 2011, 31(7), 2541-2545.
[PMID: 21873172]
[48]
Hirakawa, T.; Yashiro, M.; Doi, Y.; Kinoshita, H.; Morisaki, T.; Fukuoka, T.; Hasegawa, T.; Kimura, K.; Amano, R.; Hirakawa, K. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia. PLoS One, 2016, 11(8) e0159912
[http://dx.doi.org/10.1371/journal.pone.0159912] [PMID: 27487118]
[49]
Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; Wang, X.; Wang, Y.; Xu, Z.Y.; Gao, L.; Yang, Q.; Xu, B.; Li, Y.M.; Fang, Z.Y.; Xu, Z.P.; Bao, Y.; Wu, D.S.; Miao, X.; Sun, H.Y.; Sun, Y.H.; Wang, H.Y.; Wang, L.H. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell, 2016, 29(5), 653-668.
[http://dx.doi.org/10.1016/j.ccell.2016.03.004] [PMID: 27117758]
[50]
Yang, S.; Liu, W.; Li, M.; Wen, J.; Zhu, M.; Xu, S. insulin-like growth factor-1 modulates polycomb cbx8 expression and inhibits colon cancer cell apoptosis. Cell Biochem. Biophys., 2015, 71(3), 1503-1507.
[http://dx.doi.org/10.1007/s12013-014-0373-y] [PMID: 25398592]
[51]
Shi, W.D.; Meng, Z.Q.; Chen, Z.; Lin, J.H.; Zhou, Z.H.; Liu, L.M. Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett., 2009, 283(1), 84-91.
[http://dx.doi.org/10.1016/j.canlet.2009.03.030] [PMID: 19375852]
[52]
Chen, S.; Li, C.; Wu, B.; Zhang, C.; Liu, C.; Lin, X.; Wu, X.; Sun, L.; Liu, C.; Chen, B.; Zhong, Z.; Xu, L.; Li, E. Identification of differentially expressed genes and their subpathways in recurrent versus primary bone giant cell tumors. Int. J. Oncol., 2014, 45(3), 1133-1142.
[http://dx.doi.org/10.3892/ijo.2014.2501] [PMID: 24969034]
[53]
Lau, M.T.; Leung, P.C. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett., 2012, 326(2), 191-198.
[http://dx.doi.org/10.1016/j.canlet.2012.08.016] [PMID: 22922215]
[54]
Li, Z.J.; Ying, X.J.; Chen, H.L.; Ye, P.J.; Chen, Z.L.; Li, G.; Jiang, H.F.; Liu, J.; Zhou, S.Z. Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J. Gastroenterol., 2013, 19(43), 7788-7794.
[http://dx.doi.org/10.3748/wjg.v19.i43.7788] [PMID: 24282367]
[55]
Liu, L.; Wang, X.; Li, X.; Wu, X.; Tang, M.; Wang, X. Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells. Oncol. Rep., 2018, 39(2), 818-826.
[PMID: 29251331]
[56]
Chun, Y.S.; Huang, M.; Rink, L.; Von Mehren, M. Expression levels of insulin-like growth factors and receptors in hepatocellular carcinoma: a retrospective study. World J. Surg. Oncol., 2014, 12(1), 231.
[http://dx.doi.org/10.1186/1477-7819-12-231] [PMID: 25052889]
[57]
Amemiya, Y.; Yang, W.; Benatar, T.; Nofech-Mozes, S.; Yee, A.; Kahn, H.; Holloway, C.; Seth, A. Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Res. Treat., 2011, 126(2), 373-384.
[http://dx.doi.org/10.1007/s10549-010-0921-0] [PMID: 20464481]
[58]
Hou, Y-L.; Luo, P.; Ji, G-Y.; Chen, H. Clinical significance of serum IGFBP-3 in colorectal cancer. J. Clin. Lab. Anal., 2019, 33(6) e22912
[http://dx.doi.org/10.1002/jcla.22912] [PMID: 31218761]
[59]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[60]
Suda, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev. Anticancer Ther., 2017, 17(9), 779-786.
[http://dx.doi.org/10.1080/14737140.2017.1355243] [PMID: 28701107]
[61]
Bodzin, A.S.; Wei, Z.; Hurtt, R.; Gu, T.; Doria, C. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J. Cell. Physiol., 2012, 227(7), 2947-2952.
[http://dx.doi.org/10.1002/jcp.23041] [PMID: 21959795]
[62]
Löw, S.; Vougioukas, V.I.; Hielscher, T.; Schmidt, U.; Unterberg, A.; Halatsch, M.E. Pathogenetic pathways leading to glioblastoma multiforme: association between gene expressions and resistance to erlotinib. Anticancer Res., 2008, 28(6A), 3729-3732.
[PMID: 19189657]
[63]
Lippolis, C.; Refolo, M.G.; D’Alessandro, R.; Carella, N.; Messa, C.; Cavallini, A.; Carr, B.I. Resistance to multikinase inhibitor actions mediated by insulin like growth factor-1. J. Exp. Clin. Cancer Res., 2015, 34(1), 90.
[http://dx.doi.org/10.1186/s13046-015-0210-1] [PMID: 26329608]
[64]
Masago, K.; Fujita, S.; Togashi, Y.; Kim, Y.H.; Hatachi, Y.; Fukuhara, A.; Nagai, H.; Irisa, K.; Sakamori, Y.; Mio, T.; Mishima, M. Clinical significance of epidermal growth factor receptor mutations and insulin-like growth factor 1 and its binding protein 3 in advanced non-squamous non-small cell lung cancer. Oncol. Rep., 2011, 26(4), 795-803.
[http://dx.doi.org/10.3892/or.2011.1354] [PMID: 21805046]
[65]
Lyu, H.; Yang, X.H.; Edgerton, S.M.; Thor, A.D.; Wu, X.; He, Z.; Liu, B. The erbB3- and IGF-1 receptor-initiated signaling pathways exhibit distinct effects on lapatinib sensitivity against trastuzumab-resistant breast cancer cells. Oncotarget, 2016, 7(3), 2921-2935.
[http://dx.doi.org/10.18632/oncotarget.6404] [PMID: 26621843]
[66]
Giampieri, R.; Scartozzi, M.; Del Prete, M.; Maccaroni, E.; Bittoni, A.; Faloppi, L.; Bianconi, M.; Cecchini, L.; Cascinu, S. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation. Crit. Rev. Oncol. Hematol., 2013, 88(2), 272-283.
[http://dx.doi.org/10.1016/j.critrevonc.2013.05.008] [PMID: 23806981]
[67]
Chung, Y.J.; Kim, T.M.; Kim, D.W.; Namkoong, H.; Kim, H.K.; Ha, S.A.; Kim, S.; Shin, S.M.; Kim, J.H.; Lee, Y.J.; Kang, H.M.; Kim, J.W. Gene expression signatures associated with the resistance to imatinib. Leukemia, 2006, 20(9), 1542-1550.
[http://dx.doi.org/10.1038/sj.leu.2404310] [PMID: 16855633]
[68]
Peled, N.; Wynes, M.W.; Ikeda, N.; Ohira, T.; Yoshida, K.; Qian, J.; Ilouze, M.; Brenner, R.; Kato, Y.; Mascaux, C.; Hirsch, F.R. Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol. (Dordr.), 2013, 36(4), 277-288.
[http://dx.doi.org/10.1007/s13402-013-0133-9] [PMID: 23619944]
[69]
Alkema, N.G.; Wisman, G.B.; van der Zee, A.G.; van Vugt, M.A.; de Jong, S. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resist. Updat., 2016, 24, 55-69.
[http://dx.doi.org/10.1016/j.drup.2015.11.005] [PMID: 26830315]
[70]
Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[71]
Cortés-Sempere, M.; de Miguel, M.P.; Pernía, O.; Rodriguez, C.; de Castro Carpeño, J.; Nistal, M.; Conde, E.; López-Ríos, F.; Belda-Iniesta, C.; Perona, R.; Ibanez de Caceres, I. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene, 2013, 32(10), 1274-1283.
[http://dx.doi.org/10.1038/onc.2012.146] [PMID: 22543588]
[72]
Bu, Y.; Jia, Q.A.; Ren, Z.G.; Zhang, J.B.; Jiang, X.M.; Liang, L.; Xue, T.C.; Zhang, Q.B.; Wang, Y.H.; Zhang, L.; Xie, X.Y.; Tang, Z.Y. Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma is associated with increased autocrine of IGF1. PLoS One, 2014, 9(3) e89686
[http://dx.doi.org/10.1371/journal.pone.0089686] [PMID: 24632571]
[73]
Koti, M.; Gooding, R.J.; Nuin, P.; Haslehurst, A.; Crane, C.; Weberpals, J.; Childs, T.; Bryson, P.; Dharsee, M.; Evans, K.; Feilotter, H.E.; Park, P.C.; Squire, J.A. Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer, 2013, 13(1), 549.
[http://dx.doi.org/10.1186/1471-2407-13-549] [PMID: 24237932]
[74]
Eckstein, N.; Servan, K.; Hildebrandt, B.; Pölitz, A.; von Jonquières, G.; Wolf-Kümmeth, S.; Napierski, I.; Hamacher, A.; Kassack, M.U.; Budczies, J.; Beier, M.; Dietel, M.; Royer-Pokora, B.; Denkert, C.; Royer, H.D. Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res., 2009, 69(7), 2996-3003.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3153] [PMID: 19318572]
[75]
Zhang, N.; Liu, H.; Cui, M.; Du, Y.; Liu, Z.; Liu, S. Direct determination of the binding sites of cisplatin on insulin-like growth factor-1 by top-down mass spectrometry. J. Biol. Inorg. Chem., 2015, 20(1), 1-10.
[http://dx.doi.org/10.1007/s00775-014-1202-x] [PMID: 25344342]
[76]
Long, X.; Xiong, W.; Zeng, X.; Qi, L.; Cai, Y.; Mo, M.; Jiang, H.; Zhu, B.; Chen, Z.; Li, Y. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis., 2019, 10(5), 375.
[http://dx.doi.org/10.1038/s41419-019-1581-6] [PMID: 31076571]
[77]
Galletti, E.; Magnani, M.; Renzulli, M.L.; Botta, M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem, 2007, 2(7), 920-942.
[http://dx.doi.org/10.1002/cmdc.200600308] [PMID: 17530726]
[78]
Gooch, J.L.; Van Den Berg, C.L.; Yee, D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death--proliferative and anti-apoptotic effects. Breast Cancer Res. Treat., 1999, 56(1), 1-10.
[http://dx.doi.org/10.1023/A:1006208721167] [PMID: 10517338]
[79]
Pal, S.; Shankar, B.S.; Sainis, K.B. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells. Cytokine, 2013, 64(1), 196-207.
[http://dx.doi.org/10.1016/j.cyto.2013.07.029] [PMID: 23972545]
[80]
Wu, X.; Wu, Q.; Zhou, X.; Huang, J. SphK1 functions downstream of IGF-1 to modulate IGF-1-induced EMT, migration and paclitaxel resistance of A549 cells: A preliminary in vitro study. J. Cancer, 2019, 10(18), 4264-4269.
[http://dx.doi.org/10.7150/jca.32646] [PMID: 31413745]
[81]
Niu, X.B.; Fu, G.B.; Wang, L.; Ge, X.; Liu, W.T.; Wen, Y.Y.; Sun, H.R.; Liu, L.Z.; Wang, Z.J.; Jiang, B.H. Insulin-like growth factor-I induces chemoresistence to docetaxel by inhibiting miR-143 in human prostate cancer. Oncotarget, 2017, 8(63), 107157-107166.
[http://dx.doi.org/10.18632/oncotarget.22362] [PMID: 29291019]
[82]
Zhang, H.H.; Zhang, Z.Y.; Che, C.L.; Mei, Y.F.; Shi, Y.Z. Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines. Int. J. Clin. Exp. Pathol., 2013, 6(9), 1734-1746.
[PMID: 24040438]
[83]
Juan, H.C.; Tsai, H.T.; Chang, P.H.; Huang, C.Y.F.; Hu, C.P.; Wong, F.H. Insulin-like growth factor 1 mediates 5-fluorouracil chemoresistance in esophageal carcinoma cells through increasing survivin stability. Apoptosis, 2011, 16(2), 174-183.
[http://dx.doi.org/10.1007/s10495-010-0555-z] [PMID: 21082354]
[84]
Beech, D.J.; Perer, E.; Helms, J.; Gratzer, A.; Deng, N. Insulin-like growth factor-I receptor activation blocks doxorubicin cytotoxicity in sarcoma cells. Oncol. Rep., 2003, 10(1), 181-184.
[http://dx.doi.org/10.3892/or.10.1.181] [PMID: 12469167]
[85]
Ellis, B.C.; Graham, L.D.; Molloy, P.L. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim. Biophys. Acta, 2014, 1843(2), 372-386.
[http://dx.doi.org/10.1016/j.bbamcr.2013.10.016] [PMID: 24184209]
[86]
Han, L.; Zhang, K.; Shi, Z.; Zhang, J.; Zhu, J.; Zhu, S.; Zhang, A.; Jia, Z.; Wang, G.; Yu, S.; Pu, P.; Dong, L.; Kang, C. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int. J. Oncol., 2012, 40(6), 2004-2012.
[PMID: 22446686]
[87]
Li, Z.; Cai, B.; Abdalla, B.A.; Zhu, X.; Zheng, M.; Han, P.; Nie, Q.; Zhang, X. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J. Cachexia Sarcopenia Muscle, 2019, 10(2), 391-410.
[http://dx.doi.org/10.1002/jcsm.12374] [PMID: 30701698]
[88]
Trimarchi, T.; Bilal, E.; Ntziachristos, P.; Fabbri, G.; Dalla-Favera, R.; Tsirigos, A.; Aifantis, I. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell, 2014, 158(3), 593-606.
[http://dx.doi.org/10.1016/j.cell.2014.05.049] [PMID: 25083870]
[89]
Zhang, J.; Zhao, B.; Chen, X.; Wang, Z.; Xu, H.; Huang, B. Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol. Oncol. Res. Por., 2017, (6), 1-5.
[90]
Parasramka, M.; Yan, I.K.; Wang, X.; Nguyen, P.; Matsuda, A.; Maji, S.; Foye, C.; Asmann, Y.; Patel, T. BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol. Cancer, 2017, 16(1), 22.
[http://dx.doi.org/10.1186/s12943-017-0587-x] [PMID: 28122578]
[91]
Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[92]
Gao, H.; Song, X.; Kang, T.; Yan, B.; Feng, L.; Gao, L.; Ai, L.; Liu, X.; Yu, J.; Li, H. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer. OncoTargets Ther., 2017, 10, 205-216.
[http://dx.doi.org/10.2147/OTT.S116178] [PMID: 28115855]
[93]
Han, P.; Li, J.W.; Zhang, B.M.; Lv, J.C.; Li, Y.M.; Gu, X.Y.; Yu, Z.W.; Jia, Y.H.; Bai, X.F.; Li, L.; Liu, Y.L.; Cui, B.B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer, 2017, 16(1), 9.
[http://dx.doi.org/10.1186/s12943-017-0583-1] [PMID: 28086904]
[94]
Arnaldez, F.I.; Helman, L.J. Targeting the insulin growth factor receptor 1. Hematol. Oncol. Clin. North Am., 2012, 26(3), 527-542. vii-viii
[http://dx.doi.org/10.1016/j.hoc.2012.01.004] [PMID: 22520978]
[95]
Iams, W.T.; Lovly, C.M. Molecular pathways: Clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin. Cancer Res., 2015, 21(19), 4270-4277.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2518] [PMID: 26429980]
[96]
Ukaji, T.; Lin, Y.; Banno, K.; Okada, S.; Umezawa, K. inhibition of igf-1-mediated cellular migration and invasion by migracin a in ovarian clear cell carcinoma cells. PLoS One, 2015, 10(9) e0137663
[http://dx.doi.org/10.1371/journal.pone.0137663] [PMID: 26360832]
[97]
Jones, R.L.; Kim, E.S.; Nava-Parada, P.; Alam, S.; Johnson, F.M.; Stephens, A.W.; Simantov, R.; Poondru, S.; Gedrich, R.; Lippman, S.M.; Kaye, S.B.; Carden, C.P. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 693-700.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0265] [PMID: 25208878]
[98]
Du, J.; Shi, H.R.; Ren, F.; Wang, J.L.; Wu, Q.H.; Li, X.; Zhang, R.T. Inhibition of the IGF signaling pathway reverses cisplatin resistance in ovarian cancer cells. BMC Cancer, 2017, 17(1), 851.
[http://dx.doi.org/10.1186/s12885-017-3840-1] [PMID: 29241458]
[99]
Yaktapour, N.; Übelhart, R.; Schüler, J.; Aumann, K.; Dierks, C.; Burger, M.; Pfeifer, D.; Jumaa, H.; Veelken, H.; Brummer, T.; Zirlik, K. Insulin-like growth factor-1 receptor (IGF1R) as a novel target in chronic lymphocytic leukemia. Blood, 2013, 122(9), 1621-1633.
[http://dx.doi.org/10.1182/blood-2013-02-484386] [PMID: 23863897]
[100]
Martins, A.S.; Mackintosh, C.; Martín, D.H.; Campos, M.; Hernández, T.; Ordóñez, J.L.; de Alava, E. Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin. Cancer Res., 2006, 12(11 Pt 1), 3532-3540.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1778] [PMID: 16740780]
[101]
Ma, Y.; Tang, N.; Thompson, R.C.; Mobley, B.C.; Clark, S.W.; Sarkaria, J.N.; Wang, J. InsR/IGF1R pathway mediates resistance to egfr inhibitors in glioblastoma. Clin. Cancer Res., 2016, 22(7), 1767-1776.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1677] [PMID: 26561558]
[102]
Park, J.H.; Choi, Y.J.; Kim, S.Y.; Lee, J.E.; Sung, K.J.; Park, S.; Kim, W.S.; Song, J.S.; Choi, C.M.; Sung, Y.H.; Rho, J.K.; Lee, J.C. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget, 2016, 7(16), 22005-22015.
[http://dx.doi.org/10.18632/oncotarget.8013] [PMID: 26980747]
[103]
Franks, S.E.; Jones, R.A.; Briah, R.; Murray, P.; Moorehead, R.A. BMS-754807 is cytotoxic to non-small cell lung cancer cells and enhances the effects of platinum chemotherapeutics in the human lung cancer cell line A549. BMC Res. Notes, 2016, 9(1), 134.
[http://dx.doi.org/10.1186/s13104-016-1919-4] [PMID: 26928578]
[104]
Spiliotaki, M.; Markomanolaki, H.; Mela, M.; Mavroudis, D.; Georgoulias, V.; Agelaki, S. Targeting the insulin-like growth factor I receptor inhibits proliferation and VEGF production of non-small cell lung cancer cells and enhances paclitaxel-mediated anti-tumor effect. Lung Cancer, 2011, 73(2), 158-165.
[http://dx.doi.org/10.1016/j.lungcan.2010.11.010] [PMID: 21190751]
[105]
Tang, Y.; Parmakhtiar, B.; Simoneau, A.R.; Xie, J.; Fruehauf, J.; Lilly, M.; Zi, X. Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia, 2011, 13(2), 108-119.
[http://dx.doi.org/10.1593/neo.101092] [PMID: 21403837]
[106]
Molife, L.R.; Fong, P.C.; Paccagnella, L.; Reid, A.H.M.; Shaw, H.M.; Vidal, L.; Arkenau, H.T.; Karavasilis, V.; Yap, T.A.; Olmos, D.; Spicer, J.; Postel-Vinay, S.; Yin, D.; Lipton, A.; Demers, L.; Leitzel, K.; Gualberto, A.; de Bono, J.S. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br. J. Cancer, 2010, 103(3), 332-339.
[http://dx.doi.org/10.1038/sj.bjc.6605767] [PMID: 20628389]
[107]
Beech, D.J.; Parekh, N.; Pang, Y. Insulin-like growth factor-I receptor antagonism results in increased cytotoxicity of breast cancer cells to doxorubicin and taxol. Oncol. Rep., 2001, 8(2), 325-329.
[http://dx.doi.org/10.3892/or.8.2.325] [PMID: 11182049]
[108]
Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; Mao, H.; Yang, L. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano, 2015, 9(8), 7976-7991.
[http://dx.doi.org/10.1021/acsnano.5b01288] [PMID: 26242412]
[109]
Hao, Y.; Yang, X.; Zhang, D.; Luo, J.; Chen, R. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through epithelial-mesenchymal-transition in lung cancer. Gene, 2017, 608, 1-12.
[http://dx.doi.org/10.1016/j.gene.2017.01.023] [PMID: 28119085]
[110]
Ren, K.; Xu, R.; Huang, J.; Zhao, J.; Shi, W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother. Pharmacol., 2017, 80(2), 243-250.
[http://dx.doi.org/10.1007/s00280-017-3356-z] [PMID: 28600629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy