Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson’s Disease

Author(s): Mohan K. Ghanta, P. Elango and Bhaskar L. V. K. S.*

Volume 26 , Issue 37 , 2020

Page: [4738 - 4746] Pages: 9

DOI: 10.2174/1381612826666200217114658

Price: $65

Abstract

Parkinson’s disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson’s disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.

Keywords: Parkinson's disease, striatal neurons characterisation, electrophysiology, biomarkers, neuroprotection, clinical trials.

[1]
Triarhou LC. Dopamine and Parkinson’s disease. Madame Curie Bioscience Database. [Internet]Landes Bioscience 2013.
[2]
Singh I. Textbook of human neuroanatomy. Jaypee Brothers Publishers 2018.
[3]
Goetz CG. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 2011; 1(1): a008862-2.
[http://dx.doi.org/10.1101/cshperspect.a008862 ] [PMID: 22229124]
[4]
Fasano M, Bergamasco B, Lopiano L. Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. J Neural Transm (Vienna) 2006; 113(6): 769-74.
[http://dx.doi.org/10.1007/s00702-005-0448-4 ] [PMID: 16755381]
[5]
Dopeso-Reyes IG, Rico AJ, Roda E, et al. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 2014; 8: 146.
[http://dx.doi.org/10.3389/fnana.2014.00146 ] [PMID: 25520629]
[6]
Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999; 122(Pt 8): 1437-48.
[http://dx.doi.org/10.1093/brain/122.8.1437 ] [PMID: 10430830]
[7]
Bodea GO, Spille J-H, Abe P, et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development 2014; 141(3): 661-73.
[http://dx.doi.org/10.1242/dev.099937 ] [PMID: 24449842]
[8]
Vaswani AR, Weykopf B, Hagemann C, Fried H-U, Brüstle O, Blaess S. Formation of the substantia nigra requires Reelin-mediated fast, laterally-directed migration of dopaminergic neurons. bioRxiv 2018 . In press
[9]
Rice DS, Curran T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24: 1005-39.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1005 ] [PMID: 11520926]
[10]
Ohkubo N, Lee YD, Morishima A, et al. Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J 2003; 17(2): 295-7.
[http://dx.doi.org/10.1096/fj.02-0434fje ] [PMID: 12490540]
[11]
Ciliax BJ, Heilman C, Demchyshyn LL, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 1995; 15(3 Pt 1): 1714-23.
[http://dx.doi.org/10.1523/JNEUROSCI.15-03-01714.1995 ] [PMID: 7534339]
[12]
Ghanta M, Panchanathan E, Lakkakula BVKS, Narayanaswamy A. Retrospection on the Role of Soluble Guanylate Cyclase in Parkinson’s Disease. J Pharmacol Pharmacother 2017; 8(3): 87-91.
[PMID: 29081615]
[13]
Ghanta M, Panchanathan E, Lakkakula BV, Narayanaswamy A, Murkunde Y, Tamrakar S. 1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one Attenuates Oxidative Trauma and Recuperate Beam Walk and Adhesive Removal Behavior in MPTP Parkinsonian Mice Model. Biomed Pharmacol J 2018; 11: 2011-7.
[http://dx.doi.org/10.13005/bpj/1576]
[14]
Stoessl AJ, Lehericy S, Strafella AP. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 2014; 384(9942): 532-44.
[http://dx.doi.org/10.1016/S0140-6736(14)60041-6 ] [PMID: 24954673]
[15]
Obeso JA, Rodríguez-Oroz MC, Rodríguez M, et al. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000; 23(10)(Suppl.): S8-S19.
[http://dx.doi.org/10.1016/S1471-1931(00)00028-8 ] [PMID: 11052215]
[16]
Benarroch EE. Intrinsic circuits of the striatum. Complexity and clinical correlations 2016; 86 : 1531 -42.
[http://dx.doi.org/10.1212/WNL.0000000000002599]
[17]
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366-75.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X ] [PMID: 2479133]
[18]
DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7): 281-5.
[http://dx.doi.org/10.1016/0166-2236(90)90110-V ] [PMID: 1695404]
[19]
Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain 2013; 136(Pt 3): 696-709.
[http://dx.doi.org/10.1093/brain/aws360 ] [PMID: 23404337]
[20]
Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA 2010; 107(18): 8452-6.
[http://dx.doi.org/10.1073/pnas.1000496107 ] [PMID: 20404184]
[21]
Hamani C, Florence G, Heinsen H, et al. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eNeuro 2017; 4(5): 4.
[http://dx.doi.org/10.1523/ENEURO.0140-17.2017 ] [PMID: 28966978]
[22]
Ramayya AG, Zaghloul KA, Weidemann CT, Baltuch GH, Kahana MJ. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra. Front Hum Neurosci 2014; 8: 655.
[http://dx.doi.org/10.3389/fnhum.2014.00655 ] [PMID: 25249957]
[23]
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045 ] [PMID: 18344392]
[24]
Ramaker C, Marinus J, Stiggelbout AM, Van Hilten BJ. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 2002; 17(5): 867-76.
[http://dx.doi.org/10.1002/mds.10248 ] [PMID: 12360535]
[25]
Ebersbach G, Baas H, Csoti I, Müngersdorf M, Deuschl G. Scales in Parkinson’s disease. J Neurol 2006; 253(Suppl. 4): IV32-5.
[http://dx.doi.org/10.1007/s00415-006-4008-0 ] [PMID: 16944355]
[26]
Goetz CG, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov Disord 2007; 22(1): 41-7.
[http://dx.doi.org/10.1002/mds.21198 ] [PMID: 17115387]
[27]
Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2001; 124(Pt 11): 2131-46.
[http://dx.doi.org/10.1093/brain/124.11.2131 ] [PMID: 11673316]
[28]
Cooper JA, Sagar HJ, Tidswell P, Jordan N. Slowed central processing in simple and go/no-go reaction time tasks in Parkinson’s disease. Brain 1994; 117(Pt 3): 517-29.
[http://dx.doi.org/10.1093/brain/117.3.517 ] [PMID: 8032862]
[29]
Giovannoni G, van Schalkwyk J, Fritz VU, Lees AJ. Bradykinesia akinesia inco-ordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function. J Neurol Neurosurg Psychiatry 1999; 67(5): 624-9.
[http://dx.doi.org/10.1136/jnnp.67.5.624 ] [PMID: 10519869]
[30]
Bagheri H, Damase-Michel C, Lapeyre-Mestre M, et al. A study of salivary secretion in Parkinson’s disease. Clin Neuropharmacol 1999; 22(4): 213-5.
[PMID: 10442250]
[31]
Hallett M, Khoshbin S. A physiological mechanism of bradykinesia. Brain 1980; 103(2): 301-14.
[http://dx.doi.org/10.1093/brain/103.2.301 ] [PMID: 7397480]
[32]
Parr-Brownlie LC, Hyland BI. Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. J Neurosci 2005; 25(24): 5700-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0523-05.2005 ] [PMID: 15958736]
[33]
Williams DR, Watt HC, Lees AJ. Predictors of falls and fractures in bradykinetic rigid syndromes: a retrospective study. J Neurol Neurosurg Psychiatry 2006; 77(4): 468-73.
[http://dx.doi.org/10.1136/jnnp.2005.074070 ] [PMID: 16543524]
[34]
Swinn L, Schrag A, Viswanathan R, Bloem BR, Lees A, Quinn N. Sweating dysfunction in Parkinson’s disease. Mov Disord 2003; 18(12): 1459-63.
[http://dx.doi.org/10.1002/mds.10586 ] [PMID: 14673882]
[35]
Pursiainen V, Haapaniemi TH, Korpelainen JT, Sotaniemi KA, Myllylä VV. Sweating in Parkinsonian patients with wearing-off. Mov Disord 2007; 22(6): 828-32.
[http://dx.doi.org/10.1002/mds.21422 ] [PMID: 17357129]
[36]
Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 2005; 20(2): 190-9.
[http://dx.doi.org/10.1002/mds.20324 ] [PMID: 15551331]
[37]
Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sørensen P. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 2001; 56(6): 730-6.
[http://dx.doi.org/10.1212/WNL.56.6.730 ] [PMID: 11274306]
[38]
Howell MJ, Schenck CH. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Disease. JAMA Neurol 2015; 72(6): 707-12.
[http://dx.doi.org/10.1001/jamaneurol.2014.4563 ] [PMID: 25867792]
[39]
Chang YT, Chang WN, Tsai NW, et al. Clinical Features Associated with Frozen Shoulder Syndrome in Parkinson’s Disease. Parkinsons Dis 2015.; 2015232958
[http://dx.doi.org/10.1155/2015/232958 ] [PMID: 26180653]
[40]
Lee PH, Yeo SH, Kim HJ, Youm HY. Correlation between cardiac 123I-MIBG and odor identification in patients with Parkinson’s disease and multiple system atrophy. Mov Disord 2006; 21(11): 1975-7.
[http://dx.doi.org/10.1002/mds.21083 ] [PMID: 16960860]
[41]
Tinazzi M, Del Vesco C, Fincati E, et al. Pain and motor complications in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2006; 77(7): 822-5.
[http://dx.doi.org/10.1136/jnnp.2005.079053 ] [PMID: 16549416]
[42]
Seppi K, Ray Chaudhuri K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord 2019; 34(2): 180-98.
[http://dx.doi.org/10.1002/mds.27602 ] [PMID: 30653247]
[43]
Saito Y, Shioya A, Sano T, Sumikura H, Murata M, Murayama S. Lewy body pathology involves the olfactory cells in Parkinson’s disease and related disorders. Mov Disord 2016; 31(1): 135-8.
[http://dx.doi.org/10.1002/mds.26463 ] [PMID: 26748832]
[44]
Oertel WH, Depboylu C, Krenzer M, et al. [REM sleep behavior disorder as a prodromal stage of α-synucleinopathies: symptoms, epidemiology, pathophysiology, diagnosis and therapy]. Nervenarzt 2014; 85(1): 19-25. [REM sleep behavior disorder as a prodromal stage of alpha-synucleinopathies: symptoms, epidemiology, pathophysiology, diagnosis and therapy].
[http://dx.doi.org/10.1007/s00115-013-3891-8] [PMID: 24399499]
[45]
Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 2013; 260(5): 1332-8.
[http://dx.doi.org/10.1007/s00415-012-6801-2 ] [PMID: 23263478]
[46]
Ascherio A, LeWitt PA, Xu K, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 2009; 66(12): 1460-8.
[http://dx.doi.org/10.1001/archneurol.2009.247 ] [PMID: 19822770]
[47]
Saito Y. Oxidized DJ-1 as a possible biomarker of Parkinson’s disease. J Clin Biochem Nutr 2014; 54(3): 138-44.
[http://dx.doi.org/10.3164/jcbn.13-108 ] [PMID: 24894116]
[48]
Kocer B, Guven H, Comoglu SS. Homocysteine Levels in Parkinson’s Disease: Is Entacapone Effective? BioMed Res Int 2016.; 20167563705
[http://dx.doi.org/10.1155/2016/7563705 ] [PMID: 27493964]
[49]
Sohmiya M, Tanaka M, Tak NW, et al. Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 2004; 223(2): 161-6.
[http://dx.doi.org/10.1016/j.jns.2004.05.007 ] [PMID: 15337618]
[50]
García-Moreno JM, Martín de Pablos A, García-Sánchez MI, et al. May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic Parkinson’s disease? Antioxid Redox Signal 2013; 18(11): 1296-302.
[http://dx.doi.org/10.1089/ars.2012.5026 ] [PMID: 23121480]
[51]
Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 2010; 75(20): 1766-72.
[http://dx.doi.org/10.1212/WNL.0b013e3181fd613b ] [PMID: 20962290]
[52]
Adler CH, Dugger BN, Hinni ML, et al. Submandibular gland needle biopsy for the diagnosis of Parkinson disease. Neurology 2014; 82(10): 858-64.
[http://dx.doi.org/10.1212/WNL.0000000000000204 ] [PMID: 24500652]
[53]
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: toward a potential search for biomarkers for this disease. Front Cell Neurosci 2014; 8: 369.
[PMID: 25426023]
[54]
Vranova HP, Henykova E, Kaiserova M, et al. Tau protein, beta-amyloid(1)(-)(4)(2) and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J Neurol Sci 2014; 343: 120-4.
[http://dx.doi.org/10.1016/j.jns.2014.05.052 ] [PMID: 24928081]
[55]
Parnetti L, Chiasserini D, Persichetti E, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov Disord 2014; 29(8): 1019-27.
[http://dx.doi.org/10.1002/mds.25772 ] [PMID: 24436092]
[56]
Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017; 88(10): 930-7.
[http://dx.doi.org/10.1212/WNL.0000000000003680 ] [PMID: 28179466]
[57]
Montine TJ, Shi M, Quinn JF, et al. CSF Aβ(42) and tau in Parkinson’s disease with cognitive impairment. Mov Disord 2010; 25(15): 2682-5.
[http://dx.doi.org/10.1002/mds.23287 ] [PMID: 20818673]
[58]
Herbert MK, Eeftens JM, Aerts MB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord 2014; 20(1): 112-5.
[http://dx.doi.org/10.1016/j.parkreldis.2013.09.003 ] [PMID: 24075122]
[59]
Carecchio M, Comi C. The role of osteopontin in neurodegenerative diseases. J Alzheimers Dis 2011; 25(2): 179-85.
[http://dx.doi.org/10.3233/JAD-2011-102151 ] [PMID: 21358042]
[60]
Costa A, Peppe A, Carlesimo GA, et al. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front Behav Neurosci 2015; 9: 253.
[http://dx.doi.org/10.3389/fnbeh.2015.00253 ] [PMID: 26441580]
[61]
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13(4): 225-39.
[http://dx.doi.org/10.1038/nrn3209 ] [PMID: 22430016]
[62]
Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11(12): 823-36.
[http://dx.doi.org/10.1038/nri3084 ] [PMID: 22076556]
[63]
More SV, Kumar H, Kim IS, Song SY, Choi DK. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm 2013.; 2013952375
[http://dx.doi.org/10.1155/2013/952375 ] [PMID: 23935251]
[64]
Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 2010; 468(1): 56-8.
[http://dx.doi.org/10.1016/j.neulet.2009.10.062 ] [PMID: 19857551]
[65]
Santiago JA, Potashkin JA. Current Challenges Towards the Development of a Blood Test for Parkinson’s Disease. Diagnostics (Basel) 2014; 4(4): 153-64.
[http://dx.doi.org/10.3390/diagnostics4040153 ] [PMID: 26852683]
[66]
Yu SY, Zuo LJ, Wang F, et al. Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: a cross-sectional study. BMC Neurol 2014; 14: 113.
[http://dx.doi.org/10.1186/1471-2377-14-113 ] [PMID: 24884485]
[67]
Liu Z, Guo J, Wang Y, et al. Lack of association between IL-10 and IL-18 gene promoter polymorphisms and Parkinson’s disease with cognitive impairment in a Chinese population. Sci Rep 2016; 6 19021-1.
[http://dx.doi.org/10.1038/srep19021 ] [PMID: 26830320]
[68]
Lindqvist D, Hall S, Surova Y, et al. Cerebrospinal fluid inflammatory markers in Parkinson’s disease-associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 2013; 33: 183-9.
[http://dx.doi.org/10.1016/j.bbi.2013.07.007 ] [PMID: 23911592]
[69]
Xiong R, Wang Z, Zhao Z, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 2014; 35(3): 705-14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.027 ] [PMID: 24269020]
[70]
Bouwmans AE, Vlaar AM, Mess WH, Kessels A, Weber WE. Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease: prospective cohort study in 196 patients. BMJ Open 2013; 3(4): 3.
[http://dx.doi.org/10.1136/bmjopen-2013-002613 ] [PMID: 23550093]
[71]
Blazejewska AI, Schwarz ST, Pitiot A, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 2013; 81(6): 534-40.
[http://dx.doi.org/10.1212/WNL.0b013e31829e6fd2 ] [PMID: 23843466]
[72]
Tang Y, Meng L, Wan CM, et al. Identifying the presence of Parkinson’s disease using low-frequency fluctuations in BOLD signals. Neurosci Lett 2017; 645: 1-6.
[http://dx.doi.org/10.1016/j.neulet.2017.02.056 ] [PMID: 28249785]
[73]
Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP. Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: A region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 2013; 3: 481-8.
[http://dx.doi.org/10.1016/j.nicl.2013.10.006 ] [PMID: 24273730]
[74]
Derlin T, Afzal W, Wilke F, et al. IBZM SPECT and FDG PET in the differential diagnosis of Parkinsonian syndromes: comparison with respect to inter-rater agreement. Nucl Med (Stuttg) 2010; 49(4): 139-47.
[http://dx.doi.org/10.3413/nukmed-0290 ] [PMID: 20502846]
[75]
Lee CS, Samii A, Sossi V, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000; 47(4): 493-503.
[http://dx.doi.org/10.1002/1531-8249(200004)47:4<493::AID-ANA13>3.0.CO;2-4 ] [PMID: 10762161]
[76]
Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol Dis 2008; 29(3): 381-90.
[http://dx.doi.org/10.1016/j.nbd.2007.09.004 ] [PMID: 18226536]
[77]
Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage 2011; 56(3): 1463-8.
[http://dx.doi.org/10.1016/j.neuroimage.2011.03.012 ] [PMID: 21396455]
[78]
Plotkin M, Amthauer H, Klaffke S, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm (Vienna) 2005; 112(5): 677-92.
[http://dx.doi.org/10.1007/s00702-004-0208-x ] [PMID: 15375677]
[79]
Akdemir UO, Tokçaer AB, Karakuş A, Kapucu LO. Brain 18F-FDG PET imaging in the differential diagnosis of parkinsonism. Clin Nucl Med 2014; 39(3): e220-6.
[http://dx.doi.org/10.1097/RLU.0000000000000315 ] [PMID: 24321825]
[80]
Kaufmann H, Goldstein DS. Autonomic dysfunction in Parkinson disease. Handb Clin Neurol 2013; 117: 259-78.
[http://dx.doi.org/10.1016/B978-0-444-53491-0.00021-3 ] [PMID: 24095131]
[81]
Orimo S, Yogo M, Nakamura T, Suzuki M, Watanabe H. (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev 2016; 30: 122-33.
[http://dx.doi.org/10.1016/j.arr.2016.01.001 ] [PMID: 26835846]
[82]
Zhao P, Zhang B, Gao S. 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes. Parkinsonism Relat Disord 2012; 18(Suppl. 1): S60-2.
[http://dx.doi.org/10.1016/S1353-8020(11)70020-7 ] [PMID: 22166456]
[83]
Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018; 42: 72-85.
[http://dx.doi.org/10.1016/j.arr.2017.12.007 ] [PMID: 29288112]
[84]
Guo JF, Dong XL, Xu Q, et al. Exon dosage analysis of parkin gene in Chinese sporadic Parkinson’s disease. Neurosci Lett 2015; 604: 47-51.
[http://dx.doi.org/10.1016/j.neulet.2015.07.046 ] [PMID: 26240990]
[85]
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson’s disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16(6): 711-22.
[http://dx.doi.org/10.1080/14737175.2016.1179112 ] [PMID: 27138872]
[86]
Grimes D, Fitzpatrick M, Gordon J, et al. Canadian guideline for Parkinson disease. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 2019; 191: E989-E1004.
[http://dx.doi.org/10.1503/cmaj.181504]
[87]
Magrinelli F, Picelli A, Tocco P, et al. Pathophysiology of Motor Dysfunction in Parkinson’s Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinsons Dis 2016.; 20169832839
[http://dx.doi.org/10.1155/2016/9832839 ] [PMID: 27366343]
[88]
Oertel WH. Recent advances in treating Parkinson’s disease. F1000 Res 2017; 6: 260-0.
[http://dx.doi.org/10.12688/f1000research.10100.1 ] [PMID: 28357055]
[89]
Freitas ME, Ruiz-Lopez M, Fox SH. Novel Levodopa Formulations for Parkinson’s Disease. CNS Drugs 2016; 30(11): 1079-95.
[http://dx.doi.org/10.1007/s40263-016-0386-8 ] [PMID: 27743318]
[90]
LeWitt PA, Hauser RA, Grosset DG, et al. A randomized trial of inhaled levodopa (CVT-301) for motor fluctuations in Parkinson’s disease. Mov Disord 2016; 31(9): 1356-65.
[http://dx.doi.org/10.1002/mds.26611 ] [PMID: 27090868]
[91]
Hauser RA, Olanow CW, Dzyngel B, et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson’s disease. Mov Disord 2016; 31(9): 1366-72.
[http://dx.doi.org/10.1002/mds.26697 ] [PMID: 27430123]
[92]
Pahwa R, Tanner CM, Hauser RA, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord 2015; 30(6): 788-95.
[http://dx.doi.org/10.1002/mds.26159 ] [PMID: 25650051]
[93]
Eskow KL, Gupta V, Alam S, Park JY, Bishop C. The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 2007; 87(3): 306-14.
[http://dx.doi.org/10.1016/j.pbb.2007.05.002 ] [PMID: 17553556]
[94]
Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 2015; 138(Pt 4): 963-73.
[http://dx.doi.org/10.1093/brain/awu409 ] [PMID: 25669730]
[95]
Nyholm D. Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin Pharmacokinet 2006; 45(2): 109-36.
[http://dx.doi.org/10.2165/00003088-200645020-00001 ] [PMID: 16485914]
[96]
Kempster PA, Frankel JP, Bovingdon M, Webster R, Lees AJ, Stern GM. Levodopa peripheral pharmacokinetics and duration of motor response in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1989; 52(6): 718-23.
[http://dx.doi.org/10.1136/jnnp.52.6.718 ] [PMID: 2501456]
[97]
Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology 2010; 74(14): 1143-8.
[http://dx.doi.org/10.1212/WNL.0b013e3181d7d8e2 ] [PMID: 20368634]
[98]
Group PS. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004; 61(4): 561-6.
[http://dx.doi.org/10.1001/archneur.61.4.561 ] [PMID: 15096406]
[99]
Beal MF, Matthews RT, Tieleman A, Shults CW. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 1998; 783(1): 109-14.
[http://dx.doi.org/10.1016/S0006-8993(97)01192-X ] [PMID: 9479058]
[100]
Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002; 59(10): 1541-50.
[http://dx.doi.org/10.1001/archneur.59.10.1541 ] [PMID: 12374491]
[101]
Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 1999; 157(1): 142-9.
[http://dx.doi.org/10.1006/exnr.1999.7049 ] [PMID: 10222117]
[102]
Bender A, Klopstock T. Creatine for neuroprotection in neurodegenerative disease: end of story? Amino Acids 2016; 48(8): 1929-40.
[http://dx.doi.org/10.1007/s00726-015-2165-0 ] [PMID: 26748651]
[103]
Olanow CW, Schapira AH, LeWitt PA, et al. TCH346 as a neuroprotective drug in Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2006; 5(12): 1013-20.
[http://dx.doi.org/10.1016/S1474-4422(06)70602-0 ] [PMID: 17110281]
[104]
Lotharius J, Falsig J, van Beek J, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci 2005; 25(27): 6329-42.
[http://dx.doi.org/10.1523/JNEUROSCI.1746-05.2005 ] [PMID: 16000623]
[105]
Mathiasen JR, McKenna BA, Saporito MS, et al. Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells. Brain Res 2004; 1003(1-2): 86-97.
[http://dx.doi.org/10.1016/j.brainres.2003.11.073 ] [PMID: 15019567]
[106]
Saporito MS, Brown EM, Miller MS, Carswell S. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. J Pharmacol Exp Ther 1999; 288(2): 421-7.
[PMID: 9918541]
[107]
Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology 2007; 69(15): 1480-90.
[http://dx.doi.org/10.1212/01.wnl.0000277648.63931.c0 ] [PMID: 17881719]
[108]
Eslamboli A, Georgievska B, Ridley RM, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 2005; 25(4): 769-77.
[http://dx.doi.org/10.1523/JNEUROSCI.4421-04.2005 ] [PMID: 15673656]
[109]
Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767-73.
[http://dx.doi.org/10.1126/science.290.5492.767 ] [PMID: 11052933]
[110]
Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci 2001; 13(9): 1683-93.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01542.x ] [PMID: 11359520]
[111]
Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 2013; 28(2): 131-44.
[http://dx.doi.org/10.1002/mds.25273 ] [PMID: 23225267]
[112]
Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 2007; 205(2): 295-312.
[http://dx.doi.org/10.1016/j.expneurol.2007.02.008 ] [PMID: 17433296]
[113]
Chen H, Jacobs E, Schwarzschild MA, et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 2005; 58(6): 963-7.
[http://dx.doi.org/10.1002/ana.20682 ] [PMID: 16240369]
[114]
Selley ML. Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res 2005; 1037(1-2): 1-6.
[http://dx.doi.org/10.1016/j.brainres.2004.02.083 ] [PMID: 15777746]
[115]
Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 2002; 80(1): 101-10.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00676.x ] [PMID: 11796748]
[116]
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 1981; 78(11): 6858-62.
[http://dx.doi.org/10.1073/pnas.78.11.6858 ] [PMID: 6947260]
[117]
Schwarzschild MA, Schwid SR, Marek K, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 2008; 65(6): 716-23.
[http://dx.doi.org/10.1001/archneur.2008.65.6.nct70003 ] [PMID: 18413464]
[118]
Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ. Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. J Biol Chem 2004; 279(24): 25497-502.
[http://dx.doi.org/10.1074/jbc.M400255200 ] [PMID: 15044495 ]
[119]
Qiao L, Hamamichi S, Caldwell KA, et al. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain 2008; 1: 17.
[http://dx.doi.org/10.1186/1756-6606-1-17 ] [PMID: 19021916]
[120]
Lin YL, Meng Y, Jiang W, Roux B. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci USA 2013; 110(5): 1664-9.
[http://dx.doi.org/10.1073/pnas.1214330110 ] [PMID: 23319661]
[121]
Deremer DL, Ustun C, Natarajan K. Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther 2008; 30(11): 1956-75.
[http://dx.doi.org/10.1016/j.clinthera.2008.11.014 ] [PMID: 19108785]
[122]
Imam SZ, Trickler W, Kimura S, et al. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS One 2013; 8(5): e65129
[http://dx.doi.org/10.1371/journal.pone.0065129 ] [PMID: 23741470]
[123]
Kavitha M, Nataraj J, Essa MM, Memon MA, Manivasagam T. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice. Chem Biol Interact 2013; 206(2): 239-47.
[http://dx.doi.org/10.1016/j.cbi.2013.09.016 ] [PMID: 24095822]
[124]
Wang Y-H, Yu H-T, Pu X-P, Du G-H. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 2013; 18(12): 14726-38.
[http://dx.doi.org/10.3390/molecules181214726 ] [PMID: 24288000]
[125]
Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78(5): 1073-82.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00490.x ] [PMID: 11553681]
[126]
Ojha RP, Rastogi M, Devi BP, Agrawal A, Dubey GP. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Neuroimmune Pharmacol 2012; 7(3): 609-18.
[http://dx.doi.org/10.1007/s11481-012-9363-2 ] [PMID: 22527634]
[127]
Singh B, Pandey S, Yadav SK, Verma R, Singh SP, Mahdi AA. Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res Bull 2017; 135: 120-8.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.007 ] [PMID: 29032054]
[128]
Tremblay ME, Saint-Pierre M, Bourhis E, Lévesque D, Rouillard C, Cicchetti F. Neuroprotective effects of cystamine in aged parkinsonian mice. Neurobiol Aging 2006; 27(6): 862-70.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.004 ] [PMID: 15913845]
[129]
Wang XL, Xing GH, Hong B, et al. Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 2014; 114(2): 77-85.
[http://dx.doi.org/10.1016/j.lfs.2014.08.004 ] [PMID: 25132361]
[130]
Alvarez-Fischer D, Noelker C, Vulinović F, et al. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013; 8(4): e61700
[http://dx.doi.org/10.1371/journal.pone.0061700 ] [PMID: 23637888]
[131]
Guo Z, Xu S, Du N, Liu J, Huang Y, Han M. Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson’s disease: Involvement of the dopamine system. Neurosci Lett 2016; 616: 152-9.
[http://dx.doi.org/10.1016/j.neulet.2016.01.048 ] [PMID: 26827716]
[132]
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73(17): 3221-47.
[http://dx.doi.org/10.1007/s00018-016-2223-0 ] [PMID: 27100828]
[133]
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019; 10: 33.
[http://dx.doi.org/10.3389/fphar.2019.00033 ] [PMID: 30778297]
[134]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[135]
Crocker SJ, Smith PD, Jackson-Lewis V, et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci 2003; 23(10): 4081-91.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04081.2003 ] [PMID: 12764095]
[136]
Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54(3): 403-14.
[http://dx.doi.org/10.1002/ana.10720 ] [PMID: 12953276]
[137]
Naoi M, Maruyama W, Inaba-Hasegawa K. Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 2013; 13(6): 671-84.
[http://dx.doi.org/10.1586/ern.13.60 ] [PMID: 23739004]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy