Generic placeholder image

Journal of Photocatalysis

Editor-in-Chief

ISSN (Print): 2665-976X
ISSN (Online): 2665-9778

Research Article

Green Synthesis of ZnO/Dy/NiO Heterostructures for Enhanced Photocatalytic Applications

Author(s): Shubha Jayachamarajapura Pranesh* and Diwya Lanka

Volume 1, Issue 1, 2020

Page: [30 - 36] Pages: 7

DOI: 10.2174/2665976X01666200214125616

Abstract

Background: Textile industries discharge harmful synthetic dyes to nearby water sources. These colour effluents should be treated before discharge to reduce the toxicity caused by synthetic colours.

Objective: To synthesize visible light active superstructures to reduce water pollution caused by textile industries.

Methods: We have successfully synthesized ZnO/Dy/NiO hybrid nanocomposites using waste curd as fuel by a simple combustion method. The obtained material was able to reduce recombination and enhanced the photocatalytic degradation of organic pollutants. The as-synthesized material was characterized by XRD, absorption spectroscopy, FESEM, EDAX, etc. The obtained hybrid nanostructure was used as a photocatalyst for the degradation of methylene blue under sunlight, UV light as well as in dark. Comparative experiments were carried out with a variation of catalytic load, pH, dye concentrations, etc. for a better understanding of the performance of the catalyst at various conditions.

Results and Conclusion: The ternary compound shows wide range of absorption by expanding absorption band both in UV and visible regions. ZnO/Dy/NiO hybrid nanocomposites performed well and showed uniqueness in the activity uder visible light.

Keywords: Ternary heterostructures, ZnO/Dy/NiO, photocatalysis, methylene blue, dye degradation.

Graphical Abstract
[1]
Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 3rd ed; Wiley-VCH: Cambridge, 2003.
[2]
Manjunath, K.; Souza, V.S.; Ramakrishnappa, T. Heterojunction CuO-TiO2 nanocomposite synthesis for significant photocatalytic hydrogen production. Mater. Res. Express, 2016. 23115904
[http://dx.doi.org/10.1088/2053-1591/3/11/115904]
[3]
Manjunath, K.; Ravishankar, T.N.; Dhanith, K. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications. Mater. Res. Bull., 2014, 57, 325-334.
[http://dx.doi.org/10.1016/j.materresbull.2014.06.010]
[4]
Udayabhanu, Nagaraju. G.; Nagabhushana, H. Suresh, D.; Anupama, C.; Raghu, G.K.; Sharmae, S.C. Vitis labruska skin extract assisted green synthesis of ZnO super structures for multifunctional applications. Ceram. Int., 2017, 43, 11656-11667.
[http://dx.doi.org/10.1016/j.ceramint.2017.05.351]
[5]
Pavithra, N.S.; Lingaraju, K.; Raghu, G.K.; Nagaraju, G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 185, 11-19.
[http://dx.doi.org/10.1016/j.saa.2017.05.032] [PMID: 28528217]
[6]
Yasser, K. Abdel-Monem, Efficient nanophotocatalyt of hydrothermally synthesized Anatase TiO2 nanoparticles from its analogue metal coordinated precursor. J. Mater. Sci. Mater. Electron., 2016, 27, 5723-5728.
[http://dx.doi.org/10.1007/s10854-016-4484-7]
[7]
Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci. Rep., 2014, 4, 5757.
[http://dx.doi.org/10.1038/srep05757] [PMID: 25169653]
[8]
Priyanka, K.S.; Sneha, T.S.; Parag, N. Visible light removal of reactive dyes using CeO2 synthesized by precipitation. J. Environ. Chem. Eng., 2018, 6(4), 4476-4489.
[http://dx.doi.org/10.1016/j.jece.2018.06.046]
[9]
Fernando, P.H.; Ana, L.L.; Patricia, S. Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on photocatalytic activity under visible light. J. Saudi Chem. Soc., 2019, 23, 1016-1123.
[http://dx.doi.org/10.1016/j.jscs.2019.05.007]
[10]
Abdel-Monem, Y.K.; Emam, S.M.; Okda, H.M.Y. Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci. Mater. Electron., 2017, 28, 2923-2934.
[http://dx.doi.org/10.1007/s10854-016-5877-3]
[11]
Xiaofeng, W.; Jiaqi, P.; Jie, M. The orderly nano array of truncated octahedra Cu2O nanocrystals with the enhancement of visible light photocatalytic activity. Photon. Nanostructures, 2018, 30, 20-24.
[http://dx.doi.org/10.1016/j.photonics.2018.04.009]
[12]
Bashir, A.K.H.; Razanamahandry, L.C.; Nwanya, A.C. Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light. J. Phys. Chem. Solids, 2019, 134, 133-140.
[http://dx.doi.org/10.1016/j.jpcs.2019.05.048]
[13]
Madkour, M.; Yasser, K. Abdel-Monem, and Fakhreia Al Sagheer controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: Impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res., 2016, 55(50), 12733-12741.
[http://dx.doi.org/10.1021/acs.iecr.6b03231]
[14]
Ankita, G.; Jingwei, Z.; Takuya, T. Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B. Ceram. Int., 2018, 44(5), 4694-4698.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.050]
[15]
Li, X.; Wanting, S.; Xiaoliang, Z. Facile synthesis of mesoporous MnO2 nanosheet and microflower with efficient photocatalytic activities for organic dyes. Vacuum, 2018, 156, 291-297.
[http://dx.doi.org/10.1016/j.vacuum.2018.04.035]
[16]
Nagaraju, G.; Manjunath, K.; Ravishankar, T.N. Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis. J. Mater. Sci., 2013, 48, 8420-8426.
[http://dx.doi.org/10.1007/s10853-013-7654-5]
[17]
Anukorn, S.S.; Paweena, W.; Somchai, T. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers. J. Phys. Chem. Solids, 2019, 126, 170-177.
[18]
Tiilok, K.P.; Kroon, R.E.; Craciunce, V.; Popa, M.; Chifiriucd, M.C.; Swart, H.C. Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials. Heliyon, 2019, 5 e01333
[19]
Faouzi, A.; Serge, C.; Lavinia, B. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des., 2016, 105, 309-316.
[20]
Amarjyoti, K.; Manos, P.C.K. Microstructural, optical, magnetic and photocatalytic properties of Mn doped ZnO nanocrystals of different sizes. Physica B, 2019, 552, 30-46.
[http://dx.doi.org/10.1016/j.physb.2018.08.028]
[21]
Alireza, K.; Reza, D.; Cheshmeh, S.; Younes, H. mahdie S, Habib G R and Sang W. J. Ind. Eng. Chem. Res., 2014, 535, 1924.
[22]
Saravanakumar, K.; Muthuraj, V.; Vadivel, S. Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Advances, 2016, 66, 61357-61355.
[http://dx.doi.org/10.1039/C6RA10444D]
[23]
Haiying, Q.; Qi, W.; Jinming, W. Effects of Ag nanoparticles on the visible-light-driven photocatalytic properties of Cu2O nanocubes. Mater. Chem. Phys., 2019, 232, 240-245.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.081]
[24]
Flores, N.M.; Pal, U.; Enrique, S. Photocatalytic behavior of ZnO and Pt incorporated ZnO nanoparticles in phenol degradation. Appl. Catal. A Gen., 2011, 394(1), 269-275.
[http://dx.doi.org/10.1016/j.apcata.2011.01.011]
[25]
Torres, H.J.R.; Morales, E.R.; Rojas, B.L. Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process., 2015, 37, 87-92.
[http://dx.doi.org/10.1016/j.mssp.2015.02.009]
[26]
Bharathi, P.; Harish, S.; Archana, J. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: The synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Applied. Surface. Science, 2019, 03, 131-484.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.131]
[27]
Jianing, L.; Fei, Z.; Li, Z. Electrospun hollow ZnO/NiO heterostructured with enhanced photocatalytic activity. RSC Advances, 2015, 5, 67610-67616.
[28]
Yanli, L.; Guizhi, L.; Riding, M. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens. Actuators B Chem., 2014, 191, 537-544.
[http://dx.doi.org/10.1016/j.snb.2013.10.068]
[29]
Blanca, L.M.V.; Mariesele, C.R.; Jesus, A.D.R. Synthesis and characterization of n-ZnO/p-MnO nanocomposites for the photocatalytic degradation of anthracene. J. Photochem. Photobiol. Chem., 2019, 369, 85-96.
[http://dx.doi.org/10.1016/j.jphotochem.2018.10.010]
[30]
Latha, P.; Prakash, K.; Karuthapandian, S. Enhanced visible light photocatalytic activity of CeO2/alumina nanocomposite: Synthesized via facile mixing-calcination method for dye degradation. Adv. Powder Technol., 2017, 28(11), 2903-2913.
[http://dx.doi.org/10.1016/j.apt.2017.08.017]
[31]
Shashi, B.A.; Wun, R.L.; Ting, C.C. Fabrication of Fe3O4/ZnO magnetite cores shell and its application in photocatalysis using sunlight. Mater. Chem. Phys., 2018, 216, 380-386.
[http://dx.doi.org/10.1016/j.matchemphys.2018.06.020]
[32]
Acayanka, E.; Ducliar, S.K.; Georgus, Y.K. Synthesis, characterization and photocatalytic application of TiO2/SnO2 nanocomposite obtained under nonthermal plasma condition at atmospheric pressure. Plasma Chemistry Plasma, 2016, 36, 799-811.
[http://dx.doi.org/10.1007/s11090-016-9699-0]
[33]
Wang, L.; Liu, S.; Wang, Z.; Zhou, Y.; Qin, Y.; Wang, Z.L. Piezotronic efect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano, 2016, 10(2), 2636-2643.
[http://dx.doi.org/10.1021/acsnano.5b07678] [PMID: 26745209]
[34]
Zhang, Z.; Ma, Y.; Bu, X.; Wu, Q.; Hang, Z.; Dong, Z.; Wu, X. Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci. Rep., 2018, 8(1), 10532.
[http://dx.doi.org/10.1038/s41598-018-28832-w] [PMID: 30002407]
[35]
Lingampalli, S.R.; Ujjal, K.G.; Rao, C.N.R. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1xZnxS and ZnO/Pt/CdS1xSex hybrid nanostructures. Energy Environ. Sci., 2013, 6, 3589-3594.
[http://dx.doi.org/10.1039/c3ee42623h]
[36]
Lonkar, S.P.; Pillai, V.V.; Alhassan, S.M. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci. Rep., 2018, 8(1), 13401.
[http://dx.doi.org/10.1038/s41598-018-31539-7] [PMID: 30194393]

© 2024 Bentham Science Publishers | Privacy Policy