Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Microwave-mediated Synthesis of Medium Ring-sized Heterocyclic Compounds

Author(s): Amrita Ghosh and Shital K. Chattopadhyay*

Volume 7, Issue 2, 2020

Page: [123 - 144] Pages: 22

DOI: 10.2174/2213335607666200226101602

Price: $65

Abstract

Many medium ring-sized heterocyclic motifs are found in naturally occurring compounds of significant biological activity which led to the investigation of the biological activity of simpler heterocyclic compounds accommodating these ring systems. Therefore, the development of newer synthetic methodologies to access such ring systems has remained an important activity over the last few decades. However, common methods of their synthesis are usually associated with thermodynamic disadvantages. Many metal-mediated transformations e.g., Heck reaction, Suzuki reaction, etc. tend to overcome some of these effects but at the cost of environmental disadvantages. In recent years, several green chemical techniques have found useful applications in the synthesis of such ring systems. In particular, the use of microwave technology has provided better opportunities. The present review attempts to highlight many synthetic approaches developed for the synthesis of such heterocyclic scaffolds of pharmacological interest involving condensation reaction, coupling reaction, Multi-component reaction, Cyclo-addition reaction, Dipolar cycloaddition reaction, etc. An emphasis has also been given on the distinct advantages offered by microwave application over classical approaches, wherever such knowledge is available.

Keywords: Microwave, oxepine, azepine, diazepine, oxazepine, thiazepine, bioactive molecules, condensation reaction, multicomponent reaction, metal-catalyzed reaction.

Graphical Abstract
[1]
Katritzky, A.R.; Ramsden, C.; Scriven, E.; Taylor, R.J.K., Eds.; Majumdar, K.C.; Chattopadhyay, S.K, Eds.; Comprehensive Heterocyclic Chemistry;; Elsevier, 2011, 1-15, . Heterocycles in Natural Product Synthesis Wiley-VCH, 2011
[http://dx.doi.org/10.1002/9783527634880]
[2]
De la Hoz, A.; Loupy, A. Microwave in Organic Synthesis, (3rd Ed. ),
[http://dx.doi.org/10.1002/9783527634880]
[3]
Kleinke, A.S.; Webb, D.; Jamison, T.F. Recent progress in the synthesis of oxepanes and medium ring ethers. Tetrahedron, 2012, 68, 6999-7018.
[http://dx.doi.org/10.1016/j.tet.2012.05.081]
[4]
Nagai, Y.; Irie, A.; Nakamura, H.; Hino, K.; Uno, H.; Nishimura, H. Nonsteroidal antiinflammatory agents. 1. 10,11-Dihydro-11-oxodibenz[b, f]oxepinacetic acids and related compounds. J. Med. Chem., 1982, 25(9), 1065-1070.
[http://dx.doi.org/10.1021/jm00351a012] [PMID: 6982340]
[5]
Harris, T.W.; Smith, H.E.; Mobley, P.L.; Manier, D.H.; Sulser, F. Affinity of 10-(4-methylpiperazino)dibenz[b,f]oxepins for clozapine and spiroperidol binding sites in rat brain. J. Med. Chem., 1982, 25(7), 855-858.
[http://dx.doi.org/10.1021/jm00349a018] [PMID: 7108902]
[6]
Kiyama, R.; Honma, T.; Hayashi, K.; Ogawa, M.; Hara, M.; Fujimoto, M.; Fujishita, T. Novel angiotensin II receptor antagonists. Design, synthesis, and in vitro evaluation of dibenzo[a,d]cycloheptene and dibenzo[b,f]oxepin derivatives. Searching for bioisosteres of biphenylyltetrazole using a three-dimensional search technique. J. Med. Chem., 1995, 38(14), 2728-2741.
[http://dx.doi.org/10.1021/jm00014a024] [PMID: 7629811]
[7]
van Bemmel, A.L.; Vermeeren, M.T.G.; Ruigt, G.; Sennef, C. The acute effects of the noradrenaline reuptake inhibitor Org 4428 on EEG sleep in healthy volunteers. Neuropsychobiology, 1999, 40(2), 107-114.
[http://dx.doi.org/10.1159/000026605] [PMID: 10474065]
[8]
Zimmermann, K.; Waldmeir, P.C.; Tatton, W.G. Dibenzoxepines as treatments for neurodegenerative diseases. Pure Appl. Chem., 1999, 71, 2039-2046.
[http://dx.doi.org/10.1351/pac199971112039]
[9]
Akerman, M.; Cardozo, M.G.; Houze, J.B.; Li, A-R.; Liu, J.; Ma, Z.; Medina, J.C.; Scmith, M.J.; Sharma, R.; Sun, Y.; Wang, Y.; Wang, Z.; Zhu, L. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders. PCT Int. Appl. WO2007106469 A3; Amgen Inc., 2007.
[10]
Della-Greca, M.; Florentino, A.; Molinaro, A.; Monaco, P.; Previtera, L. A bioactive dihydrodibenzoxepin from Juncus effusus. Phytochemistry, 1993, 34, 1182-1184.
[http://dx.doi.org/10.1016/S0031-9422(00)90742-8]
[11]
Macias, F.A.; Molinillo, J.M.G.; Varela, R.M.; Torres, A.; Fronczek, F.R. Structural elucidation and chemistry of a novel family of bioactive sesquiterpenes. Heliannuols. J. Org. Chem., 1994, 59, 8261-8266.
[http://dx.doi.org/10.1021/jo00105a052]
[12]
Engler, M.; Anke, T.; Sterner, O.; Brandt, U. Pterulinic acid and pterulone, two novel inhibitors of NADH:ubiquinone oxidoreductase (complex I) produced by a Pterula species. I. Production, isolation and biological activities. J. Antibiot. (Tokyo), 1997, 50(4), 325-329.
[http://dx.doi.org/10.7164/antibiotics.50.325] [PMID: 9186558]
[13]
(a) Boonphong, S.; Puangsombat, P.; Baramee, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities J. Nat. Prod, 2007, 70(5), 795-801.
[http://dx.doi.org/10.1021/np070010e] [PMID: 17480099]
(b) Kraus, G.A.; Thite, A.; Liu, F. Intramolecular radical cyclizations onto quinones. A direct synthesis of Bauhinoxepin J. Tetrahedron Lett., 2009, 50, 5303-5304.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.143]
[14]
Campello, M.J.; Castedo, L.; Domínguez, D.; de Lera, A.R.; Saá, J.M.; Suau, R.; Tojo, E.; Vidal, M.C. New oxidized isocularine alkaloids from sarcocapnos plants. Tetrahedron Lett., 1984, 25, 5933-5936.
[http://dx.doi.org/10.1016/S0040-4039(01)81724-X]
[15]
Pettit, G.R.; Numata, A.; Iwamoto, C.; Usami, Y.; Yamada, T.; Ohishi, H.; Cragg, G.M. Antineoplastic agents. 551. Isolation and structures of bauhiniastatins 1-4 from Bauhinia purpurea. J. Nat. Prod., 2006, 69(3), 323-327.
[http://dx.doi.org/10.1021/np058075+] [PMID: 16562827]
[16]
Chattopadhyay, S.K.; Neogi, K.; Singha, S.K.; Dey, R. Sequential Claisen rearrangement and intramolecular Heck reaction as a route to medium ring oxacycle-fused heterocycles. Synlett, 2008, 1137-1140.
[http://dx.doi.org/10.1055/s-2008-1072719]
[17]
Lautens, M.; Tayama, E.; Herse, C. Palladium-catalyzed intramolecular coupling between aryl iodides and allyl moieties via thermal and microwave-assisted conditions. J. Am. Chem. Soc., 2005, 127(1), 72-73.
[http://dx.doi.org/10.1021/ja043898r] [PMID: 15631454]
[18]
Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M. Synthesis of polycyclic benzonitriles via a one-pot aryl alkylation/cyanation reaction. J. Am. Chem. Soc., 2006, 128(45), 14436-14437.
[http://dx.doi.org/10.1021/ja064742p] [PMID: 17090008]
[19]
Shiina, I. Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation. Chem. Rev., 2007, 107(1), 239-273.
[http://dx.doi.org/10.1021/cr050045o] [PMID: 17212476]
[20]
Bagley, M.C.; Lin, Z.; Philips, D.J.; Graham, A.E. Barium manganate in microwave-assisted oxidation reactions: synthesis of lactones by oxidative cyclization of diols. Tetrahedron Lett., 2009, 50, 6823-6825.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.117]
[21]
Ong, H.H.; Profitt, J.A.; Anderson, V.B.; Spaulding, T.C.; Wilker, J.C.; Geyer, H.M., III; Kruse, H. Tricyclics with analgesic and antidepressant activity. 1. [[(Alkylamino)ethyl]thio]dibenz[b,f]oxepins and 10,11-dihydro derivatives. J. Med. Chem., 1980, 23(5), 494-501.
[http://dx.doi.org/10.1021/jm00179a005] [PMID: 6103962]
[22]
Trabanco, A.A.; Alonso, J.M.; Andrés, J.I.; Cid, J.M.; Fernández, J.; Iturrino, L.; Megens, A. Synthesis of 2-N,N-dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo-[b,f]furo[2,3-d]oxepin derivatives as potential anxiolytic agents. Chem. Pharm. Bull. (Tokyo), 2004, 52(2), 262-265.
[http://dx.doi.org/10.1248/cpb.52.262] [PMID: 14758015]
[23]
Yamamoto, K.; Tamura, T.; Nakamura, R.; Hosoe, S.; Matsubara, M.; Nagata, K.; Kodaira, H.; Uemori, T.; Takahashi, Y.; Suzuki, M.; Saito, J.I.; Ueno, K.; Shuto, S. Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold. Bioorg. Med. Chem., 2019, 27(22), 115-122.
[http://dx.doi.org/10.1016/j.bmc.2019.115122] [PMID: 31623970]
[24]
Phillips, S.T.; de Paulis, T.; Neergaard, J.R.; Baron, B.M.; Siegel, B.W.; Seeman, P.; Van Tol, H.H.; Guan, H.C.; Smith, H.E. Binding of 5H-dibenzo[a,d]cycloheptene and dibenz[b,f]oxepin analogues of clozapine to dopamine and serotonin receptors. J. Med. Chem., 1995, 38(4), 708-714.
[http://dx.doi.org/10.1021/jm00004a016] [PMID: 7861418]
[25]
Khan, M.F.; Verma, G.; Alam, P.; Akhter, M.; Bakht, M.A.; Hasan, S.M.; Shaquiquzzaman, M.; Alam, M.M. Dibenzepinones, dibenzoxepines and benzosuberones based p38α MAP kinase inhibitors: their pharmacophore modelling, 3D-QSAR and docking studies. Comput. Biol. Med., 2019, 110, 175-185.
[http://dx.doi.org/10.1016/j.compbiomed.2019.05.023] [PMID: 31173941]
[26]
Yamamoto, K.; Tamura, T.; Henmi, K.; Kuboyama, T.; Yanagisawa, A.; Matsubara, M.; Takahashi, Y.; Suzuki, M.; Saito, J.I.; Ueno, K.; Shuto, S. Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) gamma ligands of a novel binding mode as anticancer agents: effective mimicry of chiral structures by olefinic E/Z-isomers. J. Med. Chem., 2018, 61(22), 10067-10083.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01200] [PMID: 30351933]
[27]
Olivera, R.; SanMartin, R.; Churruca, F.; Dominguez, E. Dibenzo[b,f]oxepines: Syntheses and applications A review. Org. Prep. Proced. Int., 2004, 36, 297-330.
[http://dx.doi.org/10.1080/00304940409458673]
[28]
Choi, Y.L.; Lim, H.S.; Lim, H.J.; Heo, J.N. One-pot transition-metal-free synthesis of dibenzo[b,f]oxepins from 2-halobenzaldehydes. Org. Lett., 2012, 14(19), 5102-5105.
[http://dx.doi.org/10.1021/ol302371s] [PMID: 22984846]
[29]
Moreno, D.R.R.; Giorgi, G.; Salas, C.O.; Tapia, R.A. New short strategy for the synthesis of the dibenz[b,f]oxepin scaffold. Molecules, 2013, 18(12), 14797-14806.
[http://dx.doi.org/10.3390/molecules181214797] [PMID: 24352054]
[30]
Bruder, M.; Haseler, P.L.; Muscarella, M.; Lewis, W.; Moody, C.J. Synthesis of the oxepinochromone natural products ptaeroxylin (desoxykarenin), ptaeroxylinol, and eranthin. J. Org. Chem., 2010, 75(2), 353-358.
[http://dx.doi.org/10.1021/jo902117e] [PMID: 20000660]
[31]
(a) Chattopadhyay, S.K.; Maity, S.; Panja, S. Combined claisen rearrangement and ring-closing metathesis as a route to oxepin and oxocin-annulated coumarins Tetrahedron Lett, 2002, 43, 778-780.
[http://dx.doi.org/10.1016/S0040-4039(02)01806-3]
(b) Chattopadhyay, S.K.; Maity, S.; Pal, B.K. Combined multiple claisen rearrangement and ring-closing metathesis as a route to naphthalene, anthracene and anthracycline ring systems Chem. Lett, 2003, 1190-1191.
[http://dx.doi.org/10.1246/cl.2003.1190]
(c) Chattopadhyay, S.K.; Ray, S.P.; Ghosh, D.; Biswas, G. Synthesis of oxepine-, oxocine- and azepine-annulated carbazole derivatives by combined claisen rearrangement and diene/enyne metathesis. Tetrahedron Lett, 2006, 47, 6895-6898.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.045]
(d) Chattopadhyay, S.K.; Biswas, T.; Maity, S. Sequential double claisen rearrangement and two-directional ring-closing metathesis as a route to various benzofused bis-oxepin and bis-oxocin derivatives Synlett, 2006, 2211-2214.
[http://dx.doi.org/10.1055/s-2006-950398]
(e) Chattopadhyay, S.K.; Biswas, T.; Neogi, K. Synthesis of polycyclic coumarin derivatives by combined claisen rearrangement, ring-closing metathesis, and diels - alder reaction Chem. Lett, 2006, 35, 376-377.
[http://dx.doi.org/10.1246/cl.2006.376]
[32]
(a) Grunewald, G.L.; Dahanukar, V.H.; Criscione, K.R. Structure-based design and synthesis of novel thrombin inhibitors based on phosphinic peptide mimetics. Bioorg. Med. Chem, 2001, 9, 1957-1962.
[http://dx.doi.org/10.1016/S0968-0896(01)00112-2] [PMID: 11504632]
(b) Grunewald, G.L.; Caldwell, T.M.; Li, Q.; Criscione, K.R. Synthesis and evaluation of 4-fluoro-8-substituted-2,3,4,5-tetrahydro- 1H-2-benzazapines as selective inhibitors of phenylethanolamine N-methyltransferase versus the α(2)-adrenoceptor. J. Med. Chem, 2001, 44(17), 2849-2856.
[http://dx.doi.org/10.1021/jm010147g] [PMID: 11495596]
(c) Ersmark, K.; Feierberg, I.; Bjelic, S.; Hamelink, E.; Hackett, F.; Blackman, M.J.; Hultén, J.; Samuelsson, B.; Aqvist, J.; Hallberg, A. Potent inhibitors of the Plasmodium falciparum enzymes plasmepsin I and II devoid of cathepsin D inhibitory activity. J. Med. Chem., 2004, 47(1), 110-122.
[http://dx.doi.org/10.1021/jm030933g] [PMID: 14695825]
[33]
(a) Liu, J.; Gluzman, I.Y.; Drew, M.E.; Goldberg, D.E. The role of Plasmodium falciparum food vacuole plasmepsins J. Biol. Chem, 2005, 280(2), 1432-1437.
[http://dx.doi.org/10.1074/jbc.M409740200] [PMID: 15513918]
(b) Kulanthaivel, P.; Hallock, Y.F.; Boros, C.; Hamilton, S.M.; Janzen, W.P.; Ballas, L.M.; Loomis, C.R.; Jiang, J.B.; Katz, B.; Steiner, J.R.; Clardy, J. Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J. Am. Chem. Soc., 1993, 115, 6452-6453.
[http://dx.doi.org/10.1021/ja00067a087]
[34]
Saha, T.; Maitra, R.; Chattopadhyay, S.K. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue. Beilstein J. Org. Chem., 2013, 9, 2910-2915.
[http://dx.doi.org/10.3762/bjoc.9.327] [PMID: 24454570]
[35]
Woodruff-Pak, D.S.; Vogel, R.W., III; Wenk, G.L. Galantamine: effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 2089-2094.
[http://dx.doi.org/10.1073/pnas.98.4.2089] [PMID: 11172080]
[36]
Smith, B.M.; Smith, J.M.; Tsai, J.H.; Schultz, J.A.; Gilson, C.A.; Estrada, S.A.; Chen, R.R.; Park, D.M.; Prieto, E.B.; Gallardo, C.S.; Sengupta, D.; Dosa, P.I.; Covel, J.A.; Ren, A.; Webb, R.R.; Beeley, N.R.A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H.R.; Bjenning, C.; Whelan, K.T.; Grottick, A.J.; Menzaghi, F.; Thomsen, W.J. Discovery and structure-activity relationship of (1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. J. Med. Chem., 2008, 51(2), 305-313.
[http://dx.doi.org/10.1021/jm0709034] [PMID: 18095642]
[37]
Thakur, A.J.; Boruah, A.; Prajapati, D.; Sandhu, J.S. Microwave induced bismuth trichloride catalyzed Beckman rearrangement of oximes. Synth. Commun., 2000, 30, 2105-2111.
[http://dx.doi.org/10.1080/00397910008087389]
[38]
Belasri, K.; Fülöp, F.; Szatmári, I. Molecules, 2019, 24, 3578-3588.
[39]
Szatmari, I.; Barta, P.; Csampai, A.; Fülop, F. Synthesis and detailed conformational analysis of new naphthoxazino[2,3-a]benz[c]azepine and naphthoxazino[2,3-a]thieno[3,2-c]pyridine derivatives. Tetrahedron, 2017, 73, 4790-4804.
[http://dx.doi.org/10.1016/j.tet.2017.06.060]
[40]
Speckamp, W.N.; Hiemestra, H. Intramolecular reactions of N-acyliminium intermediates. Tetrahedron, 1985, 41, 4367-4416.
[http://dx.doi.org/10.1016/S0040-4020(01)82334-6]
[41]
Severino, B.; Fiorino, F.; Esposito, A.; Fecentese, F.; De Angelis, F.E.; Perissutti, E.; Caliendo, G.; Santagada, V. Efficient microwave-assisted synthesis of 4-amino-2-benzazepin-3-ones as conformationally restricted dipeptide mimetics. Tetrahedron, 2009, 65, 206-211.
[http://dx.doi.org/10.1016/j.tet.2008.10.072]
[42]
Declerck, V.; Ribiere, P.; Nedellec, Y.; Allouchi, H.; Martinez, J.; Lamaty, F. A microwave-assisted Heck reaction in poly(ethylene glycol) for the synthesis of benzazepines. Eur. J. Org. Chem., 2007, 201-208.
[http://dx.doi.org/10.1002/ejoc.200600680]
[43]
Donets, P.A.P.A.; Goeman, J.L.; Van der Eicken, J.; Robeyns, K.; Van Meervelt, L.; Van der Eicken, E. An asymmetric approach towards (–)-aphanorphine and its analogue. Eur. J. Org. Chem., 2009, 793-796.
[http://dx.doi.org/10.1002/ejoc.200801175]
[44]
Riva, R.; Banfi, L.; Basso, A.; Cerulli, V.; Guanti, G.; Pani, M. A highly convergent synthesis of tricyclic N-heterocycles coupling an Ugi reaction with a tandem S(N)2′-Heck double cyclization. J. Org. Chem., 2010, 75(15), 5134-5143.
[http://dx.doi.org/10.1021/jo100859y] [PMID: 20575586]
[45]
Mehta, V.P.; Modha, S.G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.A.; Van der Eycken, E. A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation. J. Org. Chem., 2011, 76(8), 2828-2839.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
[46]
Donets, P.A.; Van der Eycken, E.V. Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org. Lett., 2007, 9(16), 3017-3020.
[http://dx.doi.org/10.1021/ol071079g] [PMID: 17608431]
[47]
Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-enhanced synthesis of N-shifted buflavine analogues via a Suzuki-ring-closing metathesis protocol. Org. Lett., 2005, 7(13), 2723-2726.
[http://dx.doi.org/10.1021/ol050806+] [PMID: 15957931]
[48]
Chattopadhyay, S.K.; Karmakar, S.; Biswas, T.; Majumdar, K.C.; Rahaman, H.; Roy, B. Formation of medium-ring heterocycles by diene and enyne metathesis. Tetrahedron, 2007, 63, 3919-3952.
[http://dx.doi.org/10.1016/j.tet.2007.01.063]
[49]
Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chemistry, 2007, 13(22), 6452-6460.
[http://dx.doi.org/10.1002/chem.200700177] [PMID: 17508369]
[50]
Ansari, M.I.; Hussain, M.K.; Arun, A.; Chakravarti, B.; Konwar, R.; Hajela, K. Synthesis of targeted dibenzo[b,f]thiepines and dibenzo[b,f]oxepines as potential lead molecules with promising anti-breast cancer activity. Eur. J. Med. Chem., 2015, 99, 113-124.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.035] [PMID: 26067208]
[51]
Kristensen, J.L.; Püschl, A.; Jensen, M.; Risgaard, R.; Christoffersen, C.T.; Bang-Andersen, B.; Balle, T. Exploring the neuroleptic substituent in octoclothepin: potential ligands for positron emission tomography with subnanomolar affinity for α(1)-adrenoceptors. J. Med. Chem., 2010, 53(19), 7021-7034.
[http://dx.doi.org/10.1021/jm100652h] [PMID: 20857909]
[52]
Green, B. Zotepine: a clinical review. Expert Opin. Drug Metab. Toxicol., 2009, 5(2), 181-186.
[http://dx.doi.org/10.1517/17425250802670482] [PMID: 19199377]
[53]
Božinović, N.; Opsenica, I.M.; Solaja, B. Double palladium-catalyzed synthesis of azepines. Synlett, 2013, 24, 49-52.
[54]
Božinović, N.; Novaković, I.; Kostic Rajačić, S.; Opsenica, I.M.; Solajab, B. Synthesis and antimicrobial activity of azepine and thiepine derivatives. J. Serb. Chem. Soc., 2015, 80, 839-852.
[http://dx.doi.org/10.2298/JSC150116013B]
[55]
Lloyd, D.; McNab, H. 1,5-Benzodiazepines and 1,5-benzodiazepinium salts. Adv. Heterocycl. Chem., 1998, 71, 1-56.
[http://dx.doi.org/10.1016/S0065-2725(08)60830-2]
[56]
Neochoritis, C.G.; Tsoleridis, C.A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. 1,5-Benzoxazepines vs 1,5-benzodiazepines. one-pot microwave-assisted synthesis and evaluation for antioxidant activity and lipid peroxidation inhibition. J. Med. Chem., 2010, 53(23), 8409-8420.
[http://dx.doi.org/10.1021/jm100739n] [PMID: 21049954]
[57]
Kidwai, M. Ruby; Venkataramanan R. A facile synthesis of substituted benzodiazepines using solid support. Chem. Heterocycl. Compd., 2004, 40, 631-634.
[http://dx.doi.org/10.1023/B:COHC.0000037319.75957.fb]
[58]
Chari, M.A.; Syamasundar, K. Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catal. Commun., 2005, 6, 67-70.
[http://dx.doi.org/10.1016/j.catcom.2004.10.009]
[59]
Chari, M.A.; Shobha, D.; Syamasundar, K. Silica gel/NaHSO4: An efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5‐benzodiazepine derivatives under microwave irradiation. J. Heterocycl. Chem., 2007, 44, 929-932.
[http://dx.doi.org/10.1002/jhet.5570440431]
[60]
Pessoa-Mahana, D.; Espinosa-Bustos, C.; Mella-Raipan, J.; Canales-Pacheco, J.; Pessoa-Mahana, H. ARKIVOC, 2009, 12, 131-140.
[61]
Santagada, V.; Perissutti, E.; Fiorino, F.; Vivenzio, B.; Caliendo, G. Microwave enhanced solution synthesis of 1,4-benzodiazepin-5-ones. Tetrahedron Lett., 2001, 42, 2397-2400.
[http://dx.doi.org/10.1016/S0040-4039(01)00155-1]
[62]
Mwande-Maguene, G.; Jakhlal, J.; Lekana-Douki, J-B.; Mouray, E.; Bousquet, T.; Pellegrini, S.; Grellier, P.; Ndouo, F.S.T.; Lebibi, J.; Pelinski, L. One-pot microwave-assisted synthesis and antimalarial activity of ferrocenyl benzodiazepines. New J. Chem., 2011, 35, 2412-2415.
[http://dx.doi.org/10.1039/c1nj20551j]
[63]
De La Cruz, A.; Vega-Acevedo, C.A.; Rivero, I.A.; Chávez, D. improved method for microwave-assisted synthesis of benzodiazepine-2,5-diones from isatoic anhydrides mediated by glacial acetic acid. J. Braz. Chem. Soc., 2018, 29, 1607-1611.
[http://dx.doi.org/10.21577/0103-5053.20180031]
[64]
Jaafar, Z.; Chniti, S.; Ben Sassi, A.; Hayet Dziri, H.; Marque, S.; Lecouvey, M.; Gharbi, R.; Msaddek, M. Design and microwaveassisted synthesis of dimers of 1,5-benzodiazepine-1,2,3-triazole hybrids bearing alkyl/aryl spacers and their biological assessment J. Mol. Str, 2019, 1195, 689e701.
[65]
Nasir, Z.; Ali, A.; Shakir, M.; Wahab, R. Shamsuzzaman; Lutfullah Silica-supported NiO nanocomposites preparedvia a sol–gel technique and their excellent catalytic performance for one-pot multicomponent synthesis of benzodiazepine derivatives under microwave irradiation. New J. Chem., 2017, 41, 5893-5903.
[http://dx.doi.org/10.1039/C6NJ04013F]
[66]
Solan, A.A.; Nişanci, B.; Belcher, M.; Young, J.; Schäfer, C.; Wheeler, A.K.; Török, B.; Dembinski, R. Catalyst-free chemo-/regio-/stereo-selective amination of alk-3-ynones. Synthesis of 1,5-benzodiazepines and 3-amino-2-alkenones. Green Chem., 2014, 16, 1120-1124.
[http://dx.doi.org/10.1039/C3GC41898G]
[67]
Saadatjoo, N.; Javaheria, M.; Saemian, N.; Aminic, M. Synthesis of a carbon-14 analog of 8-chloro-11- (4-methyl-1-piperazinyl)-11-[14C]-5H-dibenzo[b,e][1,4]diazepine (clozapine) using microwave irradiation. Radiochemistry, 2016, 58, 423-425.
[http://dx.doi.org/10.1134/S1066362216040123]
[68]
Ciofi, L.; Trabocchi, A.; Lalli, C.; Menchi, G.; Guarna, A. One-pot sequential Ti-/Cu-catalysis for tandem amidation/Ullmann-type cyclization: synthesis of model benzodiazepine(di)ones promoted by microwave irradiation. Org. Biomol. Chem., 2012, 10(14), 2780-2786.
[http://dx.doi.org/10.1039/c2ob07063d] [PMID: 22371225]
[69]
Kharate, R.M.; Deohate, P.P.; Berad, B.N. Microwave assisted synthesis, characterization and antimicrobial study of substituted benzo-(5,6-e)-[1,3]-diazepine-4,7-dione derivatives. Chem. Sci. Trans., 2013, 2, 65-68.
[http://dx.doi.org/10.7598/cst2013.287]
[70]
Rajasekhar, K.K.; Ananth, V.S.; Nithiyananthan, T.S.; Hareesh, G.; Kumar, P.N.; Reddy, R.S.P. Comparative study of conventional and microwave induced synthesis of selected heterocyclic molecules. Int. J. Chemtech Res., 2010, 2, 592-597.
[71]
Díaz, J.E.; Bisceglia, J.A.; Mollo, M.C.; Orelli, L.R. 1,n-Diamines. Part 2: Synthesis of acyclic and heterocyclic N-arylputrescine derivatives. Tetrahedron Lett., 2011, 52, 1895-1897.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.042]
[72]
Bisceglia, J.A.; Diaz, J.E.; Torres, R.A.; Orelli, L.R. 1,n-diamines. Part 3: Microwave-assisted synthesis of N-acyl-N’-arylhaxahydropyrimidines and hexahydo-1,3-diazepines. Tetrahedron Lett., 2011, 52, 5238-5240.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.131]
[73]
Liang, M.; Saiz, C.; Pizzo, C.; Wipf, P. Synthesis of pyrrolo[1,3]diazepines by a dipolar cycloaddition - retro-Mannich domino reaction. Tetrahedron Lett., 2009, 50(49), 6810-6813.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.107] [PMID: 20160922]
[74]
Goh, E.M.; Wilkins, A.L. Structures of the lichen depsidones granulatin and chlorogranulatin. J. Chem. Soc., Perkin Trans. 1, 1979, 1656-1658.
[http://dx.doi.org/10.1039/p19790001656]
[75]
Pandeya, S.N.; Kumar, D.; Verma, P.K. Newer applications of 1,5-benzothiazepines and their anticonvulsant activity. Pharma Chem., 2012, 4, 1853-1855.
[76]
(a) Nathwani, S.M.; Cloonan, S.M.; Stronach, M.; Campiani, G.; Lawler, M.; Williams, D.C.; Zisterer, D.M. Novel microtubuletargeting agents, pyrrolo-1,5-benzoxazepines, induce cell cycle arrest and apoptosis in prostate cancer cells. Oncol. Rep, 2010, 24(6), 1499-1507.
[http://dx.doi.org/10.3892/or_00001011] [PMID: 21042745]
(b) Keating, G.M. Loxapine inhalation powder: a review of its use in the acute treatment of agitation in patients with bipolar disorder or schizophrenia. CNS Drugs, 2013, 27(6), 479-489.
[http://dx.doi.org/10.1007/s40263-013-0075-9] [PMID: 23740380]
[77]
Blaquiere, N.; Do, S.; Dudley, D.; Folkes, A.J.; Heald, R.; Heffron, T.; Jones, M.; Kolesnikov, A.; Ndubaku, C.; Olivero, A.G. Benzoxazepine as PI3K Inhibitor and their preparation and use in the treatment of cancer PCT Patent WO 2011036280 A1 20110331, 2011.
[78]
Takeuchi, C.S.; Kim, B.G.; Blazey, C.M.; Ma, S.; Johnson, H.W.; Anand, N.K.; Arcalas, A.; Baik, T.G.; Buhr, C.A.; Cannoy, J.; Epshteyn, S.; Joshi, A.; Lara, K.; Lee, M.S.; Wang, L.; Leahy, J.W.; Nuss, J.M.; Aay, N.; Aoyama, R.; Foster, P.; Lee, J.; Lehoux, I.; Munagala, N.; Plonowski, A.; Rajan, S.; Woolfrey, J.; Yamaguchi, K.; Lamb, P.; Miller, N. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR). J. Med. Chem., 2013, 56(6), 2218-2234.
[http://dx.doi.org/10.1021/jm3007933] [PMID: 23394126]
[79]
Liao, W.C.; Vesterqvist, O.; Delaney, C.; Jemal, M.; Ferreira, I.; Ford, N.; Swanson, B.; Uderman, H. Pharmacokinetics and pharmacodynamics of the vasopeptidase inhibitor, omapatrilat in healthy subjects. Br. J. Clin. Pharmacol., 2003, 56(4), 395-406.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01888.x] [PMID: 12968984]
[80]
Seminara, G.; Trassari, V.; Prestifilippo, N.; Chiavetta, R.; Calandra, C. [Atypical tricyclic neuroleptics for treatment of schizophrenia. Clothiapine and clozapine] Minerva Psichiatr., 1993, 34(2), 95-99.
[PMID: 8105359]
[81]
Pignier, C.; Rougier, J.S.; Vié, B.; Culié, C.; Verscheure, Y.; Vacher, B.; Abriel, H.; Le Grand, B. Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias. Br. J. Pharmacol., 2010, 161(1), 79-91.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00884.x] [PMID: 20718741]
[82]
Nardi, M.; Cozza, A.; Mainolo, L.; Oliverio, M.; Procopio, A. 1,5-Benzoheteroazepines through eco-friendly general condensation reactions. Tetrahedron Lett., 2011, 52, 4827-4834.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.029]
[83]
Willy, B.; Müller, T.J.J. Three-component synthesis of benzo[b][1,5]thiazepines via coupling-addition-cyclocondensation sequence. Mol. Divers., 2010, 14(3), 443-453.
[http://dx.doi.org/10.1007/s11030-009-9223-z] [PMID: 20157778]
[84]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[85]
Yadav, J.S.; Srivastava, Y.K. importance of microwave reactions in the synthesis of novel benzimidazole derivatives. Pharm. Lett., 2011, 3, 284-291.
[86]
Tu, S-J.; Cao, X-D.; Hao, W-J.; Zhang, X-H.; Yan, S.; Wu, S-S.; Han, Z-G.; Shi, F. An efficient and chemoselective synthesis of benzo[e][1,4]thiazepin-2(1H,3H,5H)-ones via a microwave-assisted multi-component reaction in water. Org. Biomol. Chem., 2009, 7(3), 557-563.
[http://dx.doi.org/10.1039/b815879g] [PMID: 19156323]
[87]
Vyawahare, D.; Ghodke, M.; Nikalje, A.P. Green synthesis and pharmacological screening of novel 1,5-Benzothiazepines as CNS agents. Int. J. Pharm. Pharm. Sci., 2010, 2, 27-29.
[88]
Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J.T.; Anderson, P.; Nam, T.G.; Gray, N.S.; Chatterjee, A.; Janes, J.; Yan, S.F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E.A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9059-9064.
[http://dx.doi.org/10.1073/pnas.0802982105] [PMID: 18579783]
[89]
Saruta, K.; Ogiku, T.; Fukase, K. Traceless solid-phase synthesis of multiple sulfonamide-containing cyclic sulfides exploiting microwave irradiation. Tetrahedron Lett., 2009, 50, 4364-4367.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.028]
[90]
Kotalwar, S.S.; Kale, A.D.; Kohire, R.B.; Jagrut, V.B. Microwave assisted synthesis of 1,5-benzothiazepines using greener reaction medium. Asian J. Chem., 2019, 31, 993-996.
[http://dx.doi.org/10.14233/ajchem.2019.21716]
[91]
Hong, S.H.; Grubbs, R.H. Highly active water-soluble olefin metathesis catalyst. J. Am. Chem. Soc., 2006, 128(11), 3508-3509.
[http://dx.doi.org/10.1021/ja058451c] [PMID: 16536510]
[92]
Salim, S.S.; Bellingham, R.K.; Brown, R.C.D. One-pot ring-closing metathesis-alkene cross metathesis reactions of sulfamide-linked enynes. Eur. J. Org. Chem., 2004, 800-806.
[http://dx.doi.org/10.1002/ejoc.200300725]
[93]
De Moliner, F.; Bigatti, M.; De Rosa, C.; Banfi, L.; Riva, R.; Basso, A. Synthesis of triazolo-fused benzoxazepines and benzoxazepinones via Passerini reactions followed by 1,3-dipolar cycloadditions. Mol. Divers., 2014, 18(3), 473-482.
[http://dx.doi.org/10.1007/s11030-014-9530-x] [PMID: 24894969]
[94]
Shi, J.; Wu, J.; Cui, C.; Dai, W.M. Microwave-assisted intramolecular Ullmann diaryl etherification as the post-Ugi annulation for generation of dibenz[b,f][1,4]oxazepine scaffold. J. Org. Chem., 2016, 81(21), 10392-10403.
[http://dx.doi.org/10.1021/acs.joc.6b01398] [PMID: 27517309]
[95]
Filippakopoulos, P.; Picaud, S.; Fedorov, O.; Keller, M.; Wrobel, M.; Morgenstern, O.; Bracher, F.; Knapp, S. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem., 2012, 20(6), 1878-1886.
[http://dx.doi.org/10.1016/j.bmc.2011.10.080] [PMID: 22137933]
[96]
McDonald, I.M.; Black, J.W.; Buck, I.M.; Dunstone, D.J.; Griffin, E.P.; Harper, E.A.; Hull, R.A.D.; Kalindjian, S.B.; Lilley, E.J.; Linney, I.D.; Pether, M.J.; Roberts, S.P.; Shaxted, M.E.; Spencer, J.; Steel, K.I.; Sykes, D.A.; Walker, M.K.; Watt, G.F.; Wright, L.; Wright, P.T.; Xun, W. Optimization of 1,3,4-benzotriazepine-based CCK(2) antagonists to obtain potent, orally active inhibitors of gastrin-mediated gastric acid secretion. J. Med. Chem., 2007, 50(13), 3101-3112.
[http://dx.doi.org/10.1021/jm070139l] [PMID: 17536796]
[97]
Chukowree, I.; Syed, M.A.; Getti, G.; Patel, A.P.; Garner, H.; Tizzard, G.J.; Coles, J. Specer, S. J. Synthesis of a 1,3,5-benzotriazepine-2,4-dione based library. Tetrahedron Lett., 2012, 53, 3607-3611.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.025]
[98]
Gupta, M.; Paul, S.; Gupta, R. Efficient and novel one-pot synthesis of antifungal active 1-substituted-8-aryl-3-alkyl/aryl-4H-pyrazolo[4,5-f][1,2,4]triazolo[4,3-b][1,2,4]triazepines using solid support. Eur. J. Med. Chem., 2011, 46(2), 631-635.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.043] [PMID: 21185625]
[99]
Gupta, M. Efficient synthesis of antifungal active 9-substituted-3-aryl-5H,13aH-quinolino[3,2-f][1,2,4]triazolo[4,3-b][1,2,4]triazepines in ionic liquids. Bioorg. Med. Chem. Lett., 2011, 21(16), 4919-4923.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.007] [PMID: 21763133]
[100]
Rolfe, A.; Samarakoon, T.B.; Klimberg, S.V.; Brzozowski, M.; Neuenswander, B.; Lushington, G.H.; Hanson, P.R.S.S. (N)Ar-based, facile synthesis of a library of benzothiaoxazepine-1,1′-dioxides. J. Comb. Chem., 2010, 12(6), 850-854.
[http://dx.doi.org/10.1021/cc1001023] [PMID: 20879738]
[101]
Rolfe, A.; Samarakoon, T.B.; Hanson, P.R. One-Pot epoxide, SNAr cascade utilizing R-Fluorobenzenesulfonamides. Org. Lett., 2010, 12, 1216-1219.
[http://dx.doi.org/10.1021/ol100035e] [PMID: 20178346]
[102]
Ibrahim, M.A.; Panda, S.S.; Oliferenko, A.A.; Oliferenko, P.V.; Girgis, A.S.; Elagawany, M.; Küçükbay, F.Z.; Panda, C.S.; Pillai, G.G.; Samir, A.; Tämm, K.; Hall, C.D.; Katritzky, A.R. Macrocyclic peptidomimetics with antimicrobial activity: synthesis, bioassay, and molecular modeling studies. Org. Biomol. Chem., 2015, 13(36), 9492-9503.
[http://dx.doi.org/10.1039/C5OB01400J] [PMID: 26256838]
[103]
(a) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis: a review Tetrahedron, 2001, 57, 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
(b) Bose, A.K.; Manhas, M.S.; Ganguly, S.N.; Sharma, A.H.; Banik, B.K. MORE chemistry for less pollution: applications for process development Synthesis, 2002, 1578-1591.
[http://dx.doi.org/10.1055/s-2002-33344]
(c) Caddick, S.; Fitzmaurice, R. Microwave enhanced synthesis Tetrahedron, 2009, 65, 3325-3355.
[http://dx.doi.org/10.1016/j.tet.2009.01.105]
(d) Kappe, C.O.; Dallinger, D. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Mol. Divers., 2009, 13(2), 71-193.
[http://dx.doi.org/10.1007/s11030-009-9138-8] [PMID: 19381851]
[104]
(a) Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K PMID: 20419202]
bSaber, A.; Marzag, H.; Benhida, R.; Bougrin, K. Microwave-assisted cycloaddition reactions in carbo- and heterocyclic chemistry. Curr. Org. Chem., 2014, 18, 2139-2180.
[http://dx.doi.org/10.2174/1385272819666140407213427]
[105]
(c) Pedersen, S.L.; Tofteng, A.P.; Malik, L.; Jensen, J. Microwave heating in solid-phase synthesis. Chem. Soc. Rev.2012, 41, 1826–1844. (l) Pedersen, S.L.; Tofteng, A. P.; Malik, L.; Jensen, K. J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev., 2012, 41, 1826-1844.
[106]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[107]
Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2011, 40(10), 4925-4936.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[108]
(a) Sakhuja, R.; Panda, S.S.; Bajaj, K. Microwave-assisted synthesis of five-membered azaheterocyclic systems. Curr. Org. Chem., 2012, 16, 789-828.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
(b) Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwaveassisted synthesis of medium-sized heterocycles. Chem. Commun., 2012, 48, 1623-1637.
[http://dx.doi.org/10.2174/1385272819666140407213427]
(c) Chattopadhyay, S.K. Green synthetic approaches for medium ring-sized heterocycles of biological interest. In: Green Synthetic Approaches for Biologically relevant Heterocycles, Brahmachari, G. Elsevier, 2014; p. Chapter-XI
(d) Kaur, N.; Kishore, D; Van der , E. Microwave-assisted synthesis of seven- and higher-membered O-heterocycles Synth Commun, 2014, 44, 2739-2755.
(e) Sakhuja, R.; Bajaj, K.; Abdul Shakoor, S.M Microwaveassisted synthesis of benzo-fused seven-membered azaheterocycles Mini-Rev. Org. Chem, 2014, 11, 55-72.
(f) Demange, L.; Bougrin, K.; Benhida, R. Microwave-assisted syntheses of bioactive seven-membered, macro-sized heterocycles and their fused derivatives Molecules, 2016, 21, 1032-1078.
(g) Driowya, M.; Saber, A.; Marzag, H. Microwave-assisted synthesis of bioactive six-membered heterocycles and their fused analogues. Molecules, 2016, 21, 492-524.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy