Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology

Author(s): Begum E. Aksoz* and Erkan Aksoz

Volume 23 , Issue 9 , 2020

Page: [877 - 886] Pages: 10

DOI: 10.2174/1386207323666200220115154

Price: $65

Abstract

Background: Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression.

Objective: In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research.

Conclusion: Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.

Keywords: Central nervous system, monoamine oxidase, cholinesterase, Alzheimer's disease, Parkinson's disease, depression.

[1]
Richards, J.G.; Saura, J.; Luque, J.M.; Cesura, A.M.; Gottowik, J.; Malherbe, P.; Borroni, E.; Gray, J. Monoamine oxidases: from brain maps to physiology and transgenics to pathophysiology. J. Neural Transm. Suppl., 1998, 52, 173-187.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_17] [PMID: 9564618]
[2]
Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1527-1533.
[http://dx.doi.org/10.1016/j.addr.2008.06.002] [PMID: 18652859]
[3]
Cai, Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease Review. Mol. Med. Rep., 2014, 9(5), 1533-1541.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[4]
Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J., 1989, 260(3), 625-634.
[http://dx.doi.org/10.1042/bj2600625] [PMID: 2669736]
[5]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(3), 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[6]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 728983-728990.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[7]
Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[8]
Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439.
[http://dx.doi.org/10.2174/1871527313666141023141545] [PMID: 25345511]
[9]
Aarsland, D.; Mosimann, U.P.; McKeith, I.G. Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies. J. Geriatr. Psychiatry Neurol., 2004, 17(3), 164-171.
[http://dx.doi.org/10.1177/0891988704267463] [PMID: 15312280]
[10]
Aliabadi, A.; Foroumadi, A.; Mohammadi-Farani, A.; Garmsiri Mahvar, M. Synthesis and evaluation of anti-acetylcholinesterase activity of 2-(2-(4-(2-oxo-2-phenyl ethyl) piperazin-1-yl) ethyl) isoindoline-1,3-dione derivatives with potential anti-Alzheimer effects. Iran. J. Basic Med. Sci., 2013, 16(10), 1049-1054.
[PMID: 24379961]
[11]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7)a028035
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[12]
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature, 2016, 539(7628), 180-186.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[13]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases Review. Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[14]
Alzheimer’s Association 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[15]
Yacoubian, T.A. Neurodegenerative Disorders: Why Do We Need New Therapies? In:Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders. Alzheimer’s Disease; Adejare, A., Ed.; Academic Press, 2016, pp. 1-16.
[16]
Villemagne, V.L.; Chételat, G. Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res. Rev., 2016, 30, 4-16.
[http://dx.doi.org/10.1016/j.arr.2016.01.004] [PMID: 26827785]
[17]
Allen, S.J. Alzheimer’s disease pathophysiology. In: Alzheimer’s Disease (Oxford Neurology Library, 2nd ed.; Waldemar, G.; Burns, A., Eds.; Oxford University Press:; , 2017, pp. 7-15.
[18]
Bernick, C.; Cummings, J.; Raman, R.; Sun, X.; Aisen, P. Age and rate of cognitive decline in Alzheimer disease: implications for clinical trials. Arch. Neurol., 2012, 69(7), 901-905.
[http://dx.doi.org/10.1001/archneurol.2011.3758] [PMID: 22431834]
[19]
Wright, A.L.; Zinn, R.; Hohensinn, B.; Konen, L.M.; Beynon, S.B.; Tan, R.P.; Clark, I.A.; Abdipranoto, A.; Vissel, B. Neuroinflammation and neuronal loss precede AB plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One, 2013, 8(4)e59586
[http://dx.doi.org/10.1371/journal.pone.0059586] [PMID: 23560052]
[20]
Wolfe, C.M.; Fitz, N.F.; Nam, K.N.; Lefterov, I.; Koldamova, R. The role of APOE and TREM2 in Alzheimer’s disease-current understanding and perspectives. Int. J. Mol. Sci., 2018, 20(1)E81
[http://dx.doi.org/10.3390/ijms20010081] [PMID: 30587772]
[21]
Huang, X.; Moir, R.D.; Tanzi, R.E.; Bush, A.I.; Rogers, J.T. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann. N. Y. Acad. Sci., 2004, 1012, 153-163.
[http://dx.doi.org/10.1196/annals.1306.012] [PMID: 15105262]
[22]
Hartley, D.; Blumenthal, T.; Carrillo, M.; DiPaolo, G.; Esralew, L.; Gardiner, K.; Granholm, A.C.; Iqbal, K.; Krams, M.; Lemere, C.; Lott, I.; Mobley, W.; Ness, S.; Nixon, R.; Potter, H.; Reeves, R.; Sabbagh, M.; Silverman, W.; Tycko, B.; Whitten, M.; Wisniewski, T. Down syndrome and Alzheimer’s disease: Common pathways, common goals. Alzheimers Dement., 2015, 11(6), 700-709.
[http://dx.doi.org/10.1016/j.jalz.2014.10.007] [PMID: 25510383]
[23]
Serý, O.; Povová, J.; Míšek, I.; Pešák, L.; Janout, V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol., 2013, 51(1), 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[24]
Rosini, M.; Simoni, E.; Milelli, A.; Minarini, A.; Melchiorre, C. Oxidative stress in Alzheimer’s disease: are we connecting the dots? J. Med. Chem., 2014, 57(7), 2821-2831.
[http://dx.doi.org/10.1021/jm400970m] [PMID: 24131448]
[25]
Nakamura, Y. Regulating factors for microglial activation. Biol. Pharm. Bull., 2002, 25(8), 945-953.
[http://dx.doi.org/10.1248/bpb.25.945] [PMID: 12186424]
[26]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[27]
Kayed, R.; Lasagna-Reeves, C.A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimers Dis., 2013, 33(Suppl. 1), S67-S78.
[PMID: 22531422]
[28]
Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 2014, 82(4), 756-771.
[http://dx.doi.org/10.1016/j.neuron.2014.05.004] [PMID: 24853936]
[29]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[30]
Cummings, J.L. Cholinesterase inhibitors: A new class of psychotropic compounds. Am. J. Psychiatry, 2000, 157(1), 4-15.
[http://dx.doi.org/10.1176/ajp.157.1.4] [PMID: 10618007]
[31]
Eckenstein, F.; Sofroniew, M.V. Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J. Neurosci., 1983, 3(11), 2286-2291.
[http://dx.doi.org/10.1523/JNEUROSCI.03-11-02286.1983] [PMID: 6355402]
[32]
Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev., 2001, 122(16), 1961-1969.
[http://dx.doi.org/10.1016/S0047-6374(01)00309-8] [PMID: 11589914]
[33]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[34]
Li, S.M.; Mo, M.S.; Xu, P.Y. Progress in mechanisms of acetylcholinesterase inhibitors and memantine for the treatment of Alzheimer’s disease. Neuroimmunol. Neuroinflamm., 2015, 2(4), 274-280.
[http://dx.doi.org/10.4103/2347-8659.167305]
[35]
Ellis, J.M. Cholinesterase inhibitors in the treatment of dementia. J. Am. Osteopath. Assoc., 2005, 105(3), 145-158.
[PMID: 15863734]
[36]
Arendt, T.; Brückner, M.K.; Lange, M.; Bigl, V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development--a study of molecular forms. Neurochem. Int., 1992, 21(3), 381-396.
[http://dx.doi.org/10.1016/0197-0186(92)90189-X] [PMID: 1303164]
[37]
Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int. Psychogeriatr., 2002, 14(Suppl. 1), 77-91.
[http://dx.doi.org/10.1017/S1041610203008676] [PMID: 12636181]
[38]
Zhao, T.; Ding, K.; Zhang, L.; Cheng, X.; Wang, C.; Wang, Z. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-carboline and quinoline alkaloids derivatives from the plants of genus peganum. J. Chem., 2013, 2013717232
[http://dx.doi.org/10.1155/2013/717232]
[39]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[40]
Ülger, Z.; Balam Yavuz, B.; Halil, M.; Cankurtaran, M.; Arıoğul, S. Drugs Used in the Treatment of Alzheimer’s Disease., akadgeriatri.org/managete/fu_folder/2009-01/html/2009-1-1-003-012.htm
[41]
Hroudová, J.; Singh, N.; Fišar, Z.; Ghosh, K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem., 2016, 121, 774-784.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.084] [PMID: 27094132]
[42]
Wang, Y.; Sun, Y.; Guo, Y.; Wang, Z.; Huang, L.; Li, X. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 389-397.
[PMID: 25798687]
[43]
Lam, B.; Hollingdrake, E.; Kennedy, J.L.; Black, S.E.; Masellis, M. Cholinesterase inhibitors in Alzheimer’s disease and Lewy body spectrum disorders: the emerging pharmacogenetic story. Hum. Genomics, 2009, 4(2), 91-106.
[http://dx.doi.org/10.1186/1479-7364-4-2-91] [PMID: 20038497]
[44]
Ibrahim, M.M.; Gabr, M.T. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res., 2019, 14(3), 437-440.
[http://dx.doi.org/10.4103/1673-5374.245463] [PMID: 30539809]
[45]
Qian, S.; He, L.; Mak, M.; Han, Y.; Ho, C.Y.; Zuo, Z. Synthesis, biological activity, and biopharmaceutical characterization of tacrine dimers as acetylcholinesterase inhibitors. Int. J. Pharm., 2014, 477(1-2), 442-453.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.058] [PMID: 25445524]
[46]
Proctor, G.R.; Harvey, A.L. Synthesis of tacrine analogues and their structure-activity relationships. Curr. Med. Chem., 2000, 7(3), 295-302.
[http://dx.doi.org/10.2174/0929867003375218] [PMID: 10637366]
[47]
Mishra, P.; Kumar, A.; Panda, G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem., 2019, 27(6), 895-930.
[http://dx.doi.org/10.1016/j.bmc.2019.01.025] [PMID: 30744931]
[48]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[49]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[50]
Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.; Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J. Med. Chem., 2003, 46(12), 2279-2282.
[http://dx.doi.org/10.1021/jm0340602] [PMID: 12773032]
[51]
Golde, T.E.; Koo, E.H.; Felsenstein, K.M.; Osborne, B.A.; Miele, L. γ-Secretase inhibitors and modulators. Biochim. Biophys. Acta, 2013, 1828(12), 2898-2907.
[http://dx.doi.org/10.1016/j.bbamem.2013.06.005] [PMID: 23791707]
[52]
Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57-75.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[53]
Bolea, I.; Juárez-Jiménez, J.; de Los Ríos, C.; Chioua, M.; Pouplana, R.; Luque, F.J.; Unzeta, M.; Marco-Contelles, J.; Samadi, A. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2011, 54(24), 8251-8270.
[http://dx.doi.org/10.1021/jm200853t] [PMID: 22023459]
[54]
Modrego, P.J. Depression in Alzheimer’s disease. Pathophysiology, diagnosis, and treatment. J. Alzheimers Dis., 2010, 21(4), 1077-1087.
[http://dx.doi.org/10.3233/JAD-2010-100153] [PMID: 21504132]
[55]
Machado-Vieira, R.; Mallinger, A.G. Abnormal function of monoamine oxidase-A in comorbid major depressive disorder and cardiovascular disease: pathophysiological and therapeutic implications review. Mol. Med. Rep., 2012, 6(5), 915-922.
[http://dx.doi.org/10.3892/mmr.2012.1062] [PMID: 22948532]
[56]
Borroni, E.; Bohrmann, B.; Grueninger, F.; Prinssen, E.; Nave, S.; Loetscher, H.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Siddiqui, A.; Ellenbroek, B.; Messer, J.; Pähler, A.; Andersen, J.K.; Wyler, R.; Cesura, A.M. Sembragiline: A novel, selective monoamine oxidase type B inhibitor for the treatment of alzheimer’s disease. J. Pharmacol. Exp. Ther., 2017, 362(3), 413-423.
[http://dx.doi.org/10.1124/jpet.117.241653] [PMID: 28642233]
[57]
Park, J.H.; Ju, Y.H.; Choi, J.W.; Song, H.J.; Jang, B.K.; Woo, J.; Chun, H.; Kim, H.J.; Shin, S.J.; Yarishkin, O.; Jo, S.; Park, M.; Yeon, S.K.; Kim, S.; Kim, J.; Nam, M.H.; Londhe, A.M.; Kim, J.; Cho, S.J.; Cho, S.; Lee, C.; Hwang, S.Y.; Kim, S.W.; Oh, S.J.; Cho, J.; Pae, A.N.; Lee, C.J.; Park, K.D. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci. Adv., 2019, 5(3)eaav0316
[http://dx.doi.org/10.1126/sciadv.aav0316] [PMID: 30906861]
[58]
Dodel, R. Dementia in Parkinson’s disease., https://www.orpha.net/data/patho/GB/uk-PDD.pdf (Accessed on Aug 2, 2019)
[59]
Pagano, G.; Rengo, G.; Pasqualetti, G.; Femminella, G.D.; Monzani, F.; Ferrara, N.; Tagliati, M. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2015, 86(7), 767-773.
[http://dx.doi.org/10.1136/jnnp-2014-308764] [PMID: 25224676]
[60]
Schumacher, J.; Peraza, L.R.; Firbank, M.; Thomas, A.J.; Kaiser, M.; Gallagher, P.; O’Brien, J.T.; Blamire, A.M.; Taylor, J.P. Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain, 2019, 142(6), 1767-1782.
[http://dx.doi.org/10.1093/brain/awz069] [PMID: 30938426]
[61]
McKeith, I.G.; Mosimann, U.P. Dementia with Lewy bodies and Parkinson’s disease. Parkinsonism Relat. Disord., 2004, 10(Suppl. 1), S15-S18.
[http://dx.doi.org/10.1016/j.parkreldis.2003.12.005] [PMID: 15109582]
[62]
Teo, K.C.; Ho, S.L. Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson’s disease. Transl. Neurodegener., 2013, 2(1), 19-28.
[http://dx.doi.org/10.1186/2047-9158-2-19] [PMID: 24011391]
[63]
Dézsi, L.; Vécsei, L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
[http://dx.doi.org/10.2174/1871527316666170124165222] [PMID: 28124620]
[64]
Aubert, I.; Araujo, D.M.; Cécyre, D.; Robitaille, Y.; Gauthier, S.; Quirion, R. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J. Neurochem., 1992, 58(2), 529-541.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09752.x] [PMID: 1729398]
[65]
Pimlott, S.L.; Piggott, M.; Owens, J.; Greally, E.; Court, J.A.; Jaros, E.; Perry, R.H.; Perry, E.K.; Wyper, D. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology, 2004, 29(1), 108-116.
[http://dx.doi.org/10.1038/sj.npp.1300302] [PMID: 12955099]
[66]
Wood-Kaczmar, A.; Gandhi, S.; Wood, N.W. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med., 2006, 12(11), 521-528.
[http://dx.doi.org/10.1016/j.molmed.2006.09.007] [PMID: 17027339]
[67]
Smith, W.W.; Pei, Z.; Jiang, H.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci., 2006, 9(10), 1231-1233.
[http://dx.doi.org/10.1038/nn1776] [PMID: 16980962]
[68]
Trudler, D.; Nash, Y.; Frenkel, D. New insights on Parkinson’s disease genes: the link between mitochondria impairment and neuroinflammation. J. Neural Transm. (Vienna), 2015, 122(10), 1409-1419.
[http://dx.doi.org/10.1007/s00702-015-1399-z] [PMID: 25894287]
[69]
Chung, Y.C.; Ko, H.W.; Bok, E.; Park, E.S.; Huh, S.H.; Nam, J.H.; Jin, B.K. The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB Rep., 2010, 43(4), 225-232.
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.225] [PMID: 20423606]
[70]
Zhang, J.; Perry, G.; Smith, M.A.; Robertson, D.; Olson, S.J.; Graham, D.G.; Montine, T.J. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol., 1999, 154(5), 1423-1429.
[http://dx.doi.org/10.1016/S0002-9440(10)65396-5] [PMID: 10329595]
[71]
Matsunaga, S.; Kishi, T.; Yasue, I.; Iwata, N. Cholinesterase inhibitors for Lewy Body disorders: A meta-analysis. Int. J. Neuropsychopharmacol., 2015, 19(2)pyv086
[http://dx.doi.org/10.1093/ijnp/pyv086] [PMID: 26221005]
[72]
van Laar, T.; De Deyn, P.P.; Aarsland, D.; Barone, P.; Galvin, J.E. Effects of cholinesterase inhibitors in Parkinson’s disease dementia: a review of clinical data. CNS Neurosci. Ther., 2011, 17(5), 428-441.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00166.x] [PMID: 21951368]
[73]
Meng, Y.H.; Wang, P.P.; Song, Y.X.; Wang, J.H. Cholinesterase inhibitors and memantine for Parkinson’s disease dementia and Lewy body dementia: A meta-analysis. Exp. Ther. Med., 2019, 17(3), 1611-1624.
[PMID: 30783428]
[74]
Dorszewska, J.; Prendecki, M.; Lianeri, M.; Kozubski, W. Molecular effects of L-dopa therapy in Parkinson’s disease. Curr. Genomics, 2014, 15(1), 11-17.
[http://dx.doi.org/10.2174/1389202914666131210213042] [PMID: 24653659]
[75]
Kong, P.; Zhang, B.; Lei, P.; Kong, X.; Zhang, S.; Li, D.; Zhang, Y. Neuroprotection of MAO-B inhibitor and dopamine agonist in Parkinson disease. Int. J. Clin. Exp. Med., 2015, 8(1), 431-439.
[PMID: 25785014]
[76]
Meiser, J.; Weindl, D.; Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal., 2013, 11(1), 34-41.
[http://dx.doi.org/10.1186/1478-811X-11-34] [PMID: 23683503]
[77]
Mallajosyula, J.K.; Kaur, D.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One, 2008, 3(2), e1616-e1631.
[http://dx.doi.org/10.1371/journal.pone.0001616] [PMID: 18286173]
[78]
Bette, S.; Shpiner, D.S.; Singer, C.; Moore, H. Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: a review of the current clinical evidence. Ther. Clin. Risk Manag., 2018, 14, 1737-1745.
[http://dx.doi.org/10.2147/TCRM.S139545] [PMID: 30271159]
[79]
Guglielmi, P.; Carradori, S.; Ammazzalorso, A.; Secci, D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin. Drug Discov., 2019, 14(10), 995-1035.
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[80]
Riederer, P.; Laux, G. MAO-inhibitors in Parkinson’s disease. Exp. Neurobiol., 2011, 20(1), 1-17.
[http://dx.doi.org/10.5607/en.2011.20.1.1] [PMID: 22110357]
[81]
Cummings, J.L. Lewy body diseases with dementia: pathophysiology and treatment. Brain Cogn., 1995, 28(3), 266-280.
[http://dx.doi.org/10.1006/brcg.1995.1257] [PMID: 8546854]
[82]
Fiedorowicz, J.G.; Swartz, K.L. The role of monoamine oxidase inhibitors in current psychiatric practice. J. Psychiatr. Pract., 2004, 10(4), 239-248.
[http://dx.doi.org/10.1097/00131746-200407000-00005] [PMID: 15552546]
[83]
Finberg, J.P.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol., 2016, 7, 340-354.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[84]
Trinker, F.R.; Fearn, H.; McCulloch, M.W.; Rand, M.J. Experimental observations on the effects of adrenaline after treatment with antidepressant monoamine oxidase inhibitor (MAOI) drugs. Aust. Dent. J., 1967, 12(4), 297-303.
[http://dx.doi.org/10.1111/j.1834-7819.1967.tb02204.x] [PMID: 5233628]
[85]
Sturza, A.; Leisegang, M.S.; Babelova, A.; Schröder, K.; Benkhoff, S.; Loot, A.E.; Fleming, I.; Schulz, R.; Muntean, D.M.; Brandes, R.P. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension, 2013, 62(1), 140-146.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01314] [PMID: 23670301]
[86]
Hirsch, M.; Birnbaum, R.J. Monoamine oxidase inhibitors (MAOIs) for treating depressed adults.Available at http://www.uptodate.com/contents/monoamine-oxidase-inhibitors-maois-for-treating-depressed-adults2019.
[87]
Evranos-Aksoz, B.; Ucar, G.; Yelekci, K. Design, synthesis and hMAO inhibitory screening of novel 2-Pyrazoline analogues. Comb. Chem. High Throughput Screen., 2017, 20(6), 510-521.
[http://dx.doi.org/10.2174/1386207320666170504114208] [PMID: 28474546]
[88]
Laban, T.S.; Saadabadi, A. Monoamine Oxidase Inhibitors. (MAOI); StatPearls Publishing LLC, 2020. Accessed April 7,2019) https://www.ncbi.nlm.nih.gov/books/NBK539848/
[89]
Burt, T. Donepezil and related cholinesterase inhibitors as mood and behavioral controlling agents. Curr. Psychiatry Rep., 2000, 2(6), 473-478.
[http://dx.doi.org/10.1007/s11920-000-0005-7] [PMID: 11122998]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy