Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Calcium/Copper Alginate Framework Doped with CuO Nanoparticles as a Novel Adsorbent for Micro-extraction of Benzodiazepines from Human Serum

Author(s): Nadereh Rahbar*, Fatemeh Ahmadi, Zahra Ramezani and Masoumeh Nourani

Volume 17, Issue 5, 2021

Published on: 10 February, 2020

Page: [668 - 678] Pages: 11

DOI: 10.2174/1573412916666200210150914

Price: $65

Abstract

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology.

Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO Nanoparticles Hydrogel Fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid-phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV).

Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized.

Results: In optimal conditions, calibration curves were linear, ranging between 0.1–500 μg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of Detection (LOD) (S/N=3) and Limit of Quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 μg L−1. Within-day and between-day Relative Standard Deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively.

Conclusion: The fabricated adsorbent has been substantially employed to the extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).

Keywords: Benzodiazepines, sodium alginate, hydrogel, CuO nano-particles, micro solid phase extraction, electrochemical techniques.

Graphical Abstract
[1]
Persona, K.; Madej, K.; Knihnicki, P.; Piekoszewski, W. Analytical methodologies for the determination of benzodiazepines in biological samples. J. Pharm. Biomed. Anal., 2015, 113, 239-264.
[http://dx.doi.org/10.1016/j.jpba.2015.02.017] [PMID: 25779536]
[2]
I.A Lvarez-Freire, P. Brunetti, P. Cabarcos-Ferna’ndez, A. Fern’andez-Liste, M.J. Tabernero-Duque, A.M. Bermejo-Barrera. Determination of benzodiazepines in pericardial fluid by gas chromatography- mass spectrometry. J. Pharm. Biomed. Anal., 2018, 159, 45-52..
[3]
Amiri Pebdani, A.; Khodadoust, S.; Talebianpoor, M.S.; Zargar, H.R.; Zarezade, V. Preconcentration and determination of chlordiazepoxide and diazepam drugs using dispersive nanomaterial-ultrasound assisted microextraction method followed by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 146-155.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.043]] [PMID: 26655106]
[4]
Petrides, A.K.; Melanson, S.E.F.; Kantartjis, M.; Le, R.D.; Demetriou, C.A.; Flood, J.G. Monitoring opioid and benzodiazepine use and abuse: Is oral fluid or urine the preferred specimen type? Clin. Chim. Acta, 2018, 481, 75-82.
[http://dx.doi.org/10.1016/j.cca.2018.02.034] [PMID: 29499200]
[5]
De Boeck, M.; Missotten, S.; Dehaen, W.; Tytgat, J.; Cuypers, E. Development and validation of a fast ionic liquid-based dispersive liquid-liquid microextraction procedure combined with LC-MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood. Forensic Sci. Int., 2017, 274, 44-54.
[http://dx.doi.org/10.1016/j.forsciint.2016.12.026] [PMID: 28094153]
[6]
Vosough, M.; Iravani, N.J. Matrix-free analysis of selected benzodiazepines in human serum samples using alternating trilinear decomposition modeling of fast liquid chromatography diode array detection data. Talanta, 2016, 148, 454-462.
[http://dx.doi.org/10.1016/j.talanta.2015.10.088] [PMID: 26653472]
[7]
Dziadosz, M.; Teske, J.; Henning, K.; Klintschar, M.; Nordmeier, F. LC–MS/MS screening strategy for cannabinoids, opiates, amphetamines, cocaine, benzodiazepines and methadone in human serum, urine and post-mortem blood as an effective alternative to immunoassay based methods applied in forensic toxicology for preliminary examination. Forensic Chem, 2018, 7, 33-37.
[http://dx.doi.org/10.1016/j.forc.2017.12.007]]
[8]
Samadi, F.; Sarafraz-Yazdi, A.; Es’haghi, Z. An insight into the determination of trace levels of benzodiazepines in biometric systems: Use of crab shell powder as an environmentally friendly biosorbent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1092, 58-64.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.046] [PMID: 29883890]
[9]
de Bairros, A.V.; de Almeida, R.M.; Pantaleao, L.; Barcellos, T.S.M.; Silva, M. Yonamine. Determination of low levels of benzodiazepines and their metabolites in urine by hollow-fiber liquid-phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 975, 24-33.
[http://dx.doi.org/10.1016/j.jchromb.2014.10.040] [PMID: 25462108]
[10]
Honeychurch, K.C.; Crew, A.; Northall, H.; Radbourne, S.; Davies, O.; Newman, S.; Hart, J.P. The redox behaviour of diazepam (Valium®) using a disposable screen-printed sensor and its determination in drinks using a novel adsorptive stripping voltammetric assay. Talanta, 2013, 116, 300-307.
[http://dx.doi.org/10.1016/j.talanta.2013.05.017] [PMID: 24148407]
[11]
Naggar, A.H.; ElKaoutita, M.; Naranjo-Rodriguez, I.; El-Sayed, A.A.; Cisneros, J.L. Hidalgo-Hidalgo de Cisneros. Use of a Sonogel-Carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide hydrochloride in tablets and their metabolite oxazepam in urine. Talanta, 2012, 89, 448-454.
[http://dx.doi.org/10.1016/j.talanta.2011.12.061]] [PMID: 22284516]
[12]
Hancu, G.; Gáspár, A.; Gyéresi, A. Separation of 1,4-benzodiazepines by micellar elektrokinetic capillary chromatography. J. Biochem. Biophys. Methods, 2007, 69(3), 251-259.
[http://dx.doi.org/10.1016/j.jbbm.2006.02.003] [PMID: 16563516]
[13]
Szatkowska, P.; Koba, M.; Kośliński, P.; Wandas, J.; Bączek, T. Analytical methods for determination of benzodiazepines. A short review. Cent. Eur. Chem, 2014, 12, 994-1007.
[http://dx.doi.org/10.2478/s11532-014-0551-1]
[14]
Ghambarian, M.; Tajabadi, F.; Yamini, Y.; Esrafili, A. Dispersive liquid–liquid microextraction with back extraction using an immiscible organic solvent for determination of benzodiazepines in water, urine, and plasma samples. RSC Advances, 2016, 6, 114198-114207.
[http://dx.doi.org/10.1039/C6RA23770C]
[15]
Asgharinezhad, A.A.; Ebrahimzadeh, H.; Mirbabaei, F.; Mollazadeh, N.; Shekari, N. Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal. Chim. Acta, 2014, 844, 80-89.
[http://dx.doi.org/10.1016/j.aca.2014.06.007] [PMID: 25172820]
[16]
Vuckovic, D.; Shirey, R.; Chen, Y.; Sidisky, L.; Aurand, C.; Stenerson, K.; Pawliszyn, J. In vitro evaluation of new biocompatible coatings for solid-phase microextraction: implications for drug analysis and in vivo sampling applications. Anal. Chim. Acta, 2009, 638(2), 175-185.
[http://dx.doi.org/10.1016/j.aca.2009.02.049] [PMID: 19327457]
[17]
Mirnaghi, F.S.; Monton, M.R.; Pawliszyn, J. Thin-film octadecyl-silica glass coating for automated 96-blade solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry for analysis of benzodiazepines. J. Chromatogr. A, 2012, 1246, 2-8.
[http://dx.doi.org/10.1016/j.chroma.2011.11.030] [PMID: 22197254]
[18]
Togunde, O.P.; Cudjoe, E.; Oakes, K.D.; Mirnaghi, F.S.; Servos, M.R.; Pawliszyn, J. Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system. J. Chromatogr. A, 2012, 1262, 34-42.
[http://dx.doi.org/10.1016/j.chroma.2012.09.011] [PMID: 22999422]
[19]
Molaei, K.; Asgharinezhad, A.A.; Ebrahimzadeh, H.; Shekari, N.; Jalilian, N.; Dehghani, Z. Surfactant-assisted dispersive liquid-liquid microextraction of nitrazepam and lorazepam from plasma and urine samples followed by high-performance liquid chromatography with UV analysis. J. Sep. Sci., 2015, 38(22), 3905-3913.
[http://dx.doi.org/10.1002/jssc.201500586] [PMID: 26450514]
[20]
Fernández, P.; Regenjo, M.; Fernández, A.M.; Lorenzo, R.A.; Carro, A.M. Optimization of ultrasound-assisted dispersive liquid–liquid microextraction for ultra performance liquid chromatography determination of benzodiazepines in urine and hospital wastewater. Anal. Methods, 2014, 6, 8239-8246.
[http://dx.doi.org/10.1039/C4AY01348D]
[21]
Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem. J., 2015, 123, 33-41.
[http://dx.doi.org/10.1016/j.microc.2015.05.009]
[22]
Nazaripour, A.; Yamini, Y.; Ebrahimpour, B.; Fasihi, J. Automated hollow-fiber liquid-phase microextraction followed by liquid chromatography with mass spectrometry for the determination of benzodiazepine drugs in biological samples. J. Sep. Sci., 2016, 39(13), 2595-2603.
[http://dx.doi.org/10.1002/jssc.201600015] [PMID: 27144369]
[23]
Liu, Y.; Hu, X.; Wang, H.; Chen, A.; Liu, S.; Guo, Y. Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions. Chem. Eng. J., 2013, 226, 131-138.
[http://dx.doi.org/10.1016/j.cej.2013.04.048]
[24]
Mollica, G.; Ziarelli, F.; Lack, S.; Brunel, F.; Viel, S. Characterization of insoluble calcium alginates by solid-state NMR. Carbohydr. Polym., 2012, 87, 383-391.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.066]
[25]
Papageorgiou, S.K.; Katsaros, F.K.; Favvas, E.P.; Romanos, G.E.; Athanasekou, C.P.; Beltsios, K.G.; Tzialla, O.I.; Falaras, P. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res., 2012, 46(6), 1858-1872.
[http://dx.doi.org/10.1016/j.watres.2012.01.005] [PMID: 22284914]
[26]
Sarkar, S.; Chakraborty, S.; Bhattacharjee, C. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf., 2015, 121, 263-270.
[http://dx.doi.org/10.1016/j.ecoenv.2015.02.035] [PMID: 25743764]
[27]
Jiang, J.; Chen, Y.; Wang, W.; Cui, B.; Wan, N. Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase. Carbohydr. Polym., 2016, 151, 600-605.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.112] [PMID: 27474605]
[28]
Pajic-Lijakovic, I.; Levic, S.; Hadnađev, M.; Stevanovic-Dajic, Z.; Radosevic, R.; Nedovic, V. Structural changes of Ca-alginate beads caused by immobilized yeast cell growth. Biochem. Eng. J., 2015, 103, 32-38.
[http://dx.doi.org/10.1016/j.bej.2015.06.016]]
[29]
Correia dos Santos, M.M.; Famila, V.; Simões Gonçalves, M.L. Copper-psychoactive drug complexes: a voltammetric approach to complexation by 1,4-benzodiazepines. Anal. Biochem., 2002, 303(2), 111-119.
[http://dx.doi.org/10.1006/abio.2002.5580] [PMID: 11950210]
[30]
Real, J.A.; Borrás, J.; Muñoz, M.C.; Mosset, A.; Galy, J. Studies on metal-drug complexes. Crystal structure and characterization of μ-sulfato bromazepam copper(II) complex. J. Inorg. Biochem., 1987, 31, 221-228.
[http://dx.doi.org/10.1016/0162-0134(87)80007-7]
[31]
Vinković, V.; Raza, Z.; Šunjić, V. 13C NMR and IR evidence for the two types of Copper(I) and (II) complexes with 5-Pyrido-1,4-benzodiazepin-2-ones. Spectrosc. Lett., 1994, 27, 269-279.
[http://dx.doi.org/10.1080/00387019408000842]
[32]
Mosset, A.; Tuchagues, J.P.; Bonnet, J.J.; Haran, R.; Sharrock, P. Solution and solid-state structural study of the copper(II) complex of diazepam. Inorg. Chem., 1980, 19, 290-294.
[http://dx.doi.org/10.1021/ic50204a003]
[33]
Cozar, O.; David, L.; Chis, V.; Forisz, E.; Cosma, C.; Damian, G. Local structure analysis of Cu(II)-diazepam complexes by ESR spectroscopy. Fresenius J. Anal. Chem., 1996, 355, 701-702.
[34]
El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci., 2012, 258, 2997-3001.
[http://dx.doi.org/10.1016/j.apsusc.2011.11.025]]
[35]
Kim, S.J.; Yoon, S.G.; Kim, S.I. Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride). J. Appl. Polym. Sci., 2004, 91, 3705-3709.
[http://dx.doi.org/10.1002/app.13615]]
[36]
Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2006.02.008]
[37]
Konwar, A.; Gogoi, A.; Chowdhury, D. Magnetic alginate–Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution. RSC Adv, 2015, 5, 81573-81582.
[http://dx.doi.org/10.1039/C5RA16404D]]
[38]
K., Anastasakis; A., Westwood; J.M., Jones; R.J., Crewe Influence of cation on the pyrolysis and oxidation of alginates. J. Anal. Appl. Pyrolysis, 2011, 91, 344-351.
[39]
Harnsilawat, T.; Pongsawatmanit, R.; McClements, D.J. Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocoll., 2006, 20, 577-585.
[http://dx.doi.org/10.1016/j.foodhyd.2005.05.005]]
[40]
Magrini, L.; Cappiello, A.; Famiglini, G.; Palma, P. Microextraction by packed sorbent (MEPS)-UHPLC-UV: A simple and efficient method for the determination of five benzodiazepines in an alcoholic beverage. J. Pharm. Biomed. Anal., 2016, 125, 48-53.
[http://dx.doi.org/10.1016/j.jpba.2016.03.028] [PMID: 27003119]
[41]
Liu, Y.; Zai, Y.; Chang, X.; Guo, Y.; Meng, S.; Feng, F. Highly selective determination of methylmercury with methylmercury-imprinted polymers. Anal. Chim. Acta, 2006, 575(2), 159-165.
[http://dx.doi.org/10.1016/j.aca.2006.05.081] [PMID: 17723586]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy