Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy?

Author(s): Mounia Chami* and Frédéric Checler

Volume 17, Issue 4, 2020

Page: [313 - 323] Pages: 11

DOI: 10.2174/1567205017666200225102941

Price: $65

Abstract

Pathologic calcium (Ca2+) signaling linked to Alzheimer’s Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with β-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.

Keywords: Ryanodine receptor, calcium, Alzheimer's disease, amyloid precursor protein, post-translational modifications, β2- adrenergic signaling, protein kinase A, reactive oxygen species, nitrosative oxygen species, amyloid β.

[1]
Gulisano W, Maugeri D, Baltrons MA, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J Alzheimers Dis 2018; 64(s1): S611-31.
[http://dx.doi.org/10.3233/JAD-179935] [PMID: 29865055]
[2]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[3]
Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 2017; 97: 143-59.
[http://dx.doi.org/10.1016/j.cortex.2017.09.018] [PMID: 29102243]
[4]
Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995; 65(4): 1431-44.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65041431.x] [PMID: 7561836]
[5]
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 2005; 45(5): 675-88.
[http://dx.doi.org/10.1016/j.neuron.2005.01.040] [PMID: 15748844]
[6]
Del Prete D, Suski JM, Oulès B, et al. Localization and processing of the amyloid-β protein precursor in mitochondria-associated membranes. J Alzheimers Dis 2017; 55(4): 1549-70.
[http://dx.doi.org/10.3233/JAD-160953] [PMID: 27911326]
[7]
Pardossi-Piquard R, Petit A, Kawarai T, et al. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 2005; 46(4): 541-54.
[http://dx.doi.org/10.1016/j.neuron.2005.04.008] [PMID: 15944124]
[8]
Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: Friends and foes. Acta Neuropathol 2015; 129(1): 1-19.
[http://dx.doi.org/10.1007/s00401-014-1347-2] [PMID: 25287911]
[9]
Willem M, Tahirovic S, Busche MA, et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015; 526(7573): 443-7.
[http://dx.doi.org/10.1038/nature14864] [PMID: 26322584]
[10]
Lauritzen I, Pardossi-Piquard R, Bauer C, et al. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J Neurosci 2012; 32(46): 16243-55a.
[http://dx.doi.org/10.1523/JNEUROSCI.2775-12.2012] [PMID: 23152608]
[11]
Lauritzen I, Pardossi-Piquard R, Bourgeois A, et al. Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol 2016; 132(2): 257-76.
[http://dx.doi.org/10.1007/s00401-016-1577-6] [PMID: 27138984]
[12]
Tong BC, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer’s disease & therapies. Biochim Biophys Acta Mol Cell Res 2018; 1865(11 Pt B): 1745-60.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.018] [PMID: 30059692]
[13]
Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: A view from the lumen. Trends Biochem Sci 1998; 23(1): 10-4.
[http://dx.doi.org/10.1016/S0968-0004(97)01143-2] [PMID: 9478128]
[14]
Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signalling--an overview. Semin Cell Dev Biol 2001; 12(1): 3-10.
[http://dx.doi.org/10.1006/scdb.2000.0211] [PMID: 11162741]
[15]
Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 1995; 128(5): 893-904.
[http://dx.doi.org/10.1083/jcb.128.5.893] [PMID: 7876312]
[16]
Kelliher M, Fastbom J, Cowburn RF, et al. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999; 92(2): 499-513.
[http://dx.doi.org/10.1016/S0306-4522(99)00042-1] [PMID: 10408600]
[17]
Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE. Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2012; 33(5): 1001 e1-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.011]
[18]
Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 2005; 94(6): 1711-8.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03332.x] [PMID: 16156741]
[19]
Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 2006; 26(19): 5180-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0739-06.2006] [PMID: 16687509]
[20]
Chakroborty S, Goussakov I, Miller MB, Stutzmann GE. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29(30): 9458-70.
[http://dx.doi.org/10.1523/JNEUROSCI.2047-09.2009] [PMID: 19641109]
[21]
Oulès B, Del Prete D, Greco B, et al. Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32(34): 11820-34.
[http://dx.doi.org/10.1523/JNEUROSCI.0875-12.2012] [PMID: 22915123]
[22]
Supnet C, Grant J, Kong H, Westaway D, Mayne M. Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006; 281(50): 38440-7.
[http://dx.doi.org/10.1074/jbc.M606736200] [PMID: 17050533]
[23]
Supnet C, Noonan C, Richard K, Bradley J, Mayne M. Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer’s disease. J Neurochem 2010; 112(2): 356-65.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06487.x] [PMID: 19903243]
[24]
Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275(24): 18195-200.
[http://dx.doi.org/10.1074/jbc.M000040200] [PMID: 10764737]
[25]
Lee SY, Hwang DY, Kim YK, et al. PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase-3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J 2006; 20(1): 151-3.
[PMID: 16394273]
[26]
Querfurth HW, Jiang J, Geiger JD, Selkoe DJ. Caffeine stimulates amyloid beta-peptide release from beta-amyloid precursor protein-transfected HEK293 cells. J Neurochem 1997; 69(4): 1580-91.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69041580.x] [PMID: 9326287]
[27]
Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 2007; 1097: 265-77.
[http://dx.doi.org/10.1196/annals.1379.025] [PMID: 17413028]
[28]
Paula-Lima AC, Adasme T, SanMartín C, et al. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 2011; 14(7): 1209-23.
[http://dx.doi.org/10.1089/ars.2010.3287] [PMID: 20712397]
[29]
Mattson MP. ER calcium and Alzheimer’s disease: In a state of flux. Sci Signal 2010; 3(114): pe10.
[http://dx.doi.org/10.1126/scisignal.3114pe10] [PMID: 20332425]
[30]
Ito E, Oka K, Etcheberrigaray R, et al. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(2): 534-8.
[http://dx.doi.org/10.1073/pnas.91.2.534] [PMID: 8290560]
[31]
Goussakov I, Miller MB, Stutzmann GE. NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 2010; 30(36): 12128-37.
[http://dx.doi.org/10.1523/JNEUROSCI.2474-10.2010] [PMID: 20826675]
[32]
Jensen LE, Bultynck G, Luyten T, Amijee H, Bootman MD, Roderick HL. Alzheimer’s disease-associated peptide Aβ42 mobilizes ER Ca(2+) via InsP3R-dependent and -independent mechanisms. Front Mol Neurosci 2013; 6: 36.
[http://dx.doi.org/10.3389/fnmol.2013.00036] [PMID: 24204331]
[33]
Chakroborty S, Briggs C, Miller MB, et al. Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer’s disease. PLoS One 2012; 7(12)e52056
[http://dx.doi.org/10.1371/journal.pone.0052056] [PMID: 23284867]
[34]
Chakroborty S, Kim J, Schneider C, Jacobson C, Molgó J, Stutzmann GE. Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice. J Neurosci 2012; 32(24): 8341-53.
[http://dx.doi.org/10.1523/JNEUROSCI.0936-12.2012] [PMID: 22699914]
[35]
Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C. Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 2009; 13(9B): 3358-69.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00755.x] [PMID: 19382908]
[36]
Peng J, Liang G, Inan S, et al. Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice. Neurosci Lett 2012; 516(2): 274-9.
[http://dx.doi.org/10.1016/j.neulet.2012.04.008] [PMID: 22516463]
[37]
Del Prete D, Checler F, Chami M. Ryanodine receptors: Physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9: 21.
[http://dx.doi.org/10.1186/1750-1326-9-21] [PMID: 24902695]
[38]
Leissring MA, Murphy MP, Mead TR, et al. A physiologic signaling role for the gamma -secretase-derived intracellular fragment of APP. Proc Natl Acad Sci USA 2002; 99(7): 4697-702.
[http://dx.doi.org/10.1073/pnas.072033799] [PMID: 11917117]
[39]
Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca(2+)] in adult Alzheimer’s disease mice. J Neurochem 2008; 105(1): 262-71.
[PMID: 18021291]
[40]
Rojas G, Cárdenas AM, Fernández-Olivares P, et al. Effect of the knockdown of amyloid precursor protein on intracellular calcium increases in a neuronal cell line derived from the cerebral cortex of a trisomy 16 mouse. Exp Neurol 2008; 209(1): 234-42.
[http://dx.doi.org/10.1016/j.expneurol.2007.09.024] [PMID: 17976585]
[41]
Niu Y, Su Z, Zhao C, et al. Effect of amyloid beta on capacitive calcium entry in neural 2a cells. Brain Res Bull 2009; 78(4-5): 152-7.
[http://dx.doi.org/10.1016/j.brainresbull.2008.10.003] [PMID: 19000747]
[42]
Paula-Lima AC, Hidalgo C. Amyloid β-peptide oligomers, ryanodine receptor-mediated Ca(2+) release, and Wnt-5a/Ca(2+) signaling: Opposing roles in neuronal mitochondrial dynamics? Front Cell Neurosci 2013; 7: 120.
[http://dx.doi.org/10.3389/fncel.2013.00120] [PMID: 23908603]
[43]
Shtifman A, Ward CW, Laver DR, et al. Amyloid-β protein impairs Ca2+ release and contractility in skeletal muscle. Neurobiol Aging 2010; 31(12): 2080-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.11.003] [PMID: 19108934]
[44]
Liu J, Supnet C, Sun S, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin) 2014; 8(3): 230-42.
[http://dx.doi.org/10.4161/chan.27471] [PMID: 24476841]
[45]
des Georges A, Clarke OB, Zalk R, et al. Structural basis for gating and activation of RyR1. Cell 2016; 167(1): 145-57 e17.
[http://dx.doi.org/10.1016/j.cell.2016.08.075]
[46]
Peng W, Shen H, Wu J, et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 2016; 354(6310)
[http://dx.doi.org/10.1126/science.aah5324] [PMID: 27708056]
[47]
Denniss A, Dulhunty AF, Beard NA. Ryanodine receptor Ca2+ release channel post-translational modification: Central player in cardiac and skeletal muscle disease. Int J Biochem Cell Biol 2018; 101: 49-53.
[http://dx.doi.org/10.1016/j.biocel.2018.05.004] [PMID: 29775742]
[48]
Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 2007; 76: 367-85.
[http://dx.doi.org/10.1146/annurev.biochem.76.053105.094237] [PMID: 17506640]
[49]
Zhao M, Li P, Li X, Zhang L, Winkfein RJ, Chen SR. Molecular identification of the ryanodine receptor pore-forming segment. J Biol Chem 1999; 274(37): 25971-4.
[http://dx.doi.org/10.1074/jbc.274.37.25971] [PMID: 10473538]
[50]
Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 1986; 261(14): 6300-6.
[PMID: 2422165]
[51]
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2(11)a003996
[http://dx.doi.org/10.1101/cshperspect.a003996] [PMID: 20961976]
[52]
Balshaw DM, Yamaguchi N, Meissner G. Modulation of intracellular calcium-release channels by calmodulin. J Mem Biol 2002; 185(1): 1-8.
[http://dx.doi.org/10.1007/s00232-001-0111-4] [PMID: 11891559]
[53]
MacMillan D. FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700(1-3): 181-93.
[http://dx.doi.org/10.1016/j.ejphar.2012.12.029] [PMID: 23305836]
[54]
Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 2001; 114(Pt 17): 3167-76.
[PMID: 11590243]
[55]
Ruehr ML, Russell MA, Ferguson DG, et al. Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J Biol Chem 2003; 278(27): 24831-6.
[http://dx.doi.org/10.1074/jbc.M213279200] [PMID: 12709444]
[56]
Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 2000; 101(4): 365-76.
[http://dx.doi.org/10.1016/S0092-8674(00)80847-8] [PMID: 10830164]
[57]
Currie S. Cardiac ryanodine receptor phosphorylation by CaM Kinase II: Keeping the balance right. Front Biosci 2009; 14: 5134-56.
[http://dx.doi.org/10.2741/3591] [PMID: 19482609]
[58]
Allen PB, Ouimet CC, Greengard P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 1997; 94(18): 9956-61.
[http://dx.doi.org/10.1073/pnas.94.18.9956] [PMID: 9275233]
[59]
Valdivia HH. Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors. Trends Pharmacol Sci 1998; 19(12): 479-82.
[http://dx.doi.org/10.1016/S0165-6147(98)01269-3] [PMID: 9871407]
[60]
Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 1997; 272(37): 23389-97.
[http://dx.doi.org/10.1074/jbc.272.37.23389] [PMID: 9287354]
[61]
Györke I, Hester N, Jones LR, Györke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 2004; 86(4): 2121-8.
[http://dx.doi.org/10.1016/S0006-3495(04)74271-X] [PMID: 15041652]
[62]
Pouliquin P, Dulhunty AF. Homer and the ryanodine receptor. Eur Biophys J 2009; 39(1): 91-102.
[http://dx.doi.org/10.1007/s00249-009-0494-1] [PMID: 19513708]
[63]
Wehrens XH, Lehnart SE, Reiken SR, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 2004; 304(5668): 292-6.
[http://dx.doi.org/10.1126/science.1094301] [PMID: 15073377]
[64]
Andersson DC, Betzenhauser MJ, Reiken S, et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 2011; 14(2): 196-207.
[http://dx.doi.org/10.1016/j.cmet.2011.05.014] [PMID: 21803290]
[65]
Bellinger AM, Reiken S, Carlson C, et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009; 15(3): 325-30.
[http://dx.doi.org/10.1038/nm.1916] [PMID: 19198614]
[66]
Bellinger AM, Reiken S, Dura M, et al. Remodeling of ryanodine receptor complex causes “leaky” channels: A molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci USA 2008; 105(6): 2198-202.
[http://dx.doi.org/10.1073/pnas.0711074105] [PMID: 18268335]
[67]
Fauconnier J, Meli AC, Thireau J, et al. Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc Natl Acad Sci USA 2011; 108(32): 13258-63.
[http://dx.doi.org/10.1073/pnas.1100286108] [PMID: 21788490]
[68]
Liu X, Betzenhauser MJ, Reiken S, et al. Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 2012; 150(5): 1055-67.
[http://dx.doi.org/10.1016/j.cell.2012.06.052] [PMID: 22939628]
[69]
Lacampagne A, Liu X, Reiken S, et al. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer’s disease-like pathologies and cognitive deficits. Acta Neuropathol 2017; 134(5): 749-67.
[http://dx.doi.org/10.1007/s00401-017-1733-7] [PMID: 28631094]
[70]
Hohenegger M, Suko J. Phosphorylation of the purified cardiac ryanodine receptor by exogenous and endogenous protein kinases. Biochem J 1993; 296(Pt 2): 303-8.
[http://dx.doi.org/10.1042/bj2960303] [PMID: 8257417]
[71]
Yuchi Z, Lau K, Van Petegem F. Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure 2012; 20(7): 1201-11.
[http://dx.doi.org/10.1016/j.str.2012.04.015] [PMID: 22705209]
[72]
Reiken S, Lacampagne A, Zhou H, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: Defective regulation in heart failure. J Cell Biol 2003; 160(6): 919-28.
[http://dx.doi.org/10.1083/jcb.200211012] [PMID: 12629052]
[73]
Reiken S, Gaburjakova M, Guatimosim S, et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 2003; 278(1): 444-53.
[http://dx.doi.org/10.1074/jbc.M207028200] [PMID: 12401811]
[74]
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149(12): 1065-89.
[http://dx.doi.org/10.1085/jgp.201711878] [PMID: 29122978]
[75]
van Oort RJ, McCauley MD, Dixit SS, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 2010; 122(25): 2669-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.982298] [PMID: 21098440]
[76]
Petrotchenko EV, Yamaguchi N, Pasek DA, Borchers CH, Meissner G. Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of the skeletal muscle ryanodine receptor ion channel complex. Res Rep Biol 2011; 2011(2): 13-21.
[PMID: 21603587]
[77]
Sun J, Yamaguchi N, Xu L, Eu JP, Stamler JS, Meissner G. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 2008; 47(52): 13985-90.
[http://dx.doi.org/10.1021/bi8012627] [PMID: 19053230]
[78]
Kushnir A, Wajsberg B, Marks AR. Ryanodine receptor dysfunction in human disorders. Biochim Biophys Acta Mol Cell Res 2018; 1865(11 Pt B): 1687-97.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.011] [PMID: 30040966]
[79]
Kohno M, Yano M, Kobayashi S, et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol 2003; 284(3): H1035-42.
[http://dx.doi.org/10.1152/ajpheart.00722.2002] [PMID: 12433661]
[80]
Lehnart SE, Mongillo M, Bellinger A, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 2008; 118(6): 2230-45.
[http://dx.doi.org/10.1172/JCI35346] [PMID: 18483626]
[81]
Kushnir A, Marks AR. Ryanodine receptor patents. Recent Pat Biotechnol 2012; 6(3): 157-66.
[http://dx.doi.org/10.2174/1872208311206030157] [PMID: 23092431]
[82]
Shan J, Betzenhauser MJ, Kushnir A, et al. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J Clin Invest 2010; 120(12): 4375-87.
[http://dx.doi.org/10.1172/JCI37649] [PMID: 21099115]
[83]
Fauconnier J, Thireau J, Reiken S, et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 2010; 107(4): 1559-64.
[http://dx.doi.org/10.1073/pnas.0908540107] [PMID: 20080623]
[84]
Wehrens XH, Lehnart SE, Huang F, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003; 113(7): 829-40.
[http://dx.doi.org/10.1016/S0092-8674(03)00434-3] [PMID: 12837242]
[85]
Bussiere R, Lacampagne A, Reiken S, et al. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J Biol Chem 2017; 292(24): 10153-68.
[http://dx.doi.org/10.1074/jbc.M116.743070] [PMID: 28476886]
[86]
Hidalgo C, Carrasco MA. Redox control of brain calcium in health and disease. Antioxid Redox Signal 2011; 14(7): 1203-7.
[http://dx.doi.org/10.1089/ars.2010.3711] [PMID: 21050143]
[87]
Ghosh AP, Klocke BJ, Ballestas ME, Roth KA. CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 2012; 7(6)e39586
[http://dx.doi.org/10.1371/journal.pone.0039586] [PMID: 22761832]
[88]
von Bernhardi R, Eugenín J. Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16(9): 974-1031.
[http://dx.doi.org/10.1089/ars.2011.4082] [PMID: 22122400]
[89]
Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287(4): C817-33.
[http://dx.doi.org/10.1152/ajpcell.00139.2004] [PMID: 15355853]
[90]
Santulli G, Pagano G, Sardu C, et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 2015; 125(5): 1968-78.
[http://dx.doi.org/10.1172/JCI79273] [PMID: 25844899]
[91]
More JY, Bruna BA, Lobos PE, et al. calcium release mediated by redox-sensitive ryr2 channels has a central role in hippocampal structural plasticity and spatial memory. Antioxid Redox Signal 2018; 29(12): 1125-46.
[http://dx.doi.org/10.1089/ars.2017.7277] [PMID: 29357673]
[92]
SanMartín CD, Veloso P, Adasme T, et al. Ryr2-mediated ca2+ release and mitochondrial ROS generation partake in the synaptic dysfunction caused by amyloid β peptide oligomers. Front Mol Neurosci 2017; 10: 115.
[http://dx.doi.org/10.3389/fnmol.2017.00115] [PMID: 28487634]
[93]
More J, Galusso N, Veloso P, et al. N-acetylcysteine prevents the spatial memory deficits and the redox-dependent RyR2 decrease displayed by an Alzheimer’s disease rat model. Front Aging Neurosci 2018; 10: 399.
[http://dx.doi.org/10.3389/fnagi.2018.00399] [PMID: 30574085]
[94]
Yu JT, Wang ND, Ma T, Jiang H, Guan J, Tan L. Roles of β-adrenergic receptors in Alzheimer’s disease: implications for novel therapeutics. Brain Res Bull 2011; 84(2): 111-7.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.004] [PMID: 21129453]
[95]
Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, Unnerstall JR. Adrenergic receptors in aging and Alzheimer’s disease: Increased beta 2-receptors in prefrontal cortex and hippocampus. J Neurochem 1989; 53(6): 1772-81.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09242.x] [PMID: 2553864]
[96]
Echeverria V, Ducatenzeiler A, Chen CH, Cuello AC. Endogenous beta-amyloid peptide synthesis modulates cAMP response element-regulated gene expression in PC12 cells. Neuroscience 2005; 135(4): 1193-202.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.057] [PMID: 16181736]
[97]
Igbavboa U, Johnson-Anuna LN, Rossello X, Butterick TA, Sun GY, Wood WG. Amyloid beta-protein1-42 increases cAMP and apolipoprotein E levels which are inhibited by beta1 and beta2-adrenergic receptor antagonists in mouse primary astrocytes. Neuroscience 2006; 142(3): 655-60.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.056] [PMID: 16904834]
[98]
Prapong T, Uemura E, Hsu WH. G protein and cAMP-dependent protein kinase mediate amyloid beta-peptide inhibition of neuronal glucose uptake. Exp Neurol 2001; 167(1): 59-64.
[http://dx.doi.org/10.1006/exnr.2000.7519] [PMID: 11161593]
[99]
Palavicini JP, Wang H, Bianchi E, et al. RanBP9 aggravates synaptic damage in the mouse brain and is inversely correlated to spinophilin levels in Alzheimer’s brain synaptosomes. Cell Death Dis 2013; 4(6)e667
[http://dx.doi.org/10.1038/cddis.2013.183] [PMID: 23764848]
[100]
Marambaud P, Ancolio K, Alves da Costa C, Checler F. Effect of protein kinase A inhibitors on the production of Abeta40 and Abeta42 by human cells expressing normal and Alzheimer’s disease-linked mutated betaAPP and presenilin 1. Br J Pharmacol 1999; 126(5): 1186-90.
[http://dx.doi.org/10.1038/sj.bjp.0702406] [PMID: 10205007]
[101]
Su Y, Ryder J, Ni B. Inhibition of Abeta production and APP maturation by a specific PKA inhibitor. FEBS Lett 2003; 546(2-3): 407-10.
[http://dx.doi.org/10.1016/S0014-5793(03)00645-8] [PMID: 12832078]
[102]
Rosenberg PB, Mielke MM, Tschanz J, et al. Effects of cardiovascular medications on rate of functional decline in Alzheimer disease. Am J Geriatr Psychiatry 2008; 16(11): 883-92.
[http://dx.doi.org/10.1097/JGP.0b013e318181276a] [PMID: 18978249]
[103]
Alberdi E, Sánchez-Gómez MV, Cavaliere F, et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 2010; 47(3): 264-72.
[http://dx.doi.org/10.1016/j.ceca.2009.12.010] [PMID: 20061018]
[104]
Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 2010; 23(4): 213-27.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[105]
Branca C, Wisely EV, Hartman LK, Caccamo A, Oddo S. Administration of a selective β2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer’s disease. Neurobiol Aging 2014; 35(12): 2726-35.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.011] [PMID: 25034342]
[106]
Dang V, Medina B, Das D, et al. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 2014; 75(3): 179-88.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.024] [PMID: 23827853]
[107]
Alberdi E, Wyssenbach A, Alberdi M, et al. Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 2013; 12(2): 292-302.
[http://dx.doi.org/10.1111/acel.12054] [PMID: 23409977]
[108]
Muresan Z, Muresan V. The amyloid-beta precursor protein is phosphorylated via distinct pathways during differentiation, mitosis, stress, and degeneration. Mol Biol Cell 2007; 18(10): 3835-44.
[http://dx.doi.org/10.1091/mbc.e06-07-0625] [PMID: 17634293]
[109]
Hayley M, Perspicace S, Schulthess T, Seelig J. Calcium enhances the proteolytic activity of BACE1: An in vitro biophysical and biochemical characterization of the BACE1-calcium interaction. Biochim Biophys Acta 2009; 1788(9): 1933-8.
[http://dx.doi.org/10.1016/j.bbamem.2009.05.015] [PMID: 19486882]
[110]
Ho M, Hoke DE, Chua YJ, et al. Effect of metal chelators on γ-secretase indicates that calcium and magnesium ions facilitate cleavage of alzheimer amyloid precursor substrate. Int J Alzheimers Dis 2010; 2011: 950932.
[PMID: 21253550]
[111]
van der Harg JM, Eggels L, Bangel FN, et al. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation. Neurobiol Dis 2017; 103: 163-73.
[http://dx.doi.org/10.1016/j.nbd.2017.04.005] [PMID: 28400135]
[112]
Iversen LL, Rossor MN, Reynolds GP, et al. Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 1983; 39(1): 95-100.
[http://dx.doi.org/10.1016/0304-3940(83)90171-4] [PMID: 6633940]
[113]
Carlyle BC, Nairn AC, Wang M, et al. cAMP-PKA phosphorylation of tau confers risk for degeneration in aging association cortex. Proc Natl Acad Sci USA 2014; 111(13): 5036-41.
[http://dx.doi.org/10.1073/pnas.1322360111] [PMID: 24707050]
[114]
Paspalas CD, Carlyle BC, Leslie S, et al. The aged rhesus macaque manifests Braak stage III/IV Alzheimer’s-like pathology. Alzheimers Dement 2018; 14(5): 680-91.
[http://dx.doi.org/10.1016/j.jalz.2017.11.005] [PMID: 29241829]
[115]
Chakroborty S, Hill ES, Christian DT, et al. Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 7.
[http://dx.doi.org/10.1186/s13024-019-0307-7] [PMID: 30670054]
[116]
Reyes M, Stanton PK. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 1996; 16(19): 5951-60.
[http://dx.doi.org/10.1523/JNEUROSCI.16-19-05951.1996] [PMID: 8815877]
[117]
Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001; 29(1): 197-208.
[http://dx.doi.org/10.1016/S0896-6273(01)00190-8] [PMID: 11182091]
[118]
Caillard O, Ben-Ari Y, Gaïarsa JL. Activation of presynaptic and postsynaptic ryanodine-sensitive calcium stores is required for the induction of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J Neurosci 2000; 20(17): RC94.
[http://dx.doi.org/10.1523/JNEUROSCI.20-17-j0002.2000] [PMID: 10952733]
[119]
Etkin A, Alarcón JM, Weisberg SP, et al. A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 2006; 50(1): 127-43.
[http://dx.doi.org/10.1016/j.neuron.2006.03.013] [PMID: 16600861]
[120]
Mackay JP, Nassrallah WB, Raymond LA. Cause or compensation?-Altered neuronal Ca2+ handling in Huntington’s disease. CNS Neurosci Ther 2018; 24(4): 301-10.
[http://dx.doi.org/10.1111/cns.12817] [PMID: 29427371]
[121]
Calì T, Ottolini D, Brini M. Calcium signaling in Parkinson’s disease. Cell Tissue Res 2014; 357(2): 439-54.
[http://dx.doi.org/10.1007/s00441-014-1866-0] [PMID: 24781149]
[122]
Wehrens XH, Marks AR. Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 2004; 3(7): 565-73.
[http://dx.doi.org/10.1038/nrd1440] [PMID: 15232578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy