Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates

Author(s): M. Asif , M. Usman , Shahid Ayub , Sahar Farhat , Zilli Huma, Jawad Ahmed, Mohammad A. Kamal, Deema Hussein , Aneela Javed * and Ishaq Khan *

Volume 26 , Issue 37 , 2020

Page: [4747 - 4763] Pages: 17

DOI: 10.2174/1381612826666200224112141

Price: $65

Abstract

Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics’ influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide’s in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.

Keywords: CNS tumors, multidrug resistance, ABC transporters, ABCB1, ABCG2, ABCC1, ABCC3, inhibitors, elacridar, tariquidar, clinical trials.

[1]
McGuire S. World cancer report 2014.Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Oxford University Press 2016.
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[3]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev 2015.
[PMID: 26667886]
[4]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332 ] [PMID: 26742998]
[5]
Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 2018; 35(4): 309-18.
[http://dx.doi.org/10.1007/s10585-018-9903-0 ] [PMID: 29799080]
[6]
Wu J, Kim C, Bai HX, et al. Comparison of Radiation Therapy Alone and Chemotherapy Alone for Low-Grade Gliomas without Surgical Resection. World Neurosurg 2019; 122: e108-20.
[http://dx.doi.org/10.1016/j.wneu.2018.09.109 ] [PMID: 30261385]
[7]
Gardelli C, Sozzi G, Roz L, Bertolini G. Cancer Stem Cells in Lung Cancer: Roots of Drug Resistance and Targets for Novel Therapeutic StrategiesCancer Stem Cell Resistance to Targeted Therapy. Springer 2019; pp. 51-92.
[8]
Sadava DE, Hillis DM, Heller HC, Berenbaum M. Life: the science of biology. Macmillan 2009.
[9]
Cooper MG. The cell: a molecular approach ASM Press. Sunderland Mass. Washington, D.C.: Sinauer Associates 2009.
[10]
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Ion channels and the electrical properties of membranes 2002.
[11]
Wang F, Feng XC, Li YM, Yang H, Ma TH. Aquaporins as potential drug targets. Acta Pharmacol Sin 2006; 27(4): 395-401.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00318.x ] [PMID: 16539837]
[12]
Yu FH, Catterall WA. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004; 2004(253): re15.
[PMID: 15467096]
[13]
Hediger MA, Romero MF, Peng J-B, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 2004; 447(5): 465-8.
[http://dx.doi.org/10.1007/s00424-003-1192-y ] [PMID: 14624363]
[14]
Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat 2003; 6(2): 71-84.
[http://dx.doi.org/10.1016/S1368-7646(03)00005-0 ] [PMID: 12729805]
[15]
Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37(8): 10021-39.
[http://dx.doi.org/10.1007/s13277-016-5059-1 ] [PMID: 27155851]
[16]
Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 1987; 84(1): 265-9.
[http://dx.doi.org/10.1073/pnas.84.1.265 ] [PMID: 2432605]
[17]
Gottesman MM, Pastan IH. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) Gene. JNCI. J Natl Cancer Inst 2015; 107(9): 107.
[http://dx.doi.org/10.1093/jnci/djv222 ] [PMID: 26286731]
[18]
Gillet J-P, Gottesman MM. Mechanisms of multidrug resistance in cancer Multi-drug resistance in cancer 2010; 47-76.
[http://dx.doi.org/10.1007/978-1-60761-416-6_4]
[19]
He Y, Li X, Ma J, Ni G, Yang G, Zhou S. Programmable Codelivery of Doxorubicin and Apatinib Using an Implantable Hierarchical-Structured Fiber Device for Overcoming Cancer Multidrug Resistance. Small 2019; 15(8) e1804397
[http://dx.doi.org/10.1002/smll.201804397 ] [PMID: 30677228]
[20]
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53: 615-27.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929 ] [PMID: 11818492]
[21]
Leach MO. Introduction to in vivo MRS of cancer: new perspectives and open problems. Anticancer Res 1996; 16(3B): 1503-14.
[PMID: 8694519]
[22]
Merchant TE, Diamantis PM, Lauwers G, et al. Characterization of malignant colon tumors with 31P nuclear magnetic resonance phospholipid and phosphatic metabolite profiles. Cancer 1995; 76(10): 1715-23
[http://dx.doi.org/10.1002/1097-0142(19951115)76:10<1715:AID-CNCR2820761007>3.0.CO;2-D ] [PMID: 8625039]
[23]
Di Nicolantonio F, Mercer SJ, Knight LA, et al. Cancer cell adaptation to chemotherapy. BMC Cancer 2005; 5: 78.
[http://dx.doi.org/10.1186/1471-2407-5-78 ] [PMID: 16026610]
[24]
Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005; 11(11): 4182-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2245 ] [PMID: 15930355]
[25]
Lasota J, Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). In: Seminars in diagnostic pathology. Elsevier 2006; pp. 91-102.
[26]
Mitiushkina NV, Iyevleva AG, Poltoratskiy AN, et al. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol 2013; 121(7): 370-6.
[http://dx.doi.org/10.1002/cncy.21281 ] [PMID: 23408463]
[27]
Kim S, Kim TM, Kim D-W, et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J Thorac Oncol 2013; 8(4): 415-22.
[http://dx.doi.org/10.1097/JTO.0b013e318283dcc0 ] [PMID: 23344087]
[28]
Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123-30.
[http://dx.doi.org/10.1017/S1461145710000805 ] [PMID: 20633320]
[29]
O’Brien ML, Tew KD. Glutathione and related enzymes in multidrug resistance. Eur J Cancer 1996; 32A(6): 967-78.
[http://dx.doi.org/10.1016/0959-8049(96)00051-2 ] [PMID: 8763337]
[30]
Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009; 3(3): 281-90.
[http://dx.doi.org/10.1186/1479-7364-3-3-281 ] [PMID: 19403462]
[31]
Parker KA, Glaysher S, Polak M, et al. The molecular basis of the chemosensitivity of metastatic cutaneous melanoma to chemotherapyJournal of clinical pathology 2010 jcp 2010080119
[http://dx.doi.org/10.1136/jcp.2010.080119]
[32]
Glaysher S, Gabriel FG, Johnson P, et al. NHS Collaborative Research Programme for Predictive Oncology. Molecular basis of chemosensitivity of platinum pre-treated ovarian cancer to chemotherapy. British journal of cancer 2010; 103(5): 656-62.
[http://dx.doi.org/10.1038/sj.bjc.6605817 ] [PMID: 20700122]
[33]
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39-85.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723 ] [PMID: 15189136]
[34]
Xiao Z, Chen Z, Gunasekera AH, et al. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 2003; 278(24): 21767-73.
[http://dx.doi.org/10.1074/jbc.M300229200 ] [PMID: 12676925]
[35]
Walworth NC, Bernards R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 1996; 271(5247): 353-6.
[http://dx.doi.org/10.1126/science.271.5247.353 ] [PMID: 8553071]
[36]
Shah MA, Schwartz GK. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 2001; 7(8): 2168-81.
[PMID: 11489790]
[37]
Węsierska-Gądek J, Mauritz M, Mitulovic G, Cupo M. Differential potential of pharmacological PARP inhibitors for inhibiting cell proliferation and inducing apoptosis in human breast cancer cells. J Cell Biochem 2015; 116(12): 2824-39.
[http://dx.doi.org/10.1002/jcb.25229 ] [PMID: 25981734]
[38]
Tewari KS, Eskander RN, Monk BJ. Development of olaparib for BRCA-deficient recurrent epithelial ovarian cancer. Clinical Cancer Research 2015. clincanres. 0088.2015..
[39]
Pflaum J, Schlosser S, Müller M. p53 family and cellular stress responses in cancer. Front Oncol 2014; 4: 285.
[http://dx.doi.org/10.3389/fonc.2014.00285 ] [PMID: 25374842]
[40]
Wang W, Rastinejad F, El-Deiry WS. Restoring p53-dependent tumor suppression. Cancer Biol Ther 2003; 2(4)(Suppl. 1): S55-63.
[PMID: 14508081]
[41]
Pluquet O, Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 2001; 174(1): 1-15.
[http://dx.doi.org/10.1016/S0304-3835(01)00698-X ] [PMID: 11675147]
[42]
Chang EH, Pirollo KF, Bouker KB. Tp53 gene therapy: a key to modulating resistance to anticancer therapies? Mol Med Today 2000; 6(9): 358-64.
[http://dx.doi.org/10.1016/S1357-4310(00)01767-6 ] [PMID: 10954869]
[43]
Schaich M, Soucek S, Thiede C, Ehninger G, Illmer T. SHG AML96 Study Group. MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 2005; 128(3): 324-32.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05319.x ] [PMID: 15667534]
[44]
Hanada S, Maeshima A, Matsuno Y, et al. Expression profile of early lung adenocarcinoma: identification of MRP3 as a molecular marker for early progression. J Pathol 2008; 216: 75-82.
[http://dx.doi.org/10.1002/path.2383]
[45]
Weinstein RS, Jakate SM, Dominguez JM, et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res 1991; 51(10): 2720-6.
[PMID: 1673639]
[46]
Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M. The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate 2016; 76(5): 434-44.
[http://dx.doi.org/10.1002/pros.23137 ] [PMID: 26708806]
[47]
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452-64.
[http://dx.doi.org/10.1038/s41568-018-0005-8 ] [PMID: 29643473]
[48]
Cole SP. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 2014; 54: 95-117.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135959 ] [PMID: 24050699]
[49]
Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47): 7340-58.
[http://dx.doi.org/10.1038/sj.onc.1206938 ] [PMID: 14576842]
[50]
Bartholomae S, Gruhn B, Debatin KM, et al. Coexpression of Multiple ABC-Transporters is Strongly Associated with Treatment Response in Childhood Acute Myeloid Leukemia. Pediatr Blood Cancer 2016; 63(2): 242-7.
[http://dx.doi.org/10.1002/pbc.25785 ] [PMID: 26512967]
[51]
Tsunedomi R, Iizuka N, Yoshimura K, et al. ABCB6 mRNA and DNA methylation levels serve as useful biomarkers for prediction of early intrahepatic recurrence of hepatitis C virus-related hepatocellular carcinoma. Int J Oncol 2013; 42(5): 1551-9.
[http://dx.doi.org/10.3892/ijo.2013.1854 ] [PMID: 23483087]
[52]
Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012; 27(2): 187-96.
[http://dx.doi.org/10.1093/mutage/ger075 ] [PMID: 22294766]
[53]
Park S, Shimizu C, Shimoyama T, et al. Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 2006; 99(1): 9-17.
[http://dx.doi.org/10.1007/s10549-006-9175-2 ] [PMID: 16752223]
[54]
Hlaváč V, Brynychová V, Václavíková R, et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics 2013; 14(5): 515-29.
[http://dx.doi.org/10.2217/pgs.13.26 ] [PMID: 23556449]
[55]
Mohelnikova-Duchonova B, Brynychova V, Oliverius M, et al. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas 2013; 42(4): 707-16.
[http://dx.doi.org/10.1097/MPA.0b013e318279b861 ] [PMID: 23462326]
[56]
Barbet R, Peiffer I, Hutchins JR, Hatzfeld A, Garrido E, Hatzfeld JA. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle 2012; 11(8): 1611-20.
[http://dx.doi.org/10.4161/cc.20023 ] [PMID: 22456339]
[57]
Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S. Hypoxia-induced dedifferentiation of tumor cells-a mechanism behind heterogeneity and aggressiveness of solid tumorsSeminars in cell & developmental biology. Elsevier 2005; pp. 554-63.
[http://dx.doi.org/10.1016/j.semcdb.2005.03.007]
[58]
Vander Borght S, Komuta M, Libbrecht L, et al. Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int 2008; 28(10): 1370-80.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01889.x ] [PMID: 19055643]
[59]
Lu L, Ju F, Zhao H, Ma X. MicroRNA-134 modulates resistance to doxorubicin in human breast cancer cells by downregulating ABCC1. Biotechnol Lett 2015; 37(12): 2387-94.
[http://dx.doi.org/10.1007/s10529-015-1941-y ] [PMID: 26318721]
[60]
Oevermann L, Scheitz J, Starke K, et al. Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int J Cancer 2009; 124(10): 2303-11.
[http://dx.doi.org/10.1002/ijc.24207 ] [PMID: 19142964]
[61]
Krizkova V, Dubova M, Susova S, et al. Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother Pharmacol 2016; 78(3): 595-603.
[http://dx.doi.org/10.1007/s00280-016-3114-7 ] [PMID: 27468921]
[62]
Tivnan A, Zakaria Z, O’Leary C, et al. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci 2015; 9: 218.
[http://dx.doi.org/10.3389/fnins.2015.00218 ] [PMID: 26136652]
[63]
Lin F, de Gooijer MC, Roig EM, et al. ABCB1, ABCG2 and PTEN determine the response of glioblastoma to temozolomide and ABT- 888 therapy. Clinical Cancer Research, 2014: clincanres 2014. 0084.
[64]
Dréan A, Rosenberg S, Lejeune F-X, et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma. J Neurooncol 2018; 138(3): 479-86.
[http://dx.doi.org/10.1007/s11060-018-2819-3 ] [PMID: 29520610]
[65]
Malmström A, Hallbeck M, Fomichov V, et al. MTR-09 ABCB1 as predictive marker for poor survival in patients with glioblastoma treated with radiotherapy and concomitant and adjuvant temozolomide. Neuro-oncol 2015; 17: v126-6.
[http://dx.doi.org/10.1093/neuonc/nov219.09]
[66]
Zhang Y, Wang S-X, Ma J-W, et al. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J Neurooncol 2015; 121(1): 41-52.
[http://dx.doi.org/10.1007/s11060-014-1604-1 ] [PMID: 25173233]
[67]
Mittapalli RK, Chung AH, Parrish KE, et al. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model. Mol Cancer Ther 2016; 15(5): 819-29.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0093 ] [PMID: 26883271]
[68]
de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol 2007; 47: 323-55.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105237 ] [PMID: 16961459]
[69]
Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 2010; 334(1): 147-55.
[http://dx.doi.org/10.1124/jpet.110.167601 ] [PMID: 20421331]
[70]
Muldoon LL, Soussain C, Jahnke K, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25(16): 2295-305.
[http://dx.doi.org/10.1200/JCO.2006.09.9861 ] [PMID: 17538176]
[71]
de Vries NA, Beijnen JH, Boogerd W, van Tellingen O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 2006; 6(8): 1199-209.
[http://dx.doi.org/10.1586/14737175.6.8.1199 ] [PMID: 16893347]
[72]
McGregor JM, Doolittle ND, Youngers E, Bell SD, Neuwelt EA. Pharmacokinetics of Drug Delivery Past the Blood-Brain BarrierNervous System Drug Delivery. Elsevier 2019; pp. 57-72.
[http://dx.doi.org/10.1016/B978-0-12-813997-4.00004-9]
[73]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030 ] [PMID: 19664713]
[74]
Goutal S, Gerstenmayer M, Auvity S, et al. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292: 210-20.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.009 ] [PMID: 30415015]
[75]
Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 2009; 65(11): 1063-70.
[http://dx.doi.org/10.1007/s00228-009-0714-8 ] [PMID: 19727692]
[76]
Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007; 13(6): 1663-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2854 ] [PMID: 17363519]
[77]
de Gooijer M, Kemper E, Buil L, Buckle T, Beijnen J, van Tellingen O. abc transporters restrict the brain penetration and intacranial efficacy of anticancer agents even when blood-brain barrier integrity is lost. MOUNTING AN ATTACK ON THE GLIOBLASTOMA TRIAD 2018; 63.
[78]
Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77(4): 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7 ] [PMID: 7910522]
[79]
Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance 2008.
[http://dx.doi.org/10.2217/14622416.9.1.105]
[80]
Bates SE, Mickley LA, Chen YN, et al. Expression of a drug resistance gene in human neuroblastoma cell lines: modulation by retinoic acid-induced differentiation. Mol Cell Biol 1989; 9(10): 4337-44.
[http://dx.doi.org/10.1128/MCB.9.10.4337 ] [PMID: 2573830]
[81]
de Gooijer MC, Buil LCM, Çitirikkaya CH, Hermans J, Beijnen JH, van Tellingen O. Abcb1 attenuates the brain penetration of the parp inhibitor azd2461. Mol Pharm 2018; 15(11): 5236-43.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00742 ] [PMID: 30252484]
[82]
de Gooijer MC, Buil LCM, Beijnen JH, van Tellingen O. ATP-binding cassette transporters limit the brain penetration of Wee1 inhibitors. Invest New Drugs 2018; 36(3): 380-7.
[http://dx.doi.org/10.1007/s10637-017-0539-8 ] [PMID: 29147815]
[83]
Brandes AA, Franceschi E, Tosoni A, Hegi ME, Stupp R. Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin Cancer Res 2008; 14(4): 957-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1810 ] [PMID: 18281526]
[84]
Arteaga CL, Johnson DH. Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol 2001; 13(6): 491-8.
[http://dx.doi.org/10.1097/00001622-200111000-00012 ] [PMID: 11673690]
[85]
Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22(1): 133-42.
[http://dx.doi.org/10.1200/JCO.2004.08.110 ] [PMID: 14638850]
[86]
Pazinato J, Cruz OM, Naidek KP, et al. Cytotoxicity of η6-areneruthenium-based molecules to glioblastoma cells and their recognition by multidrug ABC transporters. Eur J Med Chem 2018; 148: 165-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.026 ] [PMID: 29459276]
[87]
Khan I, Baeesa S, Bangash M, et al. Pleomorphism and drug resistant cancer stem cells are characteristic of aggressive primary meningioma cell lines. Cancer Cell Int 2017; 17: 72.
[http://dx.doi.org/10.1186/s12935-017-0441-7 ] [PMID: 28736504]
[88]
Perry A, Cai DX, Scheithauer BW, et al. Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 2000; 59(10): 872-9.
[http://dx.doi.org/10.1093/jnen/59.10.872 ] [PMID: 11079777]
[89]
Kimura Y, Saya H, Nakao M. Calpain-dependent proteolysis of NF2 protein: involvement in schwannomas and meningiomas. Neuropathology 2000; 20(3): 153-60.
[http://dx.doi.org/10.1046/j.1440-1789.2000.00326.x ] [PMID: 11132929]
[90]
Demeule M, Shedid D, Beaulieu E, et al. Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer 2001; 93(1): 62-6.
[http://dx.doi.org/10.1002/ijc.1306 ] [PMID: 11391622]
[91]
Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123(4): 465-72.
[http://dx.doi.org/10.1007/s00401-011-0922-z ] [PMID: 22134537]
[92]
Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007; 43(5): 935-46.
[http://dx.doi.org/10.1016/j.ejca.2007.01.017 ] [PMID: 17320377]
[93]
Jiang Y, He Y, Li H, et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer 2012; 15(4): 440-50.
[http://dx.doi.org/10.1007/s10120-012-0140-y ] [PMID: 22395309]
[94]
Emery IF, Gopalan A, Wood S, et al. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol 2017; 133(1): 47-57.
[http://dx.doi.org/10.1007/s11060-017-2422-z ] [PMID: 28432589]
[95]
Wee B, Pietras A, Ozawa T, et al. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells. Sci Rep 2016; 6: 25956.
[http://dx.doi.org/10.1038/srep25956 ] [PMID: 27456282]
[96]
Ingram WJ, Crowther LM, Little EB, et al. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Exp Hematol Oncol 2013; 2(1): 26.
[http://dx.doi.org/10.1186/2162-3619-2-26 ] [PMID: 24219920]
[97]
Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol 2014; 11(12): 714-22.
[http://dx.doi.org/10.1038/nrclinonc.2014.181 ] [PMID: 25348790]
[98]
Northcott PA, Shih DJ, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012; 488(7409): 49-56.
[http://dx.doi.org/10.1038/nature11327 ] [PMID: 22832581]
[99]
Morfouace M, Cheepala SB, Jackson S, et al. ABCG2 transporter expression impacts Group3 Medulloblastoma response to chemotherapy. Cancer Res 2015; 75(18): 3879-89.
[100]
de Vries M, van Tellingen O, van der Mey AGL, Bunt AMG, Bruijn IB, Hogendoorn PCW. BCRP expression in schwannoma, plexiform neurofibroma and MPNST. Oncotarget 2017; 8(51): 88751-9.
[http://dx.doi.org/10.18632/oncotarget.21075 ] [PMID: 29179472]
[101]
Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028-34.
[http://dx.doi.org/10.1038/nm0901-1028 ] [PMID: 11533706]
[102]
Freitag D, McLean AL, Simon M, et al. NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Mol Carcinog 2017; 56(8): 1953-64.
[http://dx.doi.org/10.1002/mc.22653 ] [PMID: 28345785]
[103]
Benyahia B, Huguet S, Declèves X, et al. Multidrug resistance-associated protein MRP1 expression in human gliomas: chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neurooncol 2004; 66(1-2): 65-70.
[http://dx.doi.org/10.1023/B:NEON.0000013484.73208.a4 ] [PMID: 15015771]
[104]
Nies AT, Jedlitschky G, König J, et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004; 129(2): 349-60.
[http://dx.doi.org/10.1016/j.neuroscience.2004.07.051 ] [PMID: 15501592]
[105]
Veringa SJ, Biesmans D, van Vuurden DG, et al. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One 2013; 8(4) e61512
[http://dx.doi.org/10.1371/journal.pone.0061512 ] [PMID: 23637844]
[106]
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3(3): 203-16.
[http://dx.doi.org/10.1038/nrc1014 ] [PMID: 12612655]
[107]
Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455(7215): 971-4.
[http://dx.doi.org/10.1038/nature07399 ] [PMID: 18923524]
[108]
George RE, Sanda T, Hanna M, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008; 455(7215): 975-8.
[http://dx.doi.org/10.1038/nature07397 ] [PMID: 18923525]
[109]
Janoueix-Lerosey I, Lequin D, Brugières L, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455(7215): 967-70.
[http://dx.doi.org/10.1038/nature07398 ] [PMID: 18923523]
[110]
Saito S, Iida A, Sekine A, et al. Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C (ABCC/MRP/CFTR. J Hum Genet 2002; 47(4): 147-71.
[http://dx.doi.org/10.1007/s100380200018 ] [PMID: 12166651]
[111]
Pajic M, Murray J, Marshall GM, Cole SP, Norris MD, Haber M. ABCC1 G2012T single nucleotide polymorphism is associated with patient outcome in primary neuroblastoma and altered stability of the ABCC1 gene transcript. Pharmacogenet Genomics 2011; 21(5): 270-9.
[http://dx.doi.org/10.1097/FPC.0b013e328343dd5f ] [PMID: 21317832]
[112]
Punjaruk W. The contribution of drug resistant cancer stem cells to paediatric brain tumours. University of Nottingham 2010.
[113]
Kuan C-T, Wakiya K, Herndon JE II, et al. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC Cancer 2010; 10: 468.
[http://dx.doi.org/10.1186/1471-2407-10-468 ] [PMID: 20809959]
[114]
Waldmann TA. Monoclonal antibodies in diagnosis and therapy. Science 1991; 252(5013): 1657-62.
[http://dx.doi.org/10.1126/science.2047874 ] [PMID: 2047874]
[115]
Campoli M, Ferris R, Ferrone S, Wang X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies Clinical Cancer Research 2009; 1078-0432. CCR-09-2345..
[116]
Boskovitz A, Wikstrand CJ, Kuan C-T, Zalutsky MR, Reardon DA, Bigner DD. Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 2004; 4(9): 1453-71.
[http://dx.doi.org/10.1517/14712598.4.9.1453 ] [PMID: 15335313]
[117]
Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994; 91(6): 2076-80.
[http://dx.doi.org/10.1073/pnas.91.6.2076 ] [PMID: 8134351]
[118]
Sun Y-L, Patel A, Kumar P, Chen Z-S. Role of ABC transporters in cancer chemotherapy. Chin J Cancer 2012; 31(2): 51-7.
[http://dx.doi.org/10.5732/cjc.011.10466 ] [PMID: 22257384]
[119]
Choi C-H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005; 5: 30.
[http://dx.doi.org/10.1186/1475-2867-5-30 ] [PMID: 16202168]
[120]
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13(12): 1501-12.
[http://dx.doi.org/10.1101/gad.13.12.1501 ] [PMID: 10385618]
[121]
Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266(5192): 1821-8.
[http://dx.doi.org/10.1126/science.7997877 ] [PMID: 7997877]
[122]
Harper JW, Elledge SJ. Cdk inhibitors in development and cancer. Curr Opin Genet Dev 1996; 6(1): 56-64.
[http://dx.doi.org/10.1016/S0959-437X(96)90011-8 ] [PMID: 8791491]
[123]
Sutherland RL, Musgrove EA. Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models. Breast Cancer Res 2002; 4(1): 14-7.
[http://dx.doi.org/10.1186/bcr411 ] [PMID: 11879554]
[124]
Buckley MF, Sweeney KJ, Hamilton JA, et al. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8(8): 2127-33.
[PMID: 8336939]
[125]
Chen Y-NP, Sharma SK, Ramsey TM, et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA 1999; 96(8): 4325-9.
[http://dx.doi.org/10.1073/pnas.96.8.4325 ] [PMID: 10200261]
[126]
Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res 2001; 478(1-2): 23-43.
[http://dx.doi.org/10.1016/S0027-5107(01)00141-5 ] [PMID: 11406167]
[127]
Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265-79.
[http://dx.doi.org/10.1038/sj.onc.1206933 ] [PMID: 14576837]
[128]
Mandic A, Viktorsson K, Heiden T, Hansson J, Shoshan MC. The MEK1 inhibitor PD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res 2001; 11(1): 11-9.
[http://dx.doi.org/10.1097/00008390-200102000-00002 ] [PMID: 11254111]
[129]
Vulevic B, Chen Z, Boyd JT, et al. Cloning and characterization of human adenosine 5′-triphosphate-binding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res 2001; 61(8): 3339-47.
[PMID: 11309290]
[130]
Sandler A, Gordon M, De Alwis DP, et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004; 10(10): 3265-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0644 ] [PMID: 15161679]
[131]
Lagas JS, Fan L, Wagenaar E, et al. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin Cancer Res 2010; 16(1): 130-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1321 ] [PMID: 20028753]
[132]
Furman WL, McGregor LM, McCarville MB, et al. A single-arm pilot phase II study of gefitinib and irinotecan in children with newly diagnosed high-risk neuroblastoma. Invest New Drugs 2012; 30(4): 1660-70.
[http://dx.doi.org/10.1007/s10637-011-9724-3 ] [PMID: 21796439]
[133]
Ye ZW, Camus S, Augustijns P, Annaert P. Interaction of eight HIV protease inhibitors with the canalicular efflux transporter ABCC2 (MRP2) in sandwich-cultured rat and human hepatocytes. Biopharm Drug Dispos 2010; 31(2-3): 178-88.
[http://dx.doi.org/10.1002/bdd.701 ] [PMID: 20238377]
[134]
Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 2003; 89(10): 1971-8.
[http://dx.doi.org/10.1038/sj.bjc.6601370 ] [PMID: 14612912]
[135]
Garner WJ, Franklin A, Rothman J. Compositions to improve the therapeutic benefit of bisantrene and analogs and derivatives thereof.Google Patents. 2018. ed.^eds.
[136]
Robey RW, Medina-Pérez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7(1): 145-52.
[PMID: 11205902]
[137]
Vlaming ML, van Esch A, Pala Z, et al. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7- hydroxymethotrexate in vivo. Molecular cancer therapeutics 2009; 1535-7163. MCT-09-0668.
[138]
Gromicho M, Dinis J, Magalhães M, et al. Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1. Leuk Lymphoma 2011; 52(10): 1980-90.
[http://dx.doi.org/10.3109/10428194.2011.584005 ] [PMID: 21663515]
[139]
Guminski AD, Balleine RL, Chiew Y-E, et al. MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma. Gynecol Oncol 2006; 100(2): 239-46.
[http://dx.doi.org/10.1016/j.ygyno.2005.08.046 ] [PMID: 16213010]
[140]
Chen Z-S, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62(11): 3144-50.
[PMID: 12036927]
[141]
Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res 2005; 65(10): 4425-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2810 ] [PMID: 15899835]
[142]
Shen T, Kuang Y-H, Ashby CR Jr, et al. Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One 2009; 4(10) e7520
[http://dx.doi.org/10.1371/journal.pone.0007520 ] [PMID: 19841739]
[143]
Hopper-Borge E, Chen Z-S, Shchaveleva I, Belinsky MG, Kruh GD. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64(14): 4927-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3111 ] [PMID: 15256465]
[144]
Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 2004; 40(8): 1269-74.
[http://dx.doi.org/10.1016/j.ejca.2004.01.024 ] [PMID: 15110893]
[145]
Tsukamoto M, Sato S, Satake K, Miyake M, Nakagawa H. Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4. Int J Mol Sci 2017; 18(7): 1435.
[http://dx.doi.org/10.3390/ijms18071435 ] [PMID: 28677646]
[146]
Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11(4): 265-83.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7 ] [PMID: 11033070]
[147]
Vanhoefer U, Cao S, Harstrick A, Seeber S, Rustum YM. Comparative antitumor efficacy of docetaxel and paclitaxel in nude mice bearing human tumor xenografts that overexpress the multidrug resistance protein (MRP). Ann Oncol 1997; 8(12): 1221-8.
[http://dx.doi.org/10.1023/A:1008290406221 ] [PMID: 9496387]
[148]
Bates S, Kang M, Meadows B, et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer 2001; 92(6): 1577-90.
[http://dx.doi.org/10.1002/1097-0142(20010915)92:6<1577:AID-CNCR1484>3.0.CO;2-H ] [PMID: 11745237]
[149]
Twentyman PR, Bleehen NM. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur J Cancer 1991; 27(12): 1639-42.
[http://dx.doi.org/10.1016/0277-5379(91)90435-G ] [PMID: 1816768]
[150]
Malingré MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001; 84(1): 42-7.
[http://dx.doi.org/10.1054/bjoc.2000.1543 ] [PMID: 11139311]
[151]
Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000; 92(20): 1651-6.
[http://dx.doi.org/10.1093/jnci/92.20.1651 ] [PMID: 11036110]
[152]
Schuurhuis GJ, Broxterman HJ, Cervantes A, et al. Quantitative determination of factors contributing to doxorubicin resistance in multidrug-resistant cells. J Natl Cancer Inst 1989; 81(24): 1887-92.
[http://dx.doi.org/10.1093/jnci/81.24.1887 ] [PMID: 2574239]
[153]
Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999; 59(23): 5938-46.
[PMID: 10606239]
[154]
Kühnle M, Egger M, Müller C, et al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J Med Chem 2009; 52(4): 1190-7.
[http://dx.doi.org/10.1021/jm8013822 ] [PMID: 19170519]
[155]
Houghton PJ, Germain GS, Harwood FC, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 2004; 64(7): 2333-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3344 ] [PMID: 15059881]
[156]
Burger H, van Tol H, Brok M, et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 2005; 4(7): 747-52.
[http://dx.doi.org/10.4161/cbt.4.7.1826 ] [PMID: 15970668]
[157]
Malingré MM, Richel DJ, Beijnen JH, et al. Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol 2001; 19(4): 1160-6.
[http://dx.doi.org/10.1200/JCO.2001.19.4.1160 ] [PMID: 11181682]
[158]
Germann UA, Ford PJ, Shlyakhter D, Mason VS, Harding MW. Chemosensitization and drug accumulation effects of VX-710, verapamil, cyclosporin A, MS-209 and GF120918 in multidrug resistant HL60/ADR cells expressing the multidrug resistance-associated protein MRP. Anticancer Drugs 1997; 8(2): 141-55.
[http://dx.doi.org/10.1097/00001813-199702000-00005 ] [PMID: 9073310]
[159]
Qadir M, O’Loughlin KL, Fricke SM, et al. Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res 2005; 11(6): 2320-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1725 ] [PMID: 15788683]
[160]
Minderman H, O’Loughlin KL, Pendyala L, Baer MR. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 2004; 10(5): 1826-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-0914-3 ] [PMID: 15014037]
[161]
Zhu Y, Liu C, Nadiminty N, et al. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther 2013; 12(9): 1829-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0208 ] [PMID: 23861346]
[162]
Kehrer DF, Mathijssen RH, Verweij J, de Bruijn P, Sparreboom A. Modulation of irinotecan metabolism by ketoconazole. J Clin Oncol 2002; 20(14): 3122-9.
[http://dx.doi.org/10.1200/JCO.2002.08.177 ] [PMID: 12118026]
[163]
Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000; 28(6): 655-60.
[PMID: 10820137]
[164]
Tang SC, Lagas JS, Lankheet NA, et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 2012; 130(1): 223-33.
[http://dx.doi.org/10.1002/ijc.26000 ] [PMID: 21351087]
[165]
Yoshikawa M, Ikegami Y, Sano K, et al. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J Exp Ther Oncol 2004; 4(1): 25-35.
[PMID: 15255290]
[166]
Leggas M, Panetta JC, Zhuang Y, et al. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 2006; 66(9): 4802-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2915 ] [PMID: 16651435]
[167]
Cabot MC, Giuliano AE, Han T-Y, Liu Y-Y. SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res 1999; 59(4): 880-5.
[PMID: 10029079]
[168]
Bates SE, Medina-Pérez WY, Kohlhagen G, et al. ABCG2 mediates differential resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. J Pharmacol Exp Ther 2004; 310(2): 836-42.
[http://dx.doi.org/10.1124/jpet.103.063149 ] [PMID: 15075385]
[169]
Sugimoto Y, Tsukahara S, Imai Y, Sugimoto Y, Ueda K, Tsuruo T. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther 2003; 2(1): 105-12.
[PMID: 12533678]
[170]
Komatani H, Kotani H, Hara Y, et al. Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure. Cancer Res 2001; 61(7): 2827-32.
[PMID: 11306452]
[171]
Lavergne O, Lesueur-Ginot L, Rodas FP, Bigg DC. BN 80245: an E-ring modified camptothecin with potent antiproliferative and topoisomerase I inhibitory activities. Bioorg Med Chem Lett 1997; 7: 2235-8.
[http://dx.doi.org/10.1016/S0960-894X(97)00398-3]
[172]
Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002; 1(6): 417-25.
[PMID: 12477054]
[173]
Houghton PJ, Traxler P. Use of imatinib (glivec, sti-571) to inhibit breast cancer resistance protein (BCRP)-mediated resistance to therapeutic agents. Google Patents 2011.
[174]
Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004; 310(1): 334-41.
[http://dx.doi.org/10.1124/jpet.104.065342 ] [PMID: 15007102]
[175]
Tiwari AK, Sodani K, Wang S-R, et al. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 2009; 78(2): 153-61.
[http://dx.doi.org/10.1016/j.bcp.2009.04.002 ] [PMID: 19427995]
[176]
Woehlecke H, Osada H, Herrmann A, Lage H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer 2003; 107(5): 721-8.
[http://dx.doi.org/10.1002/ijc.11444 ] [PMID: 14566821]
[177]
Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 2009; 37(2): 359-65.
[http://dx.doi.org/10.1124/dmd.108.024612 ] [PMID: 18971320]
[178]
Hoffmann U, Kroemer HK. The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev 2004; 36(3-4): 669-701.
[http://dx.doi.org/10.1081/DMR-200033473 ] [PMID: 15554242]
[179]
Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45(8): 872-7.
[http://dx.doi.org/10.1177/0091270005276905 ] [PMID: 16027397]
[180]
Polgar O, Bates S. ABC transporters in the balance: is there a role in multidrug resistance? 1. Portland Press Limited 2005.
[181]
Wattel E, Solary E, Hecquet B, et al. Quinine Improves Results of Intensive Chemotherapy (IC) in Myelodysplastic Syndromes (MDS) Expressing P-Glycoprotein (PGP)Drug Resistance in Leukemia and Lymphoma III. Springer 1999; pp. 35-46.
[182]
Wilson WH, Bates SE, Fojo A, et al. Controlled trial of dexverapamil, a modulator of multidrug resistance, in lymphomas refractory to EPOCH chemotherapy. J Clin Oncol 1995; 13(8): 1995-2004.
[http://dx.doi.org/10.1200/JCO.1995.13.8.1995 ] [PMID: 7636540]
[183]
Chauncey TR, Gundacker H, Shadman M, et al. Sequential phase II Southwest Oncology Group studies (S0112 and S0301) of daunorubicin and cytarabine by continuous infusion, without and with ciclosporin, in older patients with previously untreated acute myeloid leukaemia. Br J Haematol 2010; 148(1): 48-58.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07919.x ] [PMID: 19821823]
[184]
te Boekhorst PA, van Kapel J, Schoester M, Sonneveld P. Reversal of typical multidrug resistance by cyclosporin and its non-immunosuppressive analogue SDZ PSC 833 in Chinese hamster ovary cells expressing the mdr1 phenotype. Cancer Chemother Pharmacol 1992; 30(3): 238-42.
[http://dx.doi.org/10.1007/BF00686322 ] [PMID: 1352739]
[185]
Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 1999; 59(16): 3944-8.
[PMID: 10463589]
[186]
Friedenberg WR, Rue M, Blood EA, et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer 2006; 106(4): 830-8.
[http://dx.doi.org/10.1002/cncr.21666 ] [PMID: 16419071]
[187]
Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100(4): 1224-32.
[http://dx.doi.org/10.1182/blood.V100.4.1224.h81602001224_1224_1232 ] [PMID: 12149202]
[188]
ten Tije AJ, Synold TW, Spicer D, Verweij J, Doroshow JH, Sparreboom A. Effect of valspodar on the pharmacokinetics of unbound paclitaxel. Invest New Drugs 2003; 21(3): 291-8.
[http://dx.doi.org/10.1023/A:1025412509730 ] [PMID: 14578679]
[189]
Kolitz JE, George SL, Dodge RK, et al. Cancer and Leukemia Group B. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol 2004; 22(21): 4290-301.
[http://dx.doi.org/10.1200/JCO.2004.11.106 ] [PMID: 15514371]
[190]
Seiden MV, Swenerton KD, Matulonis U, et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 2002; 86(3): 302-10.
[http://dx.doi.org/10.1006/gyno.2002.6762 ] [PMID: 12217752]
[191]
Bramwell VH, Morris D, Ernst DS, et al. Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin Cancer Res 2002; 8(2): 383-93.
[PMID: 11839653]
[192]
de Bruin M, Miyake K, Litman T, Robey R, Bates SE. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett 1999; 146(2): 117-26.
[http://dx.doi.org/10.1016/S0304-3835(99)00182-2 ] [PMID: 10656616]
[193]
Kuppens I, Radema S, Rosing H, et al. A Phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (gf 120918) in combination with 2.0 mg oral topotecan in cancer patients. Br J Clin Pharmacol 2004; 57: 360.
[194]
Stewart A, Steiner J, Mellows G, Laguda B, Norris D, Bevan P. Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+ lymphocytes after oral and intravenous administration. Clin Cancer Res 2000; 6(11): 4186-91.
[PMID: 11106230]
[195]
Abraham J, Edgerly M, Wilson R, et al. A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res 2009; 15(10): 3574-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0938 ] [PMID: 19417029]
[196]
Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 2006; 7(7): 861-79.
[http://dx.doi.org/10.2174/138945006777709593 ] [PMID: 16842217]
[197]
Fox E, Bates SE. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 2007; 7(4): 447-59.
[http://dx.doi.org/10.1586/14737140.7.4.447 ] [PMID: 17428165]
[198]
Gerrard G, Payne E, Baker RJ, et al. Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica 2004; 89(7): 782-90.
[PMID: 15257929]
[199]
Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma 2007; 48(4): 708-15.
[http://dx.doi.org/10.1080/10428190701190169 ] [PMID: 17454628]
[200]
Oldham RK, Reid WK, Barnett D, Phase I. Phase I study of CBT-1 and Taxol in patients with Taxol resistant cancers. Cancer Biother Radiopharm 2000; 15(2): 153-9.
[http://dx.doi.org/10.1089/cbr.2000.15.153 ] [PMID: 10803320]
[201]
van Zuylen L, Sparreboom A, van der Gaast A, et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 2000; 6(4): 1365-71.
[PMID: 10778964]
[202]
Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64(19): 7011-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1364 ] [PMID: 15466194]
[203]
Christmann M, Verbeek B, Roos WP, Kaina BO. (6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta 2011; 1816(2): 179-90.
[PMID: 21745538]
[204]
Nakai E, Park K, Yawata T, et al. Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 2009; 27(9): 901-8.
[http://dx.doi.org/10.3109/07357900801946679 ] [PMID: 19832037]
[205]
Spiegl-Kreinecker S, Buchroithner J, Elbling L, et al. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J Neurooncol 2002; 57(1): 27-36.
[http://dx.doi.org/10.1023/A:1015735815111 ] [PMID: 12125964]
[206]
Ru Q, Tian X, Wu Y-X, Wu R-H, Pi M-S, Li C-Y. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep 2014; 31(2): 842-8.
[http://dx.doi.org/10.3892/or.2013.2875 ] [PMID: 24284968]
[207]
Ru Q, Tian X, Pi MS, et al. Voltagegated K+ channel blocker quinidine inhibits proliferation and induces apoptosis by regulating expression of microRNAs in human glioma U87MG cells. Int J Oncol 2015; 46(2): 833-40.
[http://dx.doi.org/10.3892/ijo.2014.2777 ] [PMID: 25420507]
[208]
Ciechomska IA, Kaminska B. ER stress and autophagy contribute to CsA-induced death of malignant glioma cells. Autophagy 2012; 8(10): 1526-8.
[http://dx.doi.org/10.4161/auto.21155 ] [PMID: 22910018]
[209]
Cohen MH, Johnson JR, Pazdur RUS. Food and Drug Administration Drug Approval Summary: conversion of imatinib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval. Clin Cancer Res 2005; 11(1): 12-9.
[PMID: 15671523]
[210]
Dagher R, Cohen M, Williams G, et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 2002; 8(10): 3034-8.
[PMID: 12374669]
[211]
Kilic T, Alberta JA, Zdunek PR, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000; 60(18): 5143-50.
[PMID: 11016641]
[212]
Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005; 23(36): 9359-68.
[http://dx.doi.org/10.1200/JCO.2005.03.2185 ] [PMID: 16361636]
[213]
Bihorel S, Camenisch G, Lemaire M, Scherrmann J-M. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 2007; 24(9): 1720-8.
[http://dx.doi.org/10.1007/s11095-007-9278-4 ] [PMID: 17380257]
[214]
Djoukhadar I, Asselin M-c, Williams K, Jackson A. OP17. Measuring and modifying Temozolomide delivery in brain tumours. Neuro-oncol 2017.
[http://dx.doi.org/10.1093/neuonc/now292.016]
[215]
Tsvankin V, Hashizume R, Katagi H, et al. ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma. Neurosurgery 2019. nyz212
[http://dx.doi.org/10.1093/neuros/nyz212 ] [PMID: 31225627]
[216]
Wulkersdorfer B, Bauer M, Stefanits H, et al. Investigation of Regional Blood-Brain Barrier Integrity and Cerebral Efflux Transporter Function in Patients with Neuroepithelial Tumors by Means of [11C] Tariquidar Pet. Clin Ther 2017; 39e44.
[http://dx.doi.org/10.1016/j.clinthera.2017.05.138]
[217]
Burchenal JH, Robinson E, Johnston S, Kushida M. The induction of resistance to 4-amino-N10-methylpteroylglutamic acid in a strain of transmitted mouse leukemia. Science 1950; 111(2875): 116-7.
[http://dx.doi.org/10.1126/science.111.2875.116 ] [PMID: 15400457]
[218]
Michl J, Scharinger C, Zauner M, et al. A multivariate approach linking reported side effects of clinical antidepressant and antipsychotic trials to in vitro binding affinities. Eur Neuropsychopharmacol 2014; 24(9): 1463-74.
[http://dx.doi.org/10.1016/j.euroneuro.2014.06.013 ] [PMID: 25044049]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy