Generic placeholder image

Current Alzheimer Research


ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Elevated Testosterone Level and Urine Scent Marking in Male 5xFAD Alzheimer Model Mice

Author(s): Lisa Gadomsky, Malena dos Santos Guilherme, Jakob Winkler, Michael A. van der Kooij, Tobias Hartmann, Marcus Grimm and Kristina Endres*

Volume 17, Issue 1, 2020

Page: [80 - 92] Pages: 13

DOI: 10.2174/1567205017666200217105537

Price: $65


Background: Function of the Amyloid Precursor Protein (AβPP) and its various cleavage products still is not unraveled down to the last detail. While its role as a source of the neurotoxic Amyloid beta (Aβ) peptides in Alzheimer’s Disease (AD) is undisputed and its property as a cell attachment protein is intriguing, while functions outside the neuronal context are scarcely investigated. This is particularly noteworthy because AβPP has a ubiquitous expression profile and its longer isoforms, AβPP750 and 770, are found in various tissues outside the brain and in non-neuronal cells.

Objective: Here, we aimed at analyzing the 5xFAD Alzheimer’s disease mouse model in regard to male sexual function. The transgenes of this mouse model are regulated by Thy1 promoter activity and Thy1 is expressed in testes, e.g. by Sertoli cells. This allows speculation about an influence on sexual behavior.

Methods: We analyzed morphological as well as biochemical properties of testicular tissue from 5xFAD mice and wild type littermates and testosterone levels in serum, testes and the brain. Sexual behavior was assessed by a urine scent marking test at different ages for both groups.

Results: While sperm number, testes weight and morphological phenotypes of sperms were nearly indistinguishable from those of wild type littermates, testicular testosterone levels were significantly increased in the AD model mice. This was accompanied by elevated and prolonged sexual interest as displayed within the urine scent marking test.

Conclusion: We suggest that overexpression of AβPP, which mostly is used to mimic AD in model mice, also affects male sexual behavior as assessed additional by the Urine Scent Marking (USM) test. The elevated testosterone levels might have an additional impact on central nervous system androgen receptors and also have to be considered when assessing learning and memory capabilities.

Keywords: Alzheimer's disease, amyloid precursor protein, mice, sexual behavior, testosterone, urine scent marking test.

« Previous
Duke Han S, Nguyen CP, Stricker NH, Nation DA. Detectable neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychol Rev 27(4): 305-25. (2017).
[] [PMID: 28497179]
Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord 190: 264-71. (2016).
[] [PMID: 26540080]
Hallikainen I, Koivisto AM, Välimäki T. The influence of the individual neuropsychiatric symptoms of people with Alzheimer disease on family caregiver distress-A longitudinal ALSOVA study. Int J Geriatr Psychiatry (2018).
[] [PMID: 29851148]
Derouesné C, Guigot J, Chermat V, Winchester N, Lacomblez L. Sexual behavioral changes in Alzheimer disease. Alzheimer Dis Assoc Disord 10(2): 86-92. (1996).
[] [PMID: 8727170]
Tsai SJ, Hwang JP, Yang CH, Liu KM, Lirng JF. Inappropriate sexual behaviors in dementia: a preliminary report. Alzheimer Dis Assoc Disord 13(1): 60-2. (1999).
[] [PMID: 10192644]
Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology 48(5)(Suppl. 6): S10-6. (1997).
[] [PMID: 9153155]
Ruesink GB, Georgiadis JR. brain imaging of human sexual response: recent developments and future directions. Curr Sex Health Rep 9(4): 183-91. (2017).
[] [PMID: 29225553]
Mendez MF, Shapira JS. Hypersexual behavior in frontotemporal dementia: a comparison with early-onset Alzheimer’s disease. Arch Sex Behav 42(3): 501-9. (2013).
[] [PMID: 23297146]
Sandbrink R, Masters CL, Beyreuther K. Similar alternative splicing of a non-homologous domain in beta A4-amyloid protein precursor-like proteins. J Biol Chem 269(19): 14227-34. (1994).
[PMID: 8188705]
Beer J, Masters CL, Beyreuther K. Cells from peripheral tissues that exhibit high APP expression are characterized by their high membrane fusion activity. Neurodegeneration 4(1): 51-9. (1995).
[] [PMID: 7600184]
Fardilha M, Vieira SI, Barros A, Sousa M, Da Cruz e Silva OA, et al. Differential distribution of Alzheimer’s amyloid precursor protein family variants in human sperm. Ann N Y Acad Sci 1096: 196-206. (2007).
[] [PMID: 17405931]
Chalmel F, Com E, Lavigne R, Hernio N, Teixeira-Gomes AP, Dacheux JL, et al. An integrative omics strategy to assess the germ cell secretome and to decipher sertoli-germ cell crosstalk in the Mammalian testis. PLoS One 9(8) e104418 (2014).
[] [PMID: 25111155]
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40): 10129-40. (2006).
[] [PMID: 17021169]
Eimer WA, Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener 8: 2. (2013).
[] [PMID: 23316765]
Lehmann ML, Geddes CE, Lee JL, Herkenham M. Urine scent marking (USM): a novel test for depressive-like behavior and a predictor of stress resiliency in mice. PLoS One 8(7) e69822 (2013).
[] [PMID: 23875001]
Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56(2): 775-88. (2017).
[] [PMID: 28035935]
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8): 911-7. (1959).
[] [PMID: 13671378]
Tang Z, Guengerich FP. Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome P450 oxidation products in tissue extracts. Anal Chem 82(18): 7706-12. (2010).
[] [PMID: 20795636]
Shou WZ, Jiang X, Naidong W. Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomed Chromatogr 18(7): 414-21. (2004).
[] [PMID: 15340965]
Zhao S, Luo X, Li L. Chemical isotope labeling LC-MS for high coverage and quantitative profiling of the hydroxyl submetabolome in metabolomics. Anal Chem 88(21): 10617-23. (2016).
[] [PMID: 27690392]
Björndahl L, Söderlund I, Kvist U. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum Reprod 18(4): 813-6. (2003).
[] [PMID: 12660276]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to Image J: 25 years of image analysis. Nat Methods 9(7): 671-5. (2012).
[] [PMID: 22930834]
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, et al. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer’s disease hallmarks. Sci Rep 8(1): 1329. (2018).
[] [PMID: 29358714]
Gaskill BN, Karas AZ, Garner JP, Pritchett-Corning KR. Nest building as an indicator of health and welfare in laboratory mice. J Vis Exp (82): 51012 (2013).
[] [PMID: 24429701]
Bronson FH, Desjardins C. Relationships between scent marking by male mice and the pheromone-induced secretion of the gonadotropic and ovarian hormones that accompany puberty in female mice. Adv Behav Biol 11: 157-78. (1974).
[] [PMID: 4475644]
Van Der Lee S, Boot LM. Spontaneous pseudopregnancy in mice. Acta Physiol Pharmacol Neerl 1955; 4(3): 442-4.
[PMID: 13301816]
Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY, et al. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141(12): 2402-13. (2014).
[] [PMID: 24850856]
Postina R, Schroeder A, Dewachter I, Juergen Bohl, Ulrich Schmitt, Elzbieta K, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10): 1456-64. (2004).
[] [PMID: 15146243]
O’Keane JC, Brien TG, Hooper AC, Graham A. Testicular activity in mice selected for increased body weight. Andrologia 1986; 18(2): 190-5.
[] [PMID: 3717607]
Schmidt JA, Oatley JM, Brinster RL. Female mice delay reproductive aging in males. Biol Reprod 80(5): 1009-14. (2009).
[] [PMID: 19164172]
Kim C. Nest building, general activity, and salt preference of rats following hippocampal ablation. J Comp Physiol Psychol 53: 11-6. (1960).
[] [PMID: 14409079]
Deacon RM, Croucher A, Rawlins JN. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res 132(2): 203-13. (2002).
[] [PMID: 11997150]
Lin L, Chen G, Kuang H, Wang D, Tsien JZ. Neural encoding of the concept of nest in the mouse brain. Proc Natl Acad Sci USA 104(14): 6066-71. (2007).
[] [PMID: 17389405]
Deacon RM. Assessing nest building in mice. Nat Protoc 1(3): 1117-9. (2006).
[] [PMID: 17406392]
Devi L, Ohno M. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 5(5) e562 (2015).
[] [PMID: 25942043]
Kovács T, Cairns NJ, Lantos PL. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. Neuroreport 12(2): 285-8. (2001).
[] [PMID: 11209936]
Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30(2): 505-14. (2010).
[] [PMID: 20071513]
Yao ZG, Hua F, Zhang HZ, Li YY, Qin YJ. Olfactory dysfunction in the APP/PS1 transgenic mouse model of Alzheimer’s disease: morphological evaluations from the nose to the brain. Neuropathology 37(6): 485-94. (2017).
[] [PMID: 28643854]
Roddick KM, Roberts AD, Schellinck HM, Brown RE. Sex and genotype differences in odor detection in the 3×Tg-AD and 5XFAD mouse models of Alzheimer’s Disease at 6 months of age. Chem Senses 41(5): 433-40. (2016).
[] [PMID: 26969629]
Park JH, Bonthius PJ, Tsai HW, Bekiranov S, Rissman EF. Amyloid beta precursor protein regulates male sexual behavior. J Neurosci 30(30): 9967-72. (2010).
[] [PMID: 20668181]
Richter MC, Ludewig S, Winschel A, Abel T, Bold C, Salzburger LR, et al. Distinct in vivo roles of secreted APP ectodomain variants APPsα and APPsβ in regulation of spine density, synaptic plasticity, and cognition. EMBO J 37(11) e98335 (2018).
[] [PMID: 29661886]
Huo DS, Sun JF, Zhang B, Yan XS, Wang H, Jia JX, et al. Protective effects of testosterone on cognitive dysfunction in Alzheimer’s disease model rats induced by oligomeric beta amyloid peptide 1-42. J Toxicol Environ Health A 79(19): 856-63. (2016).
[] [PMID: 27599231]
Seyedreza P, Alireza MN, Seyedebrahim H. Role of testosterone in memory impairment of Alzheimer disease induced by Streptozotocin in male rats. Daru 20(1): 98. (2012).
[] [PMID: 23351237]
Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, et al. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res 14(4): 649-57. (2019).
[] [PMID: 30632505]
Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders. Biochim Biophys Acta 1842(12 Pt A): 2427-38. (2014).
[] [PMID: 25281013]
Lau CF, Ho YS, Hung CH, Wuwongse S, Poon CH, Chiu K, et al. Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. BioMed Res Int 2014 103906 (2014).
[] [PMID: 25045655]
Wang JH, Cheng XR, Zhang XR, Wang TX, Xu WJ, Li F, et al. Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment. Oncotarget 7(17): 22988-3005. (2016).
[] [PMID: 27049828]
Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike JC, et al. Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34(4): 1080-9. (2013).
[] [PMID: 23122920]
Overk CR, Perez SE, Ma C, Taves MD, Soma KK, Mufson EJ. Sex steroid levels and AD-like pathology in 3xTgAD mice. J Neuroendocrinol 25(2): 131-44. (2013).
[] [PMID: 22889357]
Nuruddin S, Syverstad GH, Lillehaug S, Leergaard TB, Nilsson LNG, Ropstad E, et al. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer’s disease transgenic mice. PLoS One 9(8) e103607 (2014).
[] [PMID: 25089901]
Lee JH, Byun MS, Yi D, Choe YM, Choi HJ, Baek H, et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiol Aging 58: 34-40. (2017).
[] [PMID: 28692878]
Lv W, Du N, Liu Y, Fan X, Wang Y, Jia X, et al. Low Testosterone level and risk of alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Mol Neurobiol 53(4): 2679-84. (2016).
[] [PMID: 26154489]
Xu J, Xia LL, Song N, Chen SD, Wang G. Testosterone, estradiol, and sex hormone-binding globulin in Alzheimer’s disease: a meta-analysis. Curr Alzheimer Res 13(3): 215-22. (2016).
[] [PMID: 26679858]
Kang L, Li S, Xing Z, Li J, Su Y, Fan P, et al. Dihydrotestosterone treatment delays the conversion from mild cognitive impairment to Alzheimer’s disease in SAMP8 mice. Horm Behav 65(5): 505-15. (2014).
[] [PMID: 24717850]
Domonkos E, Hodosy J, Ostatníková D, Celec P. On the role of testosterone in anxiety-like behavior across life in experimental rodents. Front Endocrinol (Lausanne) 9: 441. (2018).
[] [PMID: 30127767]
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 135: 25-33. (2014).
[] [PMID: 24907698]
Kosel F, Torres Munoz P, Yang JR, Wong AA, Franklin TB. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer’s disease. Behav Brain Res 362: 160-72. (2019).
[] [PMID: 30659846]
Maruniak JA, Owen K, Bronson FH, Desjardins C. Urinary marking in male house mice: responses to novel environmental and social stimuli. Physiol Behav 12(6): 1035-9. (1974).
[] [PMID: 4832444]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy