Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress in the Synthesis of Pyrroles

Author(s): Duc Dau Xuan*

Volume 24, Issue 6, 2020

Page: [622 - 657] Pages: 36

DOI: 10.2174/1385272824666200228121627

Price: $65

Abstract

Pyrrole derivatives are nitrogen-containing heterocyclic compounds and widely distributed in a large number of natural and non-natural compounds. These compounds possess a broad spectrum of biological activities such as anti-infammatory, antiviral, antitumor, antifungal, and antibacterial activities. Besides their biological activity, pyrrole derivatives have also been applied in various areas such as dyes, conducting polymers, organic semiconductors.

Due to such a wide range of applicability, access to this class of compounds has attracted intensive research interest. Various established synthetic methods such as Paal-Knorr, Huisgen, and Hantzsch have been modified and improved. In addition, numerous novel methods for pyrrole synthesis have been discovered. This review will focus on considerable studies on the synthesis of pyrroles, which date back from 2014.

Keywords: Cyclization, Paal-Knorr reaction, Hantzsch synthesis, bioactivity, 1, 4-diketones, α-bromoacetophenones, amines.

Graphical Abstract
[1]
Muchowski, J.M.; Unger, S.H.; Ackrell, J.; Cheung, P.; Cook, J.; Gallegra, P.; Halpern, O.; Koehler, R.; Kluge, A.F.; Horn, A.R.V.; Antonio, Y.; Carpio, H.; Franco, F.; Galeazzi, E.; Garcia, I.; Greenhouse, R.; Guzman, A.; Iriarte, J. Leon. A.; Pefia, A.; Perez, V.; Valdez, D.; Ackerman, N.; Ballaron, S.A.; Murthy, D.V.K.; Rivito, J.R.; Tomolonis, A.J.; Young, J.M.; Rooks, J.H. Synthesis and anti-inflammatory activity of 5-Aroyl-1,2-dihydro-3H-pyrrol [1,2-α] pyrrole-1-carboxylic acid and related compounds. J. Med. Chem., 1985, 28, 1037-1049.
[http://dx.doi.org/10.1021/jm00146a011] [PMID: 4020827]
[2]
Artico, M.; Di Santo, R.; Costi, R.; Massa, S.; Scintu, F.; Loi, A.G.; De Montis, A.; La Colla, P. 1-Arylsulfonyl-3-(α- hydroxybenzyl)-1H-pyrroles, a novel class of anti-HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett., 1997, 7(14), 1931-1936.
[http://dx.doi.org/10.1016/S0960-894X(97)00340-5]
[3]
Migawa, M.T.; Drach, J.C.; Townsend, L.B. Design, synthesis and antiviral activity of novel 4,5-disubstituted 7-(β-D-ribofuranosyl)pyrrolo[2,3-d][1,2,3]triazines and the novel 3-amino-5-methyl-1-(β-D-ribofuranosyl)- and 3-amino-5-methyl-1-(2-deoxy-β-D-ribofuranosyl)-1,5-dihydro-1,4,5,6,7,8-hexaazaacenaphthylene as analogues of triciribine. J. Med. Chem., 48(11), 3840-3851.
[http://dx.doi.org/10.1021/jm0402014] [PMID: 15916436]
[4]
Menichincheri, M.; Albanese, C.; Alli, C.; Ballinari, D.; Bargiotti, A.; Caldarelli, M.; Ciavolella, A.; Cirla, A.; Colombo, M.; Colotta, F.; Croci, V.; D’Alessio, R.; D’Anello, M.; Ermoli, A.; Fiorentini, F.; Forte, B.; Galvani, A.; Giordano, P.; Isacchi, A.; Martina, K.; Molinari, A.; Moll, J.K.; Montagnoli, A.; Orsini, P.; Orzi, F.; Pesenti, E.; Pillan, A.; Roletto, F.; Scolaro, A.; Tatò, M.; Tibolla, M.; Valsasina, B.; Varasi, M.; Vianello, P.; Volpi, D.; Santocanale, C.; Vanotti, E. Cdc7 kinase inhibitors: 5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding. J. Med. Chem., 2010, 53(20), 7296-7315.
[http://dx.doi.org/10.1021/jm100504d] [PMID: 20873740]
[5]
Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K. Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agents. Eur. J. Med. Chem., 2012, 50, 209-215.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.055] [PMID: 22341658]
[6]
Jana, G.H.; Jain, S.; Arora, S.K.; Sinha, N. Synthesis of some diguanidino 1-methyl-2,5-diaryl-1H-pyrroles as antifungal agents. Bioorg. Med. Chem. Lett., 2005, 15(15), 3592-3595.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.080] [PMID: 15978808]
[7]
Koyama, M.; Ohtani, N.; Kai, F.; Moriguchi, I.; Inouye, S. Synthesis and quantitative structure-activity relationship analysis of N-triiodoallyl- and NN-iodopropargylazoles. New antifungal agents. J. Med. Chem., 1987, 30(3), 552-562.
[http://dx.doi.org/10.1021/jm00386a019] [PMID: 3546691]
[8]
Bailey, D.M.; Johnson, R.E. Pyrrole antibacterial agents. 2. 4,5-Dihalopyrrole-2-carboxylic acid derivatives. J. Med. Chem., 1973, 16(11), 1300-1302.
[http://dx.doi.org/10.1021/jm00269a019]
[9]
Mitsui, T.; Kitamura, A.; Kimoto, M.; To, T.; Sato, A.; Hirao, I.; Yokoyama, S. An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. J. Am. Chem. Soc., 2003, 125(18), 5298-5307.
[http://dx.doi.org/10.1021/ja028806h] [PMID: 12720441]
[10]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[11]
Donohoe, T.J.; Thomas, R.E. Partial reduction of pyrroles: application to natural product synthesis. Chem. Rec., 2007, 7(3), 180-190.
[http://dx.doi.org/10.1002/tcr.20115] [PMID: 17549705]
[12]
(a)Diaz, A.F.; Castillo, J.I.; Logan, J.A.; Lee, W.Y.J. Electrochemistry of conducting polypyrrole films. Electroanal. Chem., 1981, 129, 115-132.
[http://dx.doi.org/10.1016/S0022-0728(81)80008-3]
(b) Kanazawa, K.K.; Diaz, A.F.; Geiss, R.H.; Gill, W.D.; Kwak, J.F.; Logan, J.A.; Rabolt, J.F.; Street, G.B. ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. Chem. Commun., 1979, (19), 854-855.
[http://dx.doi.org/10.1039/C39790000854]
[13]
(a)Facchetti, A.; Abboto, A.; Beverina, L.; van der Boom, M.E.; Dutta, P.; Evmenenko, G.; Pagani, G.A.; Marks, T. Layer-by-layer self-assembled pyrrole-based donor−acceptor chromophores as electro-optic materials. Chem. Mater., 2003, 15, 1064-1072.
[http://dx.doi.org/10.1021/cm020929d]
(b)Pu, S.; Liu, G.; Shen, L.; Xu, J. Efficient synthesis and properties of isomeric photochromic diarylethenes having a pyrrole unit. Org. Lett., 2007, 9(11), 2139-2142.
[http://dx.doi.org/10.1021/ol070622q] [PMID: 17472396]
[14]
Kim, B.H.; Bae, S.; Go, A.; Lee, H.; Gong, C.; Lee, B.M. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal-Knorr followed by an indium-mediated reaction. Org. Biomol. Chem., 2016, 14(1), 265-276.
[http://dx.doi.org/10.1039/C5OB02101D] [PMID: 26593044]
[15]
Moradgholi, M.; Lari, J.; Baratian, Y. Silica tungstic acid and sulphated silica tungstic acid as highly efficient solid acid catalysts for the synthesis of pyrrole derivatives. Russ. J. Gen. Chem., 2016, 86, 2924-2927.
[http://dx.doi.org/10.1134/S1070363216120616]
[16]
Aghapoor, K.; Mohsenzadeh, F. Darabi, H.R.; Sayahi, H.; Balavar. Y. L-Tryptophan-catalyzed Paal–Knorr pyrrole cyclocondensation: an efficient, clean and recyclable organocatalyst. Res. Chem. Intermed., 2016, 42, 407-415.
[http://dx.doi.org/10.1007/s11164-015-2026-1]
[17]
Akbaslar, D.; Demirkol, O.; Giray, S. Paal-Knorr pyrrole synthesis in water. Synth. Commun., 2014, 44, 1323-1332.
[http://dx.doi.org/10.1080/00397911.2013.857691]
[18]
Bhandari, N.; Gaonkar, S.L. A facile synthesis of N-substituted 2,5-dimethylpyrroles with saccharin as a green catalyst. Chem. Heterocycl. Compd., 2015, 51, 320-323.
[http://dx.doi.org/10.1007/s10593-015-1701-x]
[19]
Cheraghi, S.; Saberi, D.; Heydari, A. Nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): an efficient, fast, and reusable catalyst for greener Paal–Knorr pyrrole synthesis. Catal. Lett., 2014, 144, 1339-1343.
[http://dx.doi.org/10.1007/s10562-014-1197-5]
[20]
Kamal, A.; Faazil, S.; Malik, M.S.; Balakrishna, M.; Bajee, S.; Siddiqui, M.R.H.; Alarifi, A. Convenient synthesis of substituted pyrroles via a Cerium (IV) Ammonium Nitrate (CAN)-catalyzed Paal-Knorr reaction. Arab. J. Chem., 2016, 9, 542-549.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.009]
[21]
Zhang, X.; Weng, G.; Zhang, Y.; Li, P. Unique chemoselective Paal-Knorr reaction catalyzed by MgI2 etherate under solvent-free conditions. Tetrahedron, 2015, 71, 2595-2602.
[http://dx.doi.org/10.1016/j.tet.2015.03.035]
[22]
Cho, H.; Madden, R.; Nisanci, B. Török. B. The Paal-Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles. Green Chem., 2015, 17, 1088-1099.
[http://dx.doi.org/10.1039/C4GC01523A]
[23]
Daw, P.; Chakraborty, S.; Garg, J.A.; David, Y.B.; Milstein, D. Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt Pincer complexes. Angew. Chem. Int. Ed. Engl., 2016, 55(46), 14373-14377.
[http://dx.doi.org/10.1002/anie.201607742] [PMID: 27730747]
[24]
Wang, P.; Ma, F.P. Zhang. Z.H. L-(+)-Tartaric acid and choline chloride based deep eutectic solvent: an efficient and reusable medium for synthesis of N-substituted pyrroles via Clauson-Kaas reaction. J. Mol. Liq., 2014, 198, 259-262.
[http://dx.doi.org/10.1016/j.molliq.2014.07.015]
[25]
Gullapelli, K.; Brahmeshwari, G.; Ravichander, M. A facile synthesis of 1-aryl pyrroles by Clauson-Kaas reaction using oxone as a catalyst under microwave irradiation. Bull. Chem. Soc. Ethiop., 2019, 33(1), 143-148.
[http://dx.doi.org/10.4314/bcse.v33i1.14]
[26]
Estévez, V.; Sridharan, V.; Sabaté, S.; Villacampa, M.; Menéndez, J.C. Three-component synthesis of pyrrole-related nitrogen heterocycles by a Hantzsch-type process: comparison between conventional and high-speed vibration milling conditions. Asian J. Org. Chem., 2016, 5, 652-662.
[http://dx.doi.org/10.1002/ajoc.201600061]
[27]
Leonardi, M.; Villacampa, M.; Menéndez, J.C. High-speed vibration-milling-promoted synthesis of symmetrical frameworks containing two or three pyrrole units. Beilstein J. Org. Chem., 2017, 13, 1957-1962.
[http://dx.doi.org/10.3762/bjoc.13.190] [PMID: 29062414]
[28]
Kan, W.; Jing, T.; Zhang, X.H.; Zheng, Y.J.; Chen, L.; Zhao, B. Microwave-assisted one-pot synthesis of N-substituted 2-methyl-1H-pyrrole-3-carboxylate derivatives without catalyst and solvent. Heterocycles, 2015, 91, 2367-2376.
[http://dx.doi.org/10.3987/COM-15-13340]
[29]
Abdelmohsen, S.A.; El-Ossaily, Y.A.B. One-pot synthesis of 5-[1-substituted 4-acetyl-5-methyl-1H-pyrrol-2-yl)]-8-hydroxyquinolines using DABCO as green catalyst. Heterocycl. Commun., 2015, 21, 207-210.
[http://dx.doi.org/10.1515/hc-2015-0033]
[30]
Dinne, N.K.R.; Mekala, R.; Reddy, S.P.; Siva, G.Y.S.; Bannoath, C.K. Wang resin-supported sulfonic acid-catalyzed multicomponent reaction in water leading to 4-oxo-4,5,6,7-tetrahydroindole derivatives. Synth. Commun., 2018, 48, 1649-1656.
[http://dx.doi.org/10.1080/00397911.2018.1458240]
[31]
Mojikhalifeh, S. Hasaninejad. A. Synthesis of 1,2,3,5-substituted pyrroles from α-bromoacetophenones and 2-nitroethene-1,1-diamines. Tetrahedron Lett., 2017, 58, 2574-2577.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.063]
[32]
Lei, T.; Liu, W.Q.; Li, J.; Huang, M.Y.; Yang, B.; Meng, Q.Y.; Chen, B.; Tung, C.H.; Wu, L.Z. Visible light initiated Hantzsch synthesis of 2,5-diaryl-substituted pyrroles at ambient conditions. Org. Lett., 2016, 18(10), 2479-2482.
[http://dx.doi.org/10.1021/acs.orglett.6b01059] [PMID: 27199225]
[33]
Reddy, V.H.; Reddy, G.M.; Reddy, M.T.; Reddy, Y.V.R. Microwave-assisted facile synthesis of trisubstituted pyrrole derivatives. Res. Chem. Intermed., 2015, 41, 9805-9815.
[http://dx.doi.org/10.1007/s11164-015-1966-9]
[34]
Shanmugam, S.; Dhanalakshmi, P. Convenient one-pot multicomponent strategy for the synthesis of 6-pyrrolylpyrimidines. RCS Adv., 2014, 4, 29493-29501.
[35]
Wang, R.; Wang, S.Y.; Ji, S.J. Water promoted C-C bond cleavage: facile synthesis of 3,3-bipyrrole derivatives from dienones and tosylmethyl isocyanide (TosMIC). Org. Biomol. Chem., 2014, 12(11), 1735-1740.
[http://dx.doi.org/10.1039/c3ob42570c] [PMID: 24493005]
[36]
Zhang, L.; Zhang, X.; Lu, Z.; Zhang, D.; Xu, X. Accessing benzo[f]indole-4,9-diones via a ring expansion strategy: silver-catalyzed tandem reaction of tosylmethyl isocyanide (TosMIC) with 2-methyleneindene-1,3-diones. Tetrahedron, 2016, 72, 7926-7930.
[http://dx.doi.org/10.1016/j.tet.2016.10.015]
[37]
Lu, X.M.; Li, J.; Cai, Z.J.; Wang, R.; Wang, S.Y.; Ji, S.J. One pot synthesis of pyrrolo[3,4-c]quinolinone/pyrrolo[3,4-c]quinoline derivatives from 2-aminoarylacrylates/2-aminochalcones and tosylmethyl isocyanide (TosMIC). Org. Biomol. Chem., 2014, 12(46), 9471-9477.
[http://dx.doi.org/10.1039/C4OB01580K] [PMID: 25329918]
[38]
Zhang, X.; Xu, X.; Zhang, D. [3+2] Cycloaddition of tosylmethyl isocyanide with styrylisoxazoles: facile access to polysubstituted 3-(Isoxazol-5-yl)pyrroles. Molecules, 2017, 22, 1131-1141.
[http://dx.doi.org/10.3390/molecules22071131]
[39]
Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K. Nair. V.A. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from α, β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett., 2014, 57, 2315-2319.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.056]
[40]
Keeley, A.; McCauley, S. Evans. P. A ring closing metathesis-manganese dioxide oxidation sequence for the synthesis of substituted pyrroles. Tetrahedron, 2016, 72, 2552-2559.
[http://dx.doi.org/10.1016/j.tet.2016.03.088]
[41]
Bunrit, A.; Sawadjoon, S.; Tšupova, S.; Sjöberg, P.J.R.; Samec, J.S. Samec. J.S.M. A general route to β substituted pyrroles by transition-metal catalysis. J. Org. Chem., 2016, 81(4), 1450-1460.
[http://dx.doi.org/10.1021/acs.joc.5b02581] [PMID: 26789020]
[42]
Cao, Z.; Zhu, H.; Meng, X.; Li, J.; Li, S.; Huang, Z.; Zhu, J.; Sun, X. You. J. Synthesis of multisubstituted N-(tosylamino)pyrrole derivatives by AuCl3-catalyzed cycloisomerization of the β-alkynyl hydrazones. Synth. Commun., 2016, 46, 1417-1424.
[http://dx.doi.org/10.1080/00397911.2016.1205626]
[43]
Kobeissi, M.; Yazbeck, O.; Chreim, Y. A convenient one-pot synthesis of polysubstituted pyrroles from N-protected succinimides. Tetrahedron Lett., 2014, 55, 2523-2526.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.021]
[44]
Shen, M.H.; Ren, X.T.; Pan, Y.P. Xu. H.D. Iridium catalyzed fragmentation/cyclization of N-butynyl 4,4- dimethylisoxazolidine-3,5-dione: a unique access to multiply substituted pyrroles. Org. Chem. Front., 2018, 5(1), 46-50.
[http://dx.doi.org/10.1039/C7QO00698E]
[45]
Xu, X.M.; Lei, C.H.; Tong, S.; Zhu, J.; Wang, M.X. Lewis acid catalyst-steered divergent synthesis of functionalized vicinal amino alcohols and pyrroles from tertiary enamides. Org. Chem. Front., 2018, 5, 3138-3142.
[http://dx.doi.org/10.1039/C8QO00839F]
[46]
Mishra, P.K.; Verma, S.; Kumar, M.; Verma, A.K. Base-mediated direct transformation of N-propargylamines into 2,3,5-trisubstituted 1H-pyrroles. Org. Lett., 2018, 20(22), 7182-7185.
[http://dx.doi.org/10.1021/acs.orglett.8b03112] [PMID: 30406662]
[47]
Cai, Y.; Jalan, A.; Kubosumi, A.R.; Castle, S.L. Microwave-promoted tin-free iminyl radical cyclization with TEMPO trapping: a practical synthesis of 2-acylpyrroles. Org. Lett., 2015, 17(3), 488-491.
[http://dx.doi.org/10.1021/ol5035047] [PMID: 25594391]
[48]
Zhou, N.; Xie, T.; Liu, L.; Xie, Z. Cu/Mn co-oxidized cyclization for the synthesis of highly substituted pyrrole derivatives from amino acid esters: a strategy for the biomimetic syntheses of lycogarubin C and chromopyrrolic acid. J. Org. Chem., 2014, 79(13), 6061-6068.
[http://dx.doi.org/10.1021/jo500740w] [PMID: 24921938]
[49]
Zhao, M.N.; Zhang, Z.J.; Ren, Z.H.; Yang, D.S.; Guan, Z.H. Copper-catalyzed oxidative cyclization/1,2-amino migration cascade reaction. Org. Lett., 2018, 20(10), 3088-3091.
[http://dx.doi.org/10.1021/acs.orglett.8b01139] [PMID: 29722982]
[50]
Qi, Z.; Jiang, Y.; Yuan, B.; Niu, Y.; Yan, R. Cu-Catalyzed tandem aerobic oxidative cyclization for the synthesis of 3,3′-bipyrroles from the homopropargylic amines. Org. Lett., 2018, 20(16), 5048-5052.
[http://dx.doi.org/10.1021/acs.orglett.8b02201] [PMID: 30067037]
[51]
Karimi, S.; Ma, S.; Liu, Y.; Ramig, K.; Greer, E.M.; Kwon, K.; Berkowitz, W.F.; Subramaniam, G. Substituted pyrrole synthesis from nitrodienes. Tetrahedron Lett., 2017, 58, 2223-2227.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.077]
[52]
Huang, H.; Tang, L.; Cai, J.; Deng, G.J. Mild and ambient annulations for pyrrole synthesis from amines and arylacetaldehydes. RSC Advances, 2016, 6, 7011-7014.
[http://dx.doi.org/10.1039/C5RA24006A]
[53]
Gao, Y.; Hu, C.; Wan, J-P. Wen. C. Metal-free cascade reactions of aldehydes and primary amines for the synthesis of 1,3,4-trisubstituted pyrroles. Tetrahedron Lett., 2016, 57, 4854-4857.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.063]
[54]
Kim, C.E.; Park, S.; Eom, D.; Seo, B.; Lee, P.H. Synthesis of pyrroles from terminal alkynes, N-sulfonyl azides, and alkenyl alkyl ethers through 1-sulfonyl-1,2,3-triazoles. Org. Lett., 2014, 16(7), 1900-1903.
[http://dx.doi.org/10.1021/ol500718s] [PMID: 24660875]
[55]
Rajasekar, S.; Anbarasan, P. Rhodium-catalyzed transannulation of 1,2,3-triazoles to polysubstituted pyrroles. J. Org. Chem., 2014, 79(17), 8428-8434.
[http://dx.doi.org/10.1021/jo501043h] [PMID: 25078729]
[56]
Feng, J.; Wang, Y.; Li, Q.; Jiang, Q.; Tang, Y. Facile synthesis of pyrroles via Rh(II)-catalyzed transannulation of 1-tosyl-1,2,3-triazoles with silyl or alkyl enol ethers. Tetrahedron Lett., 2014, 55, 6455-6458.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.134]
[57]
Lei, X.; Li, L.; He, Y.P.; Tang, Y. Tang. Y. Rhodium(II)-catalyzed formal [3 +2] cycloaddition of N-sulfonyl-1,2,3-triazoles with isoxazoles: entry to polysubstituted 3 aminopyrroles. Org. Lett., 2015, 17(21), 5224-5227.
[http://dx.doi.org/10.1021/acs.orglett.5b02570] [PMID: 26467532]
[58]
Li, X.; Chen, M.; Xie, X.; Sun, N.; Li, S.; Liu, Y. Synthesis of multiple-substituted pyrroles via gold(I)-catalyzed hydroamination/cyclization cascade. Org. Lett., 2015, 17(12), 2984-2987.
[http://dx.doi.org/10.1021/acs.orglett.5b01281] [PMID: 26030605]
[59]
Mariappan, A.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Microwave-assisted catalyst-free synthesis of tetrasubstituted pyrroles using dialkyl acetylenedicarboxylates and monophenacylanilines. Synth. Commun., 2016, 46, 805-812.
[http://dx.doi.org/10.1080/00397911.2016.1176201]
[60]
Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T. Simple two-step synthesis of 2,4-disubstituted pyrroles and 3,5-disubstituted pyrrole-2-carbonitriles from enones. Beilstein J. Org. Chem., 2014, 10, 466-470.
[http://dx.doi.org/10.3762/bjoc.10.44] [PMID: 24605166]
[61]
Imbri, D.; Netz, N.; Kucukdisli, M.; Kammer, L.M.; Jung, P.; Kretzschmann, A.; Opatz, T. One-pot synthesis of pyrrole-2-carboxylates and -carboxamides via an electrocyclization/oxidation sequence. J. Org. Chem., 2014, 79(23), 11750-11758.
[http://dx.doi.org/10.1021/jo5021823] [PMID: 25350833]
[62]
Zhou, N.; Li, Z.; Xie, Z. Synthesis of α-enamino esters via Cu(II)-promoted dehydrogenation of α-amino acid esters: application to the synthesis of polysubstituted pyrroles. Org. Chem. Front., 2015, 2, 1521-1530.
[http://dx.doi.org/10.1039/C5QO00182J]
[63]
Kalmode, H.P.; Vadagaonkar, K.S.; Murugan, K.; Prakash, S.; Chaskar, A.C. Deep eutectic solvent: a simple, environmentally benign reaction media for regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles. RSC Advances, 2015, 5, 35166-35174.
[http://dx.doi.org/10.1039/C5RA03270A]
[64]
Wang, Z.P.; He, Y.; Shao, P.L. Transition-metal-free synthesis of polysubstituted pyrrole derivatives via cyclization of methyl isocyanoacetate with aurone analogues. Org. Biomol. Chem., 2018, 16(30), 5422-5426.
[http://dx.doi.org/10.1039/C8OB01558A] [PMID: 30028468]
[65]
Liu, Y.; Hu, H.; Wang, X.; Zhi, S.; Kan, Y.; Wang, C. Synthesis of pyrrole via a silver-catalyzed 1,3-dipolar cycloaddition/ oxidative dehydrogenative aromatization tandem reaction. J. Org. Chem., 2017, 82(8), 4194-4202.
[http://dx.doi.org/10.1021/acs.joc.7b00180] [PMID: 28326778]
[66]
Qi, Z.; Jiang, Y.; Wang, Y.; Yan, R. Yan. R. tert-Butyl nitrite promoted oxidative intermolecular sulfonamination of alkynes to synthesize substituted sulfonyl pyrroles from the alkynylamines and sulfinic acids. J. Org. Chem., 2018, 83(15), 8636-8644.
[http://dx.doi.org/10.1021/acs.joc.8b00741] [PMID: 29873495]
[67]
Adib, A.; Ayashi, N.; Heidari, F.; Mirzaei, P. Reaction between 4-nitro-1,3-diarylbutan-1-ones and ammonium acetate in the presence of morpholine and sulfur: an efficient synthesis of 2,4-diarylpyrroles. Synlett, 2016, 27, 1738-1742.
[http://dx.doi.org/10.1055/s-0035-1561852]
[68]
Sakai, N.; Hori, H. Ogiwara. Y. Copper(II)-catalyzed [4 + 1] annulation of propargylamines with N,O-acetals: entry to the synthesis of polysubstituted pyrrole derivatives. Eur. J. Org. Chem., 2015, 9, 1906-1909.
[69]
Rajesh, M.; Puri, S.; Kant, R.; Sridhar Reddy, M. Synthesis of substituted furan/pyrrole-3-carboxamides through a tandem nucleopalladation and isocyanate insertion. Org. Lett., 2016, 18(17), 4332-4335.
[http://dx.doi.org/10.1021/acs.orglett.6b02077] [PMID: 27532221]
[70]
Palmieri, A.; Gabrielli, S.; Parlapiano, M.; Ballini, R. One-pot synthesis of alkyl pyrrole-2-carboxylates starting from β-nitroacrylates and primary amines. RSC Advances, 2015, 5, 4210-4213.
[http://dx.doi.org/10.1039/C4RA13094D]
[71]
Srivastava, A.; Shukla, G.; Nagaraju, A.; Verma, G.K.; Raghuvanshi, K.; Jones, R.C.F.; Singh, M.S. In(OTf)3-catalysed one-pot versatile pyrrole synthesis through domino annulation of α-oxoketene-N,S-acetals with nitroolefins. Org. Biomol. Chem., 2014, 12(29), 5484-5491.
[http://dx.doi.org/10.1039/C4OB00781F] [PMID: 24942816]
[72]
Kuruba, B.K.; Vasanthkumar, S.; Emmanuvel, L. Rhodium-catalyzed synthesis of 2,3-disubstituted N-methoxy pyrroles and furans via [3 + 2] cycloaddition between metal carbenoids and activated olefins. Tetrahedron, 2017, 73, 3093-3098.
[http://dx.doi.org/10.1016/j.tet.2017.04.007]
[73]
Zhu, Z.; Guo, Y.; Wang, X.; Wu, F.; Wu, Y. Synthesis of fluorinated 3-pyrrolines and pyrroles via [3 + 2] annulation of N-aryl fluorinated imines with allenoates catalyzed by phosphine. J. Fluor. Chem., 2017, 195, 102-107.
[http://dx.doi.org/10.1016/j.jfluchem.2016.12.010]
[74]
Chen, X.; Yang, M.; Zhou, M. Efficient synthesis of substituted pyrroles through Pd(OCOCF3)2 catalyzed reaction of 5-hexen-2-one with primary amines. Tetrahedron Lett., 2016, 57, 5215-5218.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.029]
[75]
Chong, Q.; Xin, X.; Wang, C.; Wu, F.; Wan, B. Synthesis of polysubstituted pyrroles via Ag(I)-mediated conjugate addition and cyclization reaction of terminal alkynes with amines. Tetrahedron, 2014, 70, 490-494.
[http://dx.doi.org/10.1016/j.tet.2013.11.020]
[76]
Pertschi, M.; Miaskiewicz, S.; Weibel, J.M.; Pale, P.; Blanc, A. Gold(I)-catalyzed cascade: synthesis of 2,5-disubstituted pyrroles from N-sulfonyl-2-(1-ethoxypropargyl)azetidines through cyclization/nucleophilic substitution/elimination. Synthesis, 2017, 49, 4151-4162.
[http://dx.doi.org/10.1055/s-0036-1589017]
[77]
Masoudi, M.; Anary-Abbasinejad, M. A direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett., 2016, 57, 103-104.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.075]
[78]
Rao, H.S.P.; Desai, A. Zinc and trimethylsilyl chloride mediated synthesis of 2,3,5-trisubstituted pyrrole diesters from nitriles and ethyl bromoacetate. Synlett, 2014, 26, 1059-1062.
[http://dx.doi.org/10.1055/s-0034-1380403]
[79]
Guchhait, S.K.; Sisodiya, S.; Saini, M.; Shah, Y.V.; Kumar, G.; Daniel, D.P.; Hura, N.; Chaudhary, V. Synthesis of polyfunctionalized pyrroles via a tandem reaction of Michael addition and intramolecular cyanide-mediated nitrile-to-nitrile condensation. J. Org. Chem., 2018, 83(10), 5807-5815.
[http://dx.doi.org/10.1021/acs.joc.8b00465] [PMID: 29671317]
[80]
Xie, Y.; Li, Y.; Chen, X.; Liu, Y.; Zhang, W. Copper/amine-catalyzed formal regioselective [3 + 2] cycloaddition of α,β-unsaturated O-acetyl oxime with enals. Org. Chem. Front., 2018, 5, 1698-1701.
[http://dx.doi.org/10.1039/C8QO00204E]
[81]
Zhao, M.N.; Ren, Z.H.; Yang, D.S.; Guan, Z.H.; Guan, Z.H. Iron-catalyzed radical cycloaddition of 2H azirines and enamides for the synthesis of pyrroles. Org. Lett., 2018, 20(5), 1287-1290.
[http://dx.doi.org/10.1021/acs.orglett.7b04007] [PMID: 29420042]
[82]
Kardile, R.D.; Kale, B.S.; Sharma, P.; Liu, R.S. Liu. R-S. Gold-catalyzed [4 + 1]-annulation reactions between 1,4-diyn-3-ols and isoxazoles to construct a pyrrole pore. Org. Lett., 2018, 20(13), 3806-3809.
[http://dx.doi.org/10.1021/acs.orglett.8b01398] [PMID: 29920102]
[83]
Ma, X-P.; Li, L.G.; Zhao, H-P.; Du, M.; Liang, C.; Mo, D.L. Formal [7 + 2] cycloaddition of arynes with N vinyl-α,β-unsaturated nitrones: synthesis of benzoxazonines and their N-O bond cleavage. Org. Lett., 2018, 20(15), 4571-4574.
[http://dx.doi.org/10.1021/acs.orglett.8b01761] [PMID: 30003790]
[84]
Kumar Reddy, N.N.; Rawat, D.; Adimurthy, S. Adimurthy. S. Visible-light-induced C (sp3)-H functionalization of tosylhydrazones: synthesis of polysubstituted pyrroles under metal-free conditions. J. Org. Chem., 2018, 83(16), 9412-9421.
[http://dx.doi.org/10.1021/acs.joc.8b00878] [PMID: 30022667]
[85]
Siddiki, S.M.A.H.; Touchy, A.S.; Chaudhari, C.; Kon, K.; Toyao, T.; Shimizu, K. Synthesis of 2,5 disubstituted pyrroles via dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols by supported platinum catalysts. Org. Chem. Front., 2016, 3, 846-851.
[http://dx.doi.org/10.1039/C6QO00165C]
[86]
Chan, C-M.; Zhou, Z.; Yu, W.Y. Rhodium-catalyzed oxidative cycloaddition of N-tert butoxycarbonylhydrazones with alkynes for the synthesis of functionalized pyrroles via C(sp3)–H Bond functionalization. Adv. Synth. Catal., 2016, 358, 4067-4074.
[http://dx.doi.org/10.1002/adsc.201600900]
[87]
George, J.; Kim, H.Y.; Oh, K. Regioselective synthesis of pyrroles from alkyne-isocyanide click reactions: an angle strain-induced bond migration approach. Adv. Synth. Catal., 2016, 358, 3714-3718.
[http://dx.doi.org/10.1002/adsc.201601017]
[88]
Wang, C.; Huang, K.; Wang, J.; Wang, H.; Liu, L.; Chang, W.; Li, L. Synthesis of tetrasubstituted pyrroles from homopropargylic amines via a Sonogashira coupling/intramolecular hydroamination/oxidation sequence. Adv. Synth. Catal., 2015, 357, 2795-2802.
[http://dx.doi.org/10.1002/adsc.201500350]
[89]
Donthiri, R.R.; Samanta, S.; Adimurthy, S. Copper-catalyzed C(sp(3))-H functionalization of ketones with vinyl azides: synthesis of substituted-1H-pyrroles. Org. Biomol. Chem., 2015, 13(40), 10113-10116.
[http://dx.doi.org/10.1039/C5OB01407G] [PMID: 26369270]
[90]
Huang, Z.; Hu, J.; Gong, Y. Formation and aromatization of strained bicyclic pyrazolidines via tandem reaction of alkyl 2-aroyl-1-chlorocyclopropanecarboxylates with acylhydrazones. Org. Biomol. Chem., 2015, 13(31), 8561-8566.
[http://dx.doi.org/10.1039/C5OB01199J] [PMID: 26177340]
[91]
Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-catalyzed sustainable synthesis of pyrrole. Org. Lett., 2017, 19(1), 6-9.
[http://dx.doi.org/10.1021/acs.orglett.6b02819] [PMID: 27958754]
[92]
Yan, R.; Kang, X.; Zhou, X.; Li, X.; Liu, X.; Xiang, L.; Li, Y.; Huang, G. I2-catalyzed synthesis of substituted pyrroles from α-amino carbonyl compounds and aldehydes. J. Org. Chem., 2014, 79(1), 465-470.
[http://dx.doi.org/10.1021/jo402620z] [PMID: 24350882]
[93]
Rostami-Charati, F. Synthesis of pyrroles and thiazolanes promoted by N-methylimidazole in water. Synlett, 2014, 25, 2030-2032.
[http://dx.doi.org/10.1055/s-0034-1378377]
[94]
Chachignon, H.; Scalacci, N.; Petricci, E.; Castagnolo, D. Petricci. E.; Castagnolo, D. Synthesis of 1,2,3-substituted pyrroles from propargylamines via a one-pot tandem enyne cross metathesis - cyclization reaction. J. Org. Chem., 2015, 80(10), 5287-5295.
[http://dx.doi.org/10.1021/acs.joc.5b00222] [PMID: 25897951]
[95]
Eberlin, L.; Carboni, B.; Whiting, A. Regioisomeric and substituent effects upon the outcome of the reaction of 1 borodienes with nitrosoarene compounds. J. Org. Chem., 2015, 80(13), 6574-6583.
[http://dx.doi.org/10.1021/acs.joc.5b00593] [PMID: 26039269]
[96]
Raju, A.R.; Reddy, R.V.; Rao, V.M.; Naresh, V.V. Rao. A.V. I2-DMSO promoted metal free oxidative cyclization for the synthesis of substituted indoles and pyrroles. Tetrahedron Lett., 2016, 57, 2838-2841.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.025]
[97]
Tan, X.M.; Lai, Q.M.; Yang, Z.W.; Long, X.; Zhou, H.L.; You, X.L. Jiang. X.J.; Cui. H.L. La(OTf)3 catalyzed synthesis of α-aryl tetrasubstituted pyrroles through [4 + 1] annulation under microwave irradiation. Tetrahedron Lett., 2017, 58, 163-167.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.122]
[98]
Rajaguru, K.; Mariappan, A.; Muthusubramanian, S.; Bhuvanesh, N. Divergent reactivity of α-azidochalcones with metal β-diketonates: tunable synthesis of substituted pyrroles and indoles. Org. Chem. Front., 2017, 4, 124-129.
[http://dx.doi.org/10.1039/C6QO00541A]
[99]
Wu, J.; Chen, X.; Xie, Y.; Guo, Y.; Zhang, Q.; Deng, G.J. Carbazole and triarylpyrrole synthesis from anilines and cyclohexanones or acetophenones under transition-metal-free condition. J. Org. Chem., 2017, 82(11), 5743-5750.
[http://dx.doi.org/10.1021/acs.joc.7b00556] [PMID: 28474526]
[100]
Zhu, L.; Yu, Y.; Mao, Z. Huang. X. Gold-catalyzed intermolecular nitrene transfer from 2H azirines to ynamides: a direct approach to polysubstituted pyrroles. Org. Lett., 2015, 17, 130-133.
[101]
Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. Huang. X. Polysubstituted 2 aminopyrrole synthesis via gold-catalyzed intermolecular nitrene transfer from vinyl azide to ynamide: reaction scope and mechanistic insights. J. Org. Chem., 2015, 80(22), 11407-11416.
[http://dx.doi.org/10.1021/acs.joc.5b02057] [PMID: 26503292]
[102]
Mir, N.A.; Choudhary, S.; Ramaraju, P.; Singh, D.; Kumar, I. Microwave assisted aminocatalyzed [3 + 2] annulation between α-iminonitriles and succinaldehyde: synthesis of pyrrole-3-methanols and related polycyclic ring systems. RSC Advances, 2016, 6, 39741-39749.
[http://dx.doi.org/10.1039/C6RA06831F]
[103]
Ramaraju, P.; Mir, N.A.; Singh, D.; Sharma, P.; Kant, R.; Kumar, I. An unprecedented pseudo-[3 + 2] annulation between N-(4-methoxyphenyl)aldimines and aqueous glutaraldehyde: direct synthesis of pyrrole-2,4-dialdehydes. Eur. J. Org. Chem., 2017, 2017(24), 3461-3465.
[http://dx.doi.org/10.1002/ejoc.201700500]
[104]
Soltani, M.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Convenient synthesis of polysubstituted pyrroles and symmetrical and unsymmetrical bis-pyrroles catalyzed by H3PW12O40. C. R. Chim., 2016, 19, 381-389.
[http://dx.doi.org/10.1016/j.crci.2015.11.006]
[105]
Sabbaghan, M.; Ghalaei, A. Catalyst application of ZnO nanostructures in solvent free synthesis of polysubstituted pyrroles. J. Mol. Liq., 2014, 193, 116-122.
[http://dx.doi.org/10.1016/j.molliq.2013.12.018]
[106]
Tamaddon, F.; Alizadeh, M. Cocamidopropyl betaine catalyzed benzoin condensation and pseudo-four-component reaction of the in situ formed benzoin in water. Synlett, 2015, 26, 525-530.
[http://dx.doi.org/10.1055/s-0034-1379881]
[107]
Sha, Q.; Arman, H.; Doyle, M.P. Three-component cascade reactions with 2,3-diketoesters: a novel metal-free synthesis of 5 vinyl-pyrrole and 4 hydroxy-indole derivatives. Org. Lett., 2015, 17(15), 3876-3879.
[http://dx.doi.org/10.1021/acs.orglett.5b01855] [PMID: 26185966]
[108]
Zhao, D.; Zhu, Y.; Guo, S.; Chen, W.; Zhang, G.Yu.Y. A three-component one-pot synthesis of penta-substituted pyrroles via ring opening of α-nitroepoxides. Tetrahedron, 2017, 73(20), 2872-2877.
[http://dx.doi.org/10.1016/j.tet.2017.03.074]
[109]
Farahi, M.; Davoodi, M. Tahmasebi. M. A new protocol for one-pot synthesis of tetrasubstituted pyrroles using tungstate sulfuric acid as a reusable solid catalyst. Tetrahedron Lett., 2016, 57, 1582-1584.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.101]
[110]
Mehrabi, H.; Anary-Abbasinejad, M.; Mirhashemi, F. An efficient and convenient synthesis of pentasubstituted pyrroles from alkyl acetoacetates, dialkyl acetylenedicarboxylates and amines. Tetrahedron Lett., 2014, 57, 4310-4314.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.025]
[111]
Zheng, Y.; Wang, Y.; Zhou, Z. Organocatalytic multicomponent synthesis of polysubstituted pyrroles from 1,2-diones, aldehydes and arylamines. Chem. Commun. (Camb.), 2015, 51(93), 16652-16655.
[http://dx.doi.org/10.1039/C5CC05624A] [PMID: 26426410]
[112]
Fleige, M.; Glorius, F. α-Unsubstituted pyrroles by NHC-catalyzed three-component coupling: direct synthesis of a versatile atorvastatin derivative. Chemistry, 2017, 23(45), 10773-10776.
[http://dx.doi.org/10.1002/chem.201703008] [PMID: 28666059]
[113]
Yufeng, L.; Jie, S.; Zhengguang, W.; Xinglong, W.; Xiaowei, W.; Jiachao, G.; Hongzhong, B.; Hongfei, M. An atom-economic synthesis of functionalized pyrroles via a sequential metal-catalyzed three-component reaction. Tetrahedron, 2014, 70, 2472-2477.
[http://dx.doi.org/10.1016/j.tet.2014.01.037]
[114]
Chen, Z.; Chen, Z.; Yang, X.; Chang, X. Novel one-pot cyclization of the Blaise reaction intermediate and arylglyoxals: the synthesis of substituted NH-pyrroles. Synlett, 2017, 28, 1463-1466.
[http://dx.doi.org/10.1055/s-0036-1588168]
[115]
Rahmani, F.; Darehkordi, A. Synthesis of trifluoromethylated pyrroles via a one-pot three component reaction. Synlett, 2017, 28, 1224-1226.
[116]
Wu, X.; Zhao, P.; Geng, X.; Wang, C.; Wu, Y.D.; Wu, A.X. Synthesis of pyrrole-2-carbaldehyde derivatives by oxidative annulation and direct Csp3-H to C=O oxidation. Org. Lett., 2018, 20(3), 688-691.
[http://dx.doi.org/10.1021/acs.orglett.7b03821] [PMID: 29327934]
[117]
Xu, H.; Liu, H.W.; Chen, K.; Wang, G.W. One-pot multicomponent mechanosynthesis of polysubstituted trans-2,3-dihydropyrroles and pyrroles from amines, alkyne esters, and chalcones. J. Org. Chem., 2018, 83(11), 6035-6049.
[http://dx.doi.org/10.1021/acs.joc.8b00665] [PMID: 29745226]
[118]
Gao, M.; Zhao, W.; Zhao, H.; Lin, Z.; Zhang, D.; Huang, H. An efficient and facile access to highly functionalized pyrrole derivatives. Beilstein J. Org. Chem., 2018, 14, 884-890.
[http://dx.doi.org/10.3762/bjoc.14.75] [PMID: 29765469]
[119]
Chandrasekhar, S.; Patro, V.; Chavan, L.N.; Chegondi, R.; Grée, R. Multicomponent reactions in PEG-400: ruthenium-catalyzed synthesis of substituted pyrroles. Tetrahedron Lett., 2014, 55, 5932-5935.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.105]
[120]
Jagadhane, P.B.; Jadhav, N.C.; Herlekar, O.P.; Telvekar, V.N. An efficient, three component synthesis of pyrrole derivatives catalyzed by iodobenzene and oxone. Synth. Commun., 2015, 45, 2130-2134.
[http://dx.doi.org/10.1080/00397911.2015.1066392]
[121]
Goyal, S.; Patel, J.K.; Gangar, M.; Kumar, K.; Nair, V.A. Zirconocene dichloride catalysed one-pot synthesis of pyrroles through nitroalkene-enamine assembly. RSC Advances, 2015, 5, 3187-3195.
[http://dx.doi.org/10.1039/C4RA09873K]
[122]
Pagadala, R.; Kommidi, D.R.; Kankala, S.; Maddila, S.; Singh, P.; Moodley, B.; Koorbanally, N.A.; Jonnalagadda, S.B. Multicomponent one-pot synthesis of highly-functionalized pyrrole-3-carbonitriles in aqueous medium and their computational study. Org. Biomol. Chem., 2015, 13(6), 1800-1806.
[http://dx.doi.org/10.1039/C4OB02229G] [PMID: 25503439]
[123]
Murthi, P.R.K.; Rambabu, D.; Rao, M.V.B.; Pal, M. Synthesis of substituted pyrroles via amberlyst-15 mediated MCR under ultrasound. Tetrahedron Lett., 2014, 55, 507-509.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.073]
[124]
Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T. p-Toluenesulfonic acid doped polystyrene (PS-PTSA): solvent-free microwave assisted cross-coupling-cyclization-oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett., 2015, 56, 859-865.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.126]
[125]
Gupta, N.; Singh, K.N.; Singh, J. Ionic liquid catalyzed one pot four-component coupling reaction for the synthesis of functionalized pyrroles. J. Mol. Liq., 2014, 199, 470-473.
[http://dx.doi.org/10.1016/j.molliq.2014.07.038]
[126]
Bayat, M.; Nasri, S.; Notash, B. Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron, 2017, 73, 1522-1527.
[http://dx.doi.org/10.1016/j.tet.2017.02.005]
[127]
Ghandi, M.; Jourablou, A.; Abbasi, A. Synthesis of highly substituted pyrrole and dihydro-1H-pyrrole containing barbituric zcids via catalyst-free one-pot four-component reactions. J. Heterocycl. Chem., 2017, 54, 3108-3119.
[http://dx.doi.org/10.1002/jhet.2924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy