Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Mini-Review Article

Nutraceuticals for Promoting Longevity

Author(s): Ivan Pavlović, Soliman Khateb, Irina Milisav and Jamal Mahajna*

Volume 1, Issue 1, 2020

Page: [18 - 32] Pages: 15

DOI: 10.2174/2665978601666200213121512

Open Access Journals Promotions 2
Abstract

Objective: To summarize the main findings on nutraceuticals that slow aging processes by delaying and even preventing the development of multiple chronic diseases and improve productivity and quality of life in the elderly.

Methods: Literature search of the relevant papers known to the authors was conducted.

Results: The most robust environmental manipulation for extending lifespan is caloric restriction without malnutrition. Some nutraceuticals can mimic caloric restriction effects. This review will focus on the nutraceuticals that impact insulin-like growth factor 1 receptor signaling and sirtuin activity in mediating longevity and healthspan.

Conclusion: Aging is considered to be synonymous with the appearance of major diseases and an overall decline in physical and mental performance. Caloric restriction is well established as a strategy to extend lifespan without malnutrition. A variety of nutraceuticals were reported to mimic the effect of caloric restriction by modulating the activity of insulin-like growth factor 1 receptor signaling and sirtuin activity and consequently promote longevity and healthspan.

Keywords: Nutraceuticals, longevity, caloric restriction, insulin-like growth factor 1 receptor (IGF1R), silent mating type information regulation 2 homology 1 (SIRT1).

Graphical Abstract
[1]
Barbieri, M.; Bonafè, M.; Franceschi, C.; Paolisso, G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab., 2003, 285(5), E1064-E1071.
[http://dx.doi.org/10.1152/ajpendo.00296.2003] [PMID: 14534077]
[2]
Junnila, R.K.; List, E.O.; Berryman, D.E.; Murrey, J.W.; Kopchick, J.J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol., 2013, 9(6), 366-376.
[http://dx.doi.org/10.1038/nrendo.2013.67] [PMID: 23591370]
[3]
Zhang, J.; Liu, F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life, 2014, 66(7), 485-495.
[http://dx.doi.org/10.1002/iub.1293] [PMID: 25087968]
[4]
Martins, R.; Lithgow, G.J.; Link, W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell, 2016, 15(2), 196-207.
[http://dx.doi.org/10.1111/acel.12427] [PMID: 26643314]
[5]
Carter, M.E.; Brunet, A. FOXO transcription factors. Curr. Biol., 2007, 17(4), R113-R114.
[http://dx.doi.org/10.1016/j.cub.2007.01.008] [PMID: 17307039]
[6]
Wolff, S.; Dillin, A. The trifecta of aging in Caenorhabditis elegans. Exp. Gerontol., 2006, 41(10), 894-903.
[http://dx.doi.org/10.1016/j.exger.2006.06.054] [PMID: 16919905]
[7]
Kenyon, C. A conserved regulatory system for aging. Cell, 2001, 105(2), 165-168.
[http://dx.doi.org/10.1016/S0092-8674(01)00306-3] [PMID: 11336665]
[8]
Shi, R.; Berkel, H.J.; Yu, H. Insulin-like growth factor-I and prostate cancer: a meta-analysis. Br. J. Cancer, 2001, 85(7), 991-996.
[http://dx.doi.org/10.1054/bjoc.2001.1961] [PMID: 11592771]
[9]
Fontana, L.; Partridge, L.; Longo, V.D. Extending healthy life span--from yeast to humans. Science, 2010, 328(5976), 321-326.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[10]
Svensson, J.; Sjögren, K.; Fäldt, J.; Andersson, N.; Isaksson, O.; Jansson, J.O.; Ohlsson, C. Liver-derived IGF-I regulates mean life span in mice. PLoS One, 2011, 6(7) e22640
[http://dx.doi.org/10.1371/journal.pone.0022640] [PMID: 21799924]
[11]
Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloën, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 2003, 421(6919), 182-187.
[http://dx.doi.org/10.1038/nature01298] [PMID: 12483226]
[12]
Bokov, A.F.; Garg, N.; Ikeno, Y.; Thakur, S.; Musi, N.; DeFronzo, R.A.; Zhang, N.; Erickson, R.C.; Gelfond, J.; Hubbard, G.B.; Adamo, M.L.; Richardson, A. Does reduced IGF-1R signaling in Igf1r+/- mice alter aging? PLoS One, 2011, 6(11) e26891
[http://dx.doi.org/10.1371/journal.pone.0026891] [PMID: 22132081]
[13]
Bonafè, M.; Barbieri, M.; Marchegiani, F.; Olivieri, F.; Ragno, E.; Giampieri, C.; Mugianesi, E.; Centurelli, M.; Franceschi, C.; Paolisso, G. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J. Clin. Endocrinol. Metab., 2003, 88(7), 3299-3304.
[http://dx.doi.org/10.1210/jc.2002-021810] [PMID: 12843179]
[14]
Barbieri, M.; Boccardi, V.; Esposito, A.; Papa, M.; Vestini, F.; Rizzo, M.R.; Paolisso, G. A/ASP/VAL allele combination of IGF1R, IRS2, and UCP2 genes is associated with better metabolic profile, preserved energy expenditure parameters, and low mortality rate in longevity. Age (Dordr.), 2012, 34(1), 235-245.
[http://dx.doi.org/10.1007/s11357-011-9210-z] [PMID: 21340542]
[15]
Tazearslan, C.; Huang, J.; Barzilai, N.; Suh, Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell, 2011, 10(3), 551-554.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00697.x] [PMID: 21388493]
[16]
Suh, Y.; Atzmon, G.; Cho, M.O.; Hwang, D.; Liu, B.; Leahy, D.J.; Barzilai, N.; Cohen, P. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3438-3442.
[http://dx.doi.org/10.1073/pnas.0705467105] [PMID: 18316725]
[17]
Harper, J.M.; Durkee, S.J.; Dysko, R.C.; Austad, S.N.; Miller, R.A. Genetic modulation of hormone levels and life span in hybrids between laboratory and wild-derived mice. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(10), 1019-1029.
[http://dx.doi.org/10.1093/gerona/61.10.1019] [PMID: 17077194]
[18]
Murakami, S. Stress resistance in long-lived mouse models. Exp. Gerontol., 2006, 41(10), 1014-1019.
[http://dx.doi.org/10.1016/j.exger.2006.06.061] [PMID: 16962277]
[19]
Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol., 2010, 2010 214074
[http://dx.doi.org/10.1155/2010/214074] [PMID: 20182529]
[20]
Wullschleger, S.; Loewith, R.; Hall, M.N. TOR signaling in growth and metabolism. Cell, 2006, 124(3), 471-484.
[http://dx.doi.org/10.1016/j.cell.2006.01.016] [PMID: 16469695]
[21]
Guevara-Aguirre, J.; Balasubramanian, P.; Guevara-Aguirre, M.; Wei, M.; Madia, F.; Cheng, C.W.; Hwang, D.; Martin-Montalvo, A.; Saavedra, J.; Ingles, S.; de Cabo, R.; Cohen, P.; Longo, V.D. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med., 2011, 3(70) 70ra13
[http://dx.doi.org/10.1126/scitranslmed.3001845] [PMID: 21325617]
[22]
Willcox, B.J.; Donlon, T.A.; He, Q.; Chen, R.; Grove, J.S.; Yano, K.; Masaki, K.H.; Willcox, D.C.; Rodriguez, B.; Curb, J.D. FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. USA, 2008, 105(37), 13987-13992.
[http://dx.doi.org/10.1073/pnas.0801030105] [PMID: 18765803]
[23]
van Heemst, D.; Beekman, M.; Mooijaart, S.P.; Heijmans, B.T.; Brandt, B.W.; Zwaan, B.J.; Slagboom, P.E.; Westendorp, R.G. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell, 2005, 4(2), 79-85.
[http://dx.doi.org/10.1111/j.1474-9728.2005.00148.x] [PMID: 15771611]
[24]
Pawlikowska, L.; Hu, D.; Huntsman, S.; Sung, A.; Chu, C.; Chen, J.; Joyner, A.H.; Schork, N.J.; Hsueh, W.C.; Reiner, A.P.; Psaty, B.M.; Atzmon, G.; Barzilai, N.; Cummings, S.R.; Browner, W.S.; Kwok, P.Y.; Ziv, E. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell, 2009, 8(4), 460-472.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00493.x] [PMID: 19489743]
[25]
Anselmi, C.V.; Malovini, A.; Roncarati, R.; Novelli, V.; Villa, F.; Condorelli, G.; Bellazzi, R.; Puca, A.A. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res., 2009, 12(2), 95-104.
[http://dx.doi.org/10.1089/rej.2008.0827] [PMID: 19415983]
[26]
Sanese, P.; Forte, G.; Disciglio, V.; Grossi, V.; Simone, C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput. Struct. Biotechnol. J., 2019, 17, 737-745.
[http://dx.doi.org/10.1016/j.csbj.2019.06.011] [PMID: 31303978]
[27]
McCay, C.M.; Crowell, M.F.; Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 1989, 5(3), 155-171.
[PMID: 2520283]
[28]
Omodei, D.; Fontana, L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett., 2011, 585(11), 1537-1542.
[http://dx.doi.org/10.1016/j.febslet.2011.03.015] [PMID: 21402069]
[29]
Larson-Meyer, D.E.; Newcomer, B.R.; Heilbronn, L.K.; Volaufova, J.; Smith, S.R.; Alfonso, A.J.; Lefevre, M.; Rood, J.C.; Williamson, D.A.; Ravussin, E. Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity (Silver Spring), 2008, 16(6), 1355-1362.
[http://dx.doi.org/10.1038/oby.2008.201] [PMID: 18421281]
[30]
Heilbronn, L.K.; de Jonge, L.; Frisard, M.I.; DeLany, J.P.; Larson-Meyer, D.E.; Rood, J.; Nguyen, T.; Martin, C.K.; Volaufova, J.; Most, M.M.; Greenway, F.L.; Smith, S.R.; Deutsch, W.A.; Williamson, D.A.; Ravussin, E. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA, 2006, 295(13), 1539-1548.
[http://dx.doi.org/10.1001/jama.295.13.1539] [PMID: 16595757]
[31]
Colman, R.J.; Anderson, R.M.; Johnson, S.C.; Kastman, E.K.; Kosmatka, K.J.; Beasley, T.M.; Allison, D.B.; Cruzen, C.; Simmons, H.A.; Kemnitz, J.W.; Weindruch, R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325(5937), 201-204.
[http://dx.doi.org/10.1126/science.1173635] [PMID: 19590001]
[32]
Mattison, J.A.; Roth, G.S.; Beasley, T.M.; Tilmont, E.M.; Handy, A.M.; Herbert, R.L.; Longo, D.L.; Allison, D.B.; Young, J.E.; Bryant, M.; Barnard, D.; Ward, W.F.; Qi, W.; Ingram, D.K.; de Cabo, R. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 2012, 489(7415), 318-321.
[http://dx.doi.org/10.1038/nature11432] [PMID: 22932268]
[33]
Kapahi, P.; Kaeberlein, M.; Hansen, M. Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Res. Rev., 2017, 39, 3-14.
[http://dx.doi.org/10.1016/j.arr.2016.12.005] [PMID: 28007498]
[34]
Harrela, M.; Koistinen, H.; Kaprio, J.; Lehtovirta, M.; Tuomilehto, J.; Eriksson, J.; Toivanen, L.; Koskenvuo, M.; Leinonen, P.; Koistinen, R.; Seppälä, M. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J. Clin. Invest., 1996, 98(11), 2612-2615.
[http://dx.doi.org/10.1172/JCI119081] [PMID: 8958225]
[35]
Hong, Y.; Pedersen, N.L.; Brismar, K.; Hall, K.; de Faire, U. Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins. J. Clin. Endocrinol. Metab., 1996, 81(5), 1791-1797.
[PMID: 8626837]
[36]
Thissen, J.P.; Ketelslegers, J.M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev., 1994, 15(1), 80-101.
[PMID: 8156941]
[37]
Underwood, L.E. Nutritional regulation of IGF-I and IGFBPs. J. Pediatr. Endocrinol. Metab., 1996, 9(Suppl. 3), 303-312.
[PMID: 8887175]
[38]
Chen, W.; Sudji, I.R.; Wang, E.; Joubert, E.; van Wyk, B.E.; Wink, M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine, 2013, 20(3-4), 380-386.
[PMID: 23218401]
[39]
Pietsch, K.; Saul, N.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology, 2009, 10(5), 565-578.
[http://dx.doi.org/10.1007/s10522-008-9199-6] [PMID: 19043800]
[40]
Hada, B.; Yoo, M.R.; Seong, K.M.; Jin, Y.W.; Myeong, H.K.; Min, K.J. D-chiro-inositol and pinitol extend the life span of Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(3), 226-234.
[http://dx.doi.org/10.1093/gerona/gls156] [PMID: 22843669]
[41]
Si, H.; Fu, Z.; Babu, P.V.; Zhen, W.; Leroith, T.; Meaney, M.P.; Voelker, K.A.; Jia, Z.; Grange, R.W.; Liu, D. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J. Nutr., 2011, 141(6), 1095-1100.
[http://dx.doi.org/10.3945/jn.110.134270] [PMID: 21525262]
[42]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[43]
Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; Jamieson, H.A.; Zhang, Y.; Dunn, S.R.; Sharma, K.; Pleshko, N.; Woollett, L.A.; Csiszar, A.; Ikeno, Y.; Le Couteur, D.; Elliott, P.J.; Becker, K.G.; Navas, P.; Ingram, D.K.; Wolf, N.S.; Ungvari, Z.; Sinclair, D.A.; de Cabo, R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab., 2008, 8(2), 157-168.
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[44]
Miller, R.A.; Harrison, D.E.; Astle, C.M.; Baur, J.A.; Boyd, A.R.; de Cabo, R.; Fernandez, E.; Flurkey, K.; Javors, M.A.; Nelson, J.F.; Orihuela, C.J.; Pletcher, S.; Sharp, Z.D.; Sinclair, D.; Starnes, J.W.; Wilkinson, J.E.; Nadon, N.L.; Strong, R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2011, 66(2), 191-201.
[http://dx.doi.org/10.1093/gerona/glq178] [PMID: 20974732]
[45]
Liu, C.; Lian, F.; Smith, D.E.; Russell, R.M.; Wang, X.D. Lycopene supplementation inhibits lung squamous metaplasia and induces apoptosis via up-regulating insulin-like growth factor-binding protein 3 in cigarette smoke-exposed ferrets. Cancer Res., 2003, 63(12), 3138-3144.
[PMID: 12810641]
[46]
Karas, M.; Amir, H.; Fishman, D.; Danilenko, M.; Segal, S.; Nahum, A.; Koifmann, A.; Giat, Y.; Levy, J.; Sharoni, Y. Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr. Cancer, 2000, 36(1), 101-111.
[http://dx.doi.org/10.1207/S15327914NC3601_14] [PMID: 10798222]
[47]
Kucuk, O.; Sarkar, F.H.; Sakr, W.; Djuric, Z.; Pollak, M.N.; Khachik, F.; Li, Y.W.; Banerjee, M.; Grignon, D.; Bertram, J.S.; Crissman, J.D.; Pontes, E.J.; Wood, D.P., Jr Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol. Biomarkers Prev., 2001, 10(8), 861-868.
[PMID: 11489752]
[48]
Ma, J.; Giovannucci, E.; Pollak, M.; Chan, J.M.; Gaziano, J.M.; Willett, W.; Stampfer, M.J. Milk intake, circulating levels of insulin-like growth factor-I, and risk of colorectal cancer in men. J. Natl. Cancer Inst., 2001, 93(17), 1330-1336.
[http://dx.doi.org/10.1093/jnci/93.17.1330] [PMID: 11535708]
[49]
Holmes, M.D.; Pollak, M.N.; Willett, W.C.; Hankinson, S.E. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol. Biomarkers Prev., 2002, 11(9), 852-861.
[PMID: 12223429]
[50]
Diener, A.; Rohrmann, S. Associations of serum carotenoid concentrations and fruit or vegetable consumption with serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentrations in the Third National Health and Nutrition Examination Survey (NHANES III). J. Nutr. Sci., 2016. 5e13
[http://dx.doi.org/10.1017/jns.2016.1] [PMID: 27313849]
[51]
Zhu, Z.; Jiang, W.; Thompson, H.J. Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis, 2003, 24(7), 1225-1231.
[http://dx.doi.org/10.1093/carcin/bgg077] [PMID: 12807724]
[52]
Edwards, C.; Canfield, J.; Copes, N.; Rehan, M.; Lipps, D.; Bradshaw, P.C. D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY), 2014, 6(8), 621-644.
[http://dx.doi.org/10.18632/aging.100683] [PMID: 25127866]
[53]
Veech, R.L.; Bradshaw, P.C.; Clarke, K.; Curtis, W.; Pawlosky, R.; King, M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life, 2017, 69(5), 305-314.
[http://dx.doi.org/10.1002/iub.1627] [PMID: 28371201]
[54]
Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab., 2014, 25(1), 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[55]
Montero, J.C.; Seoane, S.; Ocaña, A.; Pandiella, A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin. Cancer Res., 2011, 17(17), 5546-5552.
[PMID: 21670084]
[56]
Chang, Q.; Jorgensen, C.; Pawson, T.; Hedley, D.W. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br. J. Cancer, 2008, 99(7), 1074-1082.
[http://dx.doi.org/10.1038/sj.bjc.6604676] [PMID: 18797457]
[57]
Olave, N.C.; Grenett, M.H.; Cadeiras, M.; Grenett, H.E.; Higgins, P.J. Upstream stimulatory factor-2 mediates quercetin-induced suppression of PAI-1 gene expression in human endothelial cells. J. Cell. Biochem., 2010, 111(3), 720-726.
[http://dx.doi.org/10.1002/jcb.22760] [PMID: 20626032]
[58]
Bruning, A. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 1025-1031.
[http://dx.doi.org/10.2174/18715206113139990114] [PMID: 23272907]
[59]
Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; O’Hara, S.P.; LaRusso, N.F.; Miller, J.D.; Roos, C.M.; Verzosa, G.C.; LeBrasseur, N.K.; Wren, J.D.; Farr, J.N.; Khosla, S.; Stout, M.B.; McGowan, S.J.; Fuhrmann-Stroissnigg, H.; Gurkar, A.U.; Zhao, J.; Colangelo, D.; Dorronsoro, A.; Ling, Y.Y.; Barghouthy, A.S.; Navarro, D.C.; Sano, T.; Robbins, P.D.; Niedernhofer, L.J.; Kirkland, J.L. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14(4), 644-658.
[http://dx.doi.org/10.1111/acel.12344] [PMID: 25754370]
[60]
Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; Onken, J.L.; Johnson, K.O.; Verzosa, G.C.; Langhi, L.G.P.; Weigl, M.; Giorgadze, N.; LeBrasseur, N.K.; Miller, J.D.; Jurk, D.; Singh, R.J.; Allison, D.B.; Ejima, K.; Hubbard, G.B.; Ikeno, Y.; Cubro, H.; Garovic, V.D.; Hou, X.; Weroha, S.J.; Robbins, P.D.; Niedernhofer, L.J.; Khosla, S.; Tchkonia, T.; Kirkland, J.L. Senolytics improve physical function and increase lifespan in old age. Nat. Med., 2018, 24(8), 1246-1256.
[http://dx.doi.org/10.1038/s41591-018-0092-9] [PMID: 29988130]
[61]
Mao, K.; Quipildor, G.F.; Tabrizian, T.; Novaj, A.; Guan, F.; Walters, R.O.; Delahaye, F.; Hubbard, G.B.; Ikeno, Y.; Ejima, K.; Li, P.; Allison, D.B.; Salimi-Moosavi, H.; Beltran, P.J.; Cohen, P.; Barzilai, N.; Huffman, D.M. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun., 2018, 9(1), 2394.
[http://dx.doi.org/10.1038/s41467-018-04805-5] [PMID: 29921922]
[62]
Guarente, L.; Picard, F. Calorie restriction--the SIR2 connection. Cell, 2005, 120(4), 473-482.
[http://dx.doi.org/10.1016/j.cell.2005.01.029] [PMID: 15734680]
[63]
Poulose, N.; Raju, R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta, 2015, 1852(11), 2442-2455.
[http://dx.doi.org/10.1016/j.bbadis.2015.08.017] [PMID: 26303641]
[64]
Bosch-Presegué, L.; Vaquero, A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J., 2015, 282(9), 1745-1767.
[http://dx.doi.org/10.1111/febs.13053] [PMID: 25223884]
[65]
Barcena de Arellano, M.L.; Pozdniakova, S.; Kühl, A.A.; Baczko, I.; Ladilov, Y.; Regitz-Zagrosek, V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging (Albany NY), 2019, 11(7), 1918-1933.
[http://dx.doi.org/10.18632/aging.101881] [PMID: 30964749]
[66]
Verdin, E.; Hirschey, M.D.; Finley, L.W.; Haigis, M.C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci., 2010, 35(12), 669-675.
[http://dx.doi.org/10.1016/j.tibs.2010.07.003] [PMID: 20863707]
[67]
Chang, H.C.; Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab., 2014, 25(3), 138-145.
[http://dx.doi.org/10.1016/j.tem.2013.12.001] [PMID: 24388149]
[68]
Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol., 2007, 72, 483-488.
[http://dx.doi.org/10.1101/sqb.2007.72.024] [PMID: 18419308]
[69]
Masri, S.; Sassone-Corsi, P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal., 2014, 7(342), re6.
[http://dx.doi.org/10.1126/scisignal.2005685] [PMID: 25205852]
[70]
Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun., 2000, 273(2), 793-798.
[http://dx.doi.org/10.1006/bbrc.2000.3000] [PMID: 10873683]
[71]
Lee, S.H.; Lee, J.H.; Lee, H.Y.; Min, K.J. Sirtuin signaling in cellular senescence and aging. BMB Rep., 2019, 52(1), 24-34.
[http://dx.doi.org/10.5483/BMBRep.2019.52.1.290] [PMID: 30526767]
[72]
Vaquero, A.; Scher, M.B.; Lee, D.H.; Sutton, A.; Cheng, H.L.; Alt, F.W.; Serrano, L.; Sternglanz, R.; Reinberg, D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev., 2006, 20(10), 1256-1261.
[http://dx.doi.org/10.1101/gad.1412706] [PMID: 16648462]
[73]
Michishita, E.; Park, J.Y.; Burneskis, J.M.; Barrett, J.C.; Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell, 2005, 16(10), 4623-4635.
[http://dx.doi.org/10.1091/mbc.e05-01-0033] [PMID: 16079181]
[74]
Osborne, B.; Bentley, N.L.; Montgomery, M.K.; Turner, N. The role of mitochondrial sirtuins in health and disease. Free Radic. Biol. Med., 2016, 100, 164-174.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.197] [PMID: 27164052]
[75]
Morigi, M.; Perico, L.; Benigni, A. Sirtuins in renal health and disease. J. Am. Soc. Nephrol., 2018, 29(7), 1799-1809.
[http://dx.doi.org/10.1681/ASN.2017111218] [PMID: 29712732]
[76]
Nishida, Y.; Rardin, M.J.; Carrico, C.; He, W.; Sahu, A.K.; Gut, P.; Najjar, R.; Fitch, M.; Hellerstein, M.; Gibson, B.W.; Verdin, E. SIRT5 Regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell, 2015, 59(2), 321-332.
[http://dx.doi.org/10.1016/j.molcel.2015.05.022] [PMID: 26073543]
[77]
Park, J.; Chen, Y.; Tishkoff, D.X.; Peng, C.; Tan, M.; Dai, L.; Xie, Z.; Zhang, Y.; Zwaans, B.M.; Skinner, M.E.; Lombard, D.B.; Zhao, Y. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell, 2013, 50(6), 919-930.
[http://dx.doi.org/10.1016/j.molcel.2013.06.001] [PMID: 23806337]
[78]
Tan, M.; Peng, C.; Anderson, K.A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; Ro, J.; Wagner, G.R.; Green, M.F.; Madsen, A.S.; Schmiesing, J.; Peterson, B.S.; Xu, G.; Ilkayeva, O.R.; Muehlbauer, M.J.; Braulke, T.; Mühlhausen, C.; Backos, D.S.; Olsen, C.A.; McGuire, P.J.; Pletcher, S.D.; Lombard, D.B.; Hirschey, M.D.; Zhao, Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab., 2014, 19(4), 605-617.
[http://dx.doi.org/10.1016/j.cmet.2014.03.014] [PMID: 24703693]
[79]
Liszt, G.; Ford, E.; Kurtev, M.; Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem., 2005, 280(22), 21313-21320.
[http://dx.doi.org/10.1074/jbc.M413296200] [PMID: 15795229]
[80]
van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med., 2017, 23(4), 320-331.
[http://dx.doi.org/10.1016/j.molmed.2017.02.005] [PMID: 28285806]
[81]
Poljsak, B.; Milisav, I. NAD+ as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity, and health span. Rejuvenation Res., 2016, 19(5), 406-415.
[http://dx.doi.org/10.1089/rej.2015.1767] [PMID: 26725653]
[82]
Costford, S.R.; Bajpeyi, S.; Pasarica, M.; Albarado, D.C.; Thomas, S.C.; Xie, H.; Church, T.S.; Jubrias, S.A.; Conley, K.E.; Smith, S.R. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab., 2010, 298(1), E117-E126.
[http://dx.doi.org/10.1152/ajpendo.00318.2009] [PMID: 19887595]
[83]
Bitterman, K.J.; Anderson, R.M.; Cohen, H.Y.; Latorre-Esteves, M.; Sinclair, D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem., 2002, 277(47), 45099-45107.
[http://dx.doi.org/10.1074/jbc.M205670200] [PMID: 12297502]
[84]
Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol., 2014, 24(8), 464-471.
[http://dx.doi.org/10.1016/j.tcb.2014.04.002] [PMID: 24786309]
[85]
Sasaki, T.; Maier, B.; Bartke, A.; Scrable, H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell, 2006, 5(5), 413-422.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00235.x] [PMID: 16939484]
[86]
Stamatovic, S.M.; Martinez-Revollar, G.; Hu, A.; Choi, J.; Keep, R.F.; Andjelkovic, A.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol. Dis., 2019, 126, 105-116.
[http://dx.doi.org/10.1016/j.nbd.2018.09.006] [PMID: 30196051]
[87]
Rimmelé, P.; Bigarella, C.L.; Liang, R.; Izac, B.; Dieguez-Gonzalez, R.; Barbet, G.; Donovan, M.; Brugnara, C.; Blander, J.M.; Sinclair, D.A.; Ghaffari, S. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports, 2014, 3(1), 44-59.
[http://dx.doi.org/10.1016/j.stemcr.2014.04.015] [PMID: 25068121]
[88]
Gong, H.; Pang, J.; Han, Y.; Dai, Y.; Dai, D.; Cai, J.; Zhang, T.M. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol. Med. Rep., 2014, 10(6), 3296-3302.
[http://dx.doi.org/10.3892/mmr.2014.2648] [PMID: 25323555]
[89]
Lafontaine-Lacasse, M.; Richard, D.; Picard, F. Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neurosci. Lett., 2010, 480(1), 1-3.
[http://dx.doi.org/10.1016/j.neulet.2010.01.008] [PMID: 20074616]
[90]
Yamashita, S.; Ogawa, K.; Ikei, T.; Udono, M.; Fujiki, T.; Katakura, Y. SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene. Biochem. Biophys. Res. Commun., 2012, 417(1), 630-634.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.021] [PMID: 22197555]
[91]
Wątroba, M.; Dudek, I.; Skoda, M.; Stangret, A.; Rzodkiewicz, P.; Szukiewicz, D. Sirtuins, epigenetics and longevity. Ageing Res. Rev., 2017, 40, 11-19.
[http://dx.doi.org/10.1016/j.arr.2017.08.001] [PMID: 28789901]
[92]
Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; Hu, L.S.; Cheng, H.L.; Jedrychowski, M.P.; Gygi, S.P.; Sinclair, D.A.; Alt, F.W.; Greenberg, M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303(5666), 2011-2015.
[http://dx.doi.org/10.1126/science.1094637] [PMID: 14976264]
[93]
Langley, E.; Pearson, M.; Faretta, M.; Bauer, U.M.; Frye, R.A.; Minucci, S.; Pelicci, P.G.; Kouzarides, T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J., 2002, 21(10), 2383-2396.
[http://dx.doi.org/10.1093/emboj/21.10.2383] [PMID: 12006491]
[94]
Vaquero, A. The conserved role of sirtuins in chromatin regulation. Int. J. Dev. Biol., 2009, 53(2-3), 303-322.
[http://dx.doi.org/10.1387/ijdb.082675av] [PMID: 19378253]
[95]
Das, C.; Lucia, M.S.; Hansen, K.C.; Tyler, J.K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 2009, 459(7243), 113-117.
[http://dx.doi.org/10.1038/nature07861] [PMID: 19270680]
[96]
Sinclair, D.A.; Guarente, L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell, 1997, 91(7), 1033-1042.
[http://dx.doi.org/10.1016/S0092-8674(00)80493-6] [PMID: 9428525]
[97]
Tissenbaum, H.A.; Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 2001, 410(6825), 227-230.
[http://dx.doi.org/10.1038/35065638] [PMID: 11242085]
[98]
Rogina, B.; Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA, 2004, 101(45), 15998-16003.
[http://dx.doi.org/10.1073/pnas.0404184101] [PMID: 15520384]
[99]
Kanfi, Y.; Naiman, S.; Amir, G.; Peshti, V.; Zinman, G.; Nahum, L.; Bar-Joseph, Z.; Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature, 2012, 483(7388), 218-221.
[http://dx.doi.org/10.1038/nature10815] [PMID: 22367546]
[100]
Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab., 2013, 18(3), 416-430.
[http://dx.doi.org/10.1016/j.cmet.2013.07.013] [PMID: 24011076]
[101]
Vazquez, B.N.; Thackray, J.K.; Simonet, N.G.; Kane-Goldsmith, N.; Martinez-Redondo, P.; Nguyen, T.; Bunting, S.; Vaquero, A.; Tischfield, J.A.; Serrano, L. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J., 2016, 35(14), 1488-1503.
[http://dx.doi.org/10.15252/embj.201593499] [PMID: 27225932]
[102]
Mostoslavsky, R.; Chua, K.F.; Lombard, D.B.; Pang, W.W.; Fischer, M.R.; Gellon, L.; Liu, P.; Mostoslavsky, G.; Franco, S.; Murphy, M.M.; Mills, K.D.; Patel, P.; Hsu, J.T.; Hong, A.L.; Ford, E.; Cheng, H.L.; Kennedy, C.; Nunez, N.; Bronson, R.; Frendewey, D.; Auerbach, W.; Valenzuela, D.; Karow, M.; Hottiger, M.O.; Hursting, S.; Barrett, J.C.; Guarente, L.; Mulligan, R.; Demple, B.; Yancopoulos, G.D.; Alt, F.W. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 2006, 124(2), 315-329.
[http://dx.doi.org/10.1016/j.cell.2005.11.044] [PMID: 16439206]
[103]
Ferrer, C.M.; Alders, M.; Postma, A.V.; Park, S.; Klein, M.A.; Cetinbas, M.; Pajkrt, E.; Glas, A.; van Koningsbruggen, S.; Christoffels, V.M.; Mannens, M.M.A.M.; Knegt, L.; Etchegaray, J.P.; Sadreyev, R.I.; Denu, J.M.; Mostoslavsky, G.; van Maarle, M.C.; Mostoslavsky, R. An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev., 2018, 32(5-6), 373-388.
[http://dx.doi.org/10.1101/gad.307330.117] [PMID: 29555651]
[104]
Ghosh, H.S.; McBurney, M.; Robbins, P.D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One, 2010, 5(2) e9199
[http://dx.doi.org/10.1371/journal.pone.0009199] [PMID: 20169165]
[105]
Nisoli, E.; Tonello, C.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Falcone, S.; Valerio, A.; Cantoni, O.; Clementi, E.; Moncada, S.; Carruba, M.O. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005, 310(5746), 314-317.
[http://dx.doi.org/10.1126/science.1117728] [PMID: 16224023]
[106]
Cohen, H.Y.; Miller, C.; Bitterman, K.J.; Wall, N.R.; Hekking, B.; Kessler, B.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305(5682), 390-392.
[http://dx.doi.org/10.1126/science.1099196] [PMID: 15205477]
[107]
Civitarese, A.E.; Carling, S.; Heilbronn, L.K.; Hulver, M.H.; Ukropcova, B.; Deutsch, W.A.; Smith, S.R.; Ravussin, E. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med., 2007, 4(3) e76
[http://dx.doi.org/10.1371/journal.pmed.0040076] [PMID: 17341128]
[108]
Lan, F.; Cacicedo, J.M.; Ruderman, N.; Ido, Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem., 2008, 283(41), 27628-27635.
[http://dx.doi.org/10.1074/jbc.M805711200] [PMID: 18687677]
[109]
McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L.; Ratti, S.; Martelli, A.M.; Laidler, P.; Dulińska-Litewka, J.; Rakus, D.; Gizak, A.; Lombardi, P.; Nicoletti, F.; Candido, S.; Libra, M.; Montalto, G.; Cervello, M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY), 2017, 9(6), 1477-1536.
[http://dx.doi.org/10.18632/aging.101250] [PMID: 28611316]
[110]
Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425(6954), 191-196.
[http://dx.doi.org/10.1038/nature01960] [PMID: 12939617]
[111]
Morris, B.J. Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med., 2013, 56, 133-171.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.525] [PMID: 23104101]
[112]
Um, J.H.; Park, S.J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes, 2010, 59(3), 554-563.
[http://dx.doi.org/10.2337/db09-0482] [PMID: 19934007]
[113]
Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; Kim, M.K.; Beaven, M.A.; Burgin, A.B.; Manganiello, V.; Chung, J.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148(3), 421-433.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[114]
Giovannini, L.; Bianchi, S. Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition, 2017, 34, 82-96.
[http://dx.doi.org/10.1016/j.nut.2016.09.008] [PMID: 28063518]
[115]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In Vitro and In Vivo Studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015 837042
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[116]
Martin, C.K.; Bhapkar, M.; Pittas, A.G.; Pieper, C.F.; Das, S.K.; Williamson, D.A.; Scott, T.; Redman, L.M.; Stein, R.; Gilhooly, C.H.; Stewart, T.; Robinson, L.; Roberts, S.B. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: The calerie 2 randomized clinical trial. JAMA Intern. Med., 2016, 176(6), 743-752.
[http://dx.doi.org/10.1001/jamainternmed.2016.1189] [PMID: 27136347]
[117]
Roggerio, A.; Strunz, C.M.C.; Pacanaro, A.P.; Leal, D.P.; Takada, J.Y.; Avakian, S.D.; Mansur, A.P. Gene expression of sirtuin-1 and endogenous secretory receptor for advanced glycation end products in healthy and slightly overweight subjects after caloric restriction and resveratrol administration. Nutrients, 2018, 10(7) E937
[http://dx.doi.org/10.3390/nu10070937] [PMID: 30037068]
[118]
Zamora-Ros, R.; Urpi-Sarda, M.; Lamuela-Raventós, R.M.; Martínez-González, M.A.; Salas-Salvadó, J.; Arós, F.; Fitó, M.; Lapetra, J.; Estruch, R.; Andres-Lacueva, C. High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients. Pharmacol. Res., 2012, 65(6), 615-620.
[http://dx.doi.org/10.1016/j.phrs.2012.03.009] [PMID: 22465220]
[119]
Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol., 2012, 110(3), 356-363.
[http://dx.doi.org/10.1016/j.amjcard.2012.03.030] [PMID: 22520621]
[120]
Yousefzadeh, M.J.; Zhu, Y.; McGowan, S.J.; Angelini, L.; Fuhrmann-Stroissnigg, H.; Xu, M.; Ling, Y.Y.; Melos, K.I.; Pirtskhalava, T.; Inman, C.L.; McGuckian, C.; Wade, E.A.; Kato, J.I.; Grassi, D.; Wentworth, M.; Burd, C.E.; Arriaga, E.A.; Ladiges, W.L.; Tchkonia, T.; Kirkland, J.L.; Robbins, P.D.; Niedernhofer, L.J. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.015] [PMID: 30279143]
[121]
Ahmad, A.; Ali, T.; Park, H.Y.; Badshah, H.; Rehman, S.U.; Kim, M.O. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol. Neurobiol., 2017, 54(3), 2269-2285.
[http://dx.doi.org/10.1007/s12035-016-9795-4] [PMID: 26944285]
[122]
Ehren, J.L.; Maher, P. Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin. Biochem. Pharmacol., 2013, 85(12), 1816-1826.
[http://dx.doi.org/10.1016/j.bcp.2013.04.010] [PMID: 23618921]
[123]
Singh, S.; Singh, A.K.; Garg, G.; Rizvi, S.I. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci., 2018, 193, 171-179.
[http://dx.doi.org/10.1016/j.lfs.2017.11.004] [PMID: 29122553]
[124]
Zheng, W.; Feng, Z.; You, S.; Zhang, H.; Tao, Z.; Wang, Q.; Chen, H.; Wu, Y. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int. Immunopharmacol., 2017, 45, 135-147.
[http://dx.doi.org/10.1016/j.intimp.2017.02.009] [PMID: 28213268]
[125]
Kim, A.; Lee, W.; Yun, J.M. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions. Nutr. Res. Pract., 2017, 11(5), 430-434.
[http://dx.doi.org/10.4162/nrp.2017.11.5.430] [PMID: 28989580]
[126]
Jung, H.Y.; Lee, D.; Ryu, H.G.; Choi, B.H.; Go, Y.; Lee, N.; Lee, D.; Son, H.G.; Jeon, J.; Kim, S.H.; Yoon, J.H.; Park, S.M.; Lee, S.V.; Lee, I.K.; Choi, K.Y.; Ryu, S.H.; Nohara, K.; Yoo, S.H.; Chen, Z.; Kim, K.T. Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Sci. Rep., 2017, 7(1), 6237.
[http://dx.doi.org/10.1038/s41598-017-05303-2] [PMID: 28740165]
[127]
Akindehin, S.; Jung, Y.S.; Kim, S.N.; Son, Y.H.; Lee, I.; Seong, J.K.; Jeong, H.W.; Lee, Y.H. Myricetin exerts anti-obesity effects through upregulation of sirt3 in adipose tissue. Nutrients, 2018, 10(12) E1962
[http://dx.doi.org/10.3390/nu10121962] [PMID: 30545041]
[128]
Zhu, Y.; Wang, K.; Ma, Z.; Liu, D.; Yang, Y.; Sun, M.; Wen, A.; Hao, Y.; Ma, S.; Ren, F.; Xin, Z.; Li, Y.; Di, S.; Liu, J. SIRT1 activation by butein attenuates sepsis-induced brain injury in mice subjected to cecal ligation and puncture via alleviating inflammatory and oxidative stress. Toxicol. Appl. Pharmacol., 2019, 363, 34-46.
[http://dx.doi.org/10.1016/j.taap.2018.10.013] [PMID: 30336174]
[129]
Padmavathi, G.; Roy, N.K.; Bordoloi, D.; Arfuso, F.; Mishra, S.; Sethi, G. Butein in health and disease: A comprehensive review. Phytomedicine, 2017, 25, 118-127.
[http://dx.doi.org/10.1016/j.phymed.2016.12.002]
[130]
Padmavathi, G.; Rathnakaram, S.R.; Monisha, J.; Bordoloi, D.; Roy, N.K.; Kunnumakkara, A.B. Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine, 2015, 22(13), 1163-1171.
[http://dx.doi.org/10.1016/j.phymed.2015.08.015]
[131]
Kang, D.G.; Kim, Y.C.; Sohn, E.J.; Lee, Y.M.; Lee, A.S.; Yin, M.H.; Lee, H.S. Hypotensive effect of butein via the inhibition of angiotensin converting enzyme. Biol. Pharm. Bull., 2003, 26(9), 1345-1347.
[http://dx.doi.org/10.1248/bpb.26.1345] [PMID: 12951484]
[132]
Song, N.J.; Yoon, H.J.; Kim, K.H.; Jung, S.R.; Jang, W.S.; Seo, C.R.; Lee, Y.M.; Kweon, D.H.; Hong, J.W.; Lee, J.S.; Park, K.M.; Lee, K.R.; Park, K.W. Butein is a novel anti-adipogenic compound. J. Lipid Res., 2013, 54(5), 1385-1396.
[http://dx.doi.org/10.1194/jlr.M035576] [PMID: 23468131]
[133]
Carmona-Gutierrez, D.; Zimmermann, A.; Kainz, K.; Pietrocola, F.; Chen, G.; Maglioni, S.; Schiavi, A.; Nah, J.; Mertel, S.; Beuschel, C.B.; Castoldi, F.; Sica, V.; Trausinger, G.; Raml, R.; Sommer, C.; Schroeder, S.; Hofer, S.J.; Bauer, M.A.; Pendl, T.; Tadic, J.; Dammbrueck, C.; Hu, Z.; Ruckenstuhl, C.; Eisenberg, T.; Durand, S.; Bossut, N.; Aprahamian, F.; Abdellatif, M.; Sedej, S.; Enot, D.P.; Wolinski, H.; Dengjel, J.; Kepp, O.; Magnes, C.; Sinner, F.; Pieber, T.R.; Sadoshima, J.; Ventura, N.; Sigrist, S.J.; Kroemer, G.; Madeo, F. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat. Commun., 2019, 10(1), 651.
[http://dx.doi.org/10.1038/s41467-019-08555-w] [PMID: 30783116]
[134]
Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; Michaud, M.; Madeo, F.; Tavernarakis, N.; Kroemer, G. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis., 2010, 1 e10
[http://dx.doi.org/10.1038/cddis.2009.8] [PMID: 21364612]
[135]
Zimmermann, A.; Kainz, K.; Hofer, S.J.; Bauer, M.A.; Schroeder, S.; Dengjel, J.; Pietrocola, F.; Kepp, O.; Ruckenstuhl, C.; Eisenberg, T.; Sigrist, S.J.; Madeo, F.; Carmona-Gutierrez, D.; Kroemer, G. 4,4'Dimethoxychalcone: a natural flavonoid that promotes health through autophagy-dependent and -independent effects. Autophagy, 2019, 15(9), 1662-1664.
[http://dx.doi.org/10.1080/15548627.2019.1632623] [PMID: 31248332]
[136]
Shen, L.R.; Parnell, L.D.; Ordovas, J.M.; Lai, C.Q. Curcumin and aging. Biofactors, 2013, 39(1), 133-140.
[http://dx.doi.org/10.1002/biof.1086] [PMID: 23325575]
[137]
Kitani, K.; Osawa, T.; Yokozawa, T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology, 2007, 8(5), 567-573.
[http://dx.doi.org/10.1007/s10522-007-9100-z] [PMID: 17516143]
[138]
Sun, Y.; Hu, X.; Hu, G.; Xu, C.; Jiang, H. curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biol. Pharm. Bull., 2015, 38(8), 1134-1141.
[http://dx.doi.org/10.1248/bpb.b15-00012] [PMID: 26235577]
[139]
Hu, A.; Huang, J.J.; Li, R.L.; Lu, Z.Y.; Duan, J.L.; Xu, W.H.; Chen, X.P.; Fan, J.P. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1. Sci. Rep., 2015, 5, 13429.
[http://dx.doi.org/10.1038/srep13429] [PMID: 26299580]
[140]
Yang, Y.; Duan, W.; Lin, Y.; Yi, W.; Liang, Z.; Yan, J.; Wang, N.; Deng, C.; Zhang, S.; Li, Y.; Chen, W.; Yu, S.; Yi, D.; Jin, Z. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic. Biol. Med., 2013, 65, 667-679.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.007] [PMID: 23880291]
[141]
Navrotskaya, V.; Oxenkrug, G.; Vorobyova, L.; Summergrad, P. Berberine Attenuated aging-accelerating effect of high temperature in drosophila model. Am. J. Plant Sci., 2014, 5(3), 275-278.
[http://dx.doi.org/10.4236/ajps.2014.53037] [PMID: 26167393]
[142]
Xu, Z.; Feng, W.; Shen, Q.; Yu, N.; Yu, K.; Wang, S.; Chen, Z.; Shioda, S.; Guo, Y. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and ampk activation. Aging Dis., 2017, 8(6), 760-777.
[http://dx.doi.org/10.14336/AD.2016.0620] [PMID: 29344415]
[143]
Zhu, X.; Guo, X.; Mao, G.; Gao, Z.; Wang, H.; He, Q.; Li, D. Hepatoprotection of berberine against hydrogen peroxide-induced apoptosis by upregulation of Sirtuin 1. Phytother. Res., 2013, 27(3), 417-421.
[http://dx.doi.org/10.1002/ptr.4728] [PMID: 22628222]
[144]
Yu, Y.; Zhao, Y.; Teng, F.; Li, J.; Guan, Y.; Xu, J.; Lv, X.; Guan, F.; Zhang, M.; Chen, L. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging ratS. J. Nutr. Health Aging, 2018, 22(6), 710-717.
[http://dx.doi.org/10.1007/s12603-018-1015-7] [PMID: 29806860]
[145]
Di Emidio, G.; Rossi, G.; Bonomo, I.; Alonso, G.L.; Sferra, R.; Vetuschi, A.; Artini, P.G.; Provenzani, A.; Falone, S.; Carta, G.; D’Alessandro, A.M.; Amicarelli, F.; Tatone, C. The natural carotenoid crocetin and the synthetic tellurium compound as101 protect the ovary against cyclophosphamide by modulating sirt1 and mitochondrial markers. Oxid. Med. Cell. Longev., 2017, 2017 8928604
[http://dx.doi.org/10.1155/2017/8928604] [PMID: 29270246]
[146]
Guo, Y.; Xing, L.; Chen, N.; Gao, C.; Ding, Z.; Jin, B. Total flavonoids from the Carya cathayensis Sarg. leaves inhibit HUVEC senescence through the miR-34a/SIRT1 pathway. J. Cell. Biochem., 2019, 120(10), 17240-17249.
[http://dx.doi.org/10.1002/jcb.28986] [PMID: 31106472]
[147]
Kida, Y.; Goligorsky, M.S. Sirtuins, Cell Senescence, and Vascular Aging. Can. J. Cardiol., 2016, 32(5), 634-641.
[http://dx.doi.org/10.1016/j.cjca.2015.11.022] [PMID: 26948035]
[148]
Kiss, T.; Balasubramanian, P.; Valcarcel-Ares, M.N.; Tarantini, S.; Yabluchanskiy, A.; Csipo, T.; Lipecz, A.; Reglodi, D.; Zhang, X.A.; Bari, F.; Farkas, E.; Csiszar, A.; Ungvari, Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience, 2019, 41(5), 619-630.
[http://dx.doi.org/10.1007/s11357-019-00074-2] [PMID: 31144244]
[149]
Gomes, A.P.; Price, N.L.; Ling, A.J.; Moslehi, J.J.; Montgomery, M.K.; Rajman, L.; White, J.P.; Teodoro, J.S.; Wrann, C.D.; Hubbard, B.P.; Mercken, E.M.; Palmeira, C.M.; de Cabo, R.; Rolo, A.P.; Turner, N.; Bell, E.L.; Sinclair, D.A. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 2013, 155(7), 1624-1638.
[http://dx.doi.org/10.1016/j.cell.2013.11.037] [PMID: 24360282]
[150]
Bogan, K.L.; Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr., 2008, 28, 115-130.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155443] [PMID: 18429699]
[151]
Poljsak, B.; Milisav, I. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics, and Aging Delay. Rejuvenation Res., 2018, 21(6), 506-509.
[http://dx.doi.org/10.1089/rej.2017.2037] [PMID: 29695187]
[152]
Knip, M.; Douek, I.F.; Moore, W.P.; Gillmor, H.A.; McLean, A.E.; Bingley, P.J.; Gale, E.A. Safety of high-dose nicotinamide: a review. Diabetologia, 2000, 43(11), 1337-1345.
[http://dx.doi.org/10.1007/s001250051536] [PMID: 11126400]
[153]
Trammell, S.A.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun., 2016, 7, 12948.
[http://dx.doi.org/10.1038/ncomms12948] [PMID: 27721479]
[154]
Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.L.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.; Seals, D.R. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun., 2018, 9(1), 1286.
[http://dx.doi.org/10.1038/s41467-018-03421-7] [PMID: 29599478]
[155]
Dollerup, O.L.; Trammell, S.A.J.; Hartmann, B.; Holst, J.J.; Christensen, B.; Møller, N.; Gillum, M.P.; Treebak, J.T.; Jessen, N. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J. Clin. Endocrinol. Metab., 2019, 104(11), 5703-5714.
[http://dx.doi.org/10.1210/jc.2019-01081] [PMID: 31390002]
[156]
Tsubota, K. The first human clinical study for NMN has started in Japan. NPJ Aging Mech. Dis., 2016, 2, 16021.
[http://dx.doi.org/10.1038/npjamd.2016.21] [PMID: 28721273]
[157]
Katsyuba, E.; Auwerx, J. Modulating NAD+ metabolism, from bench to bedside. EMBO J., 2017, 36(18), 2670-2683.
[http://dx.doi.org/10.15252/embj.201797135] [PMID: 28784597]

© 2024 Bentham Science Publishers | Privacy Policy