Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants

Author(s): Afreen Khanam, Saheem Ahmad*, Arbab Husain, Shahnawaz Rehman, Alvina Farooqui and Mohd Aslam Yusuf

Volume 21, Issue 9, 2020

Page: [899 - 915] Pages: 17

DOI: 10.2174/1389203721666200210103304

Price: $65

conference banner
Abstract

The non-enzymatic interaction of sugar and protein resulting in the formation of advanced glycation end products responsible for cell signaling alterations ultimately leads to the human chronic disorders such as diabetes mellitus, cardiovascular diseases, cancer, etc. Studies suggest that AGEs upon interaction with receptors for advanced glycation end products (RAGE) result in the production of pro-inflammatory molecules and free radicals that exert altered gene expression effect. To date, many studies unveiled the potent role of synthetic and natural agents in inhibiting the glycation reaction at a lesser or greater extent. This review focuses on the hazards of glycation reaction and its inhibition by natural antioxidants, including polyphenols.

Keywords: Glycation, advanced glycation end-products, diabetic complications, antiglycation, polyphenols, antioxidants.

Graphical Abstract
[1]
Dietz, W.H.; Douglas, C.E.; Brownson, R.C. Chronic disease prevention: tobacco avoidance, physical activity, and nutrition for a healthy start. JAMA, 2016, 316(16), 1645-1646.
[http://dx.doi.org/10.1001/jama.2016.14370] [PMID: 27668419]
[2]
Khan, H.; Khan, M.S.; Ahmad, S. The in vivo and in vitro approaches for establishing a link between advanced glycation end products and lung cancer. J. Cell. Biochem., 2018, 119(11), 9099-9109.
[http://dx.doi.org/10.1002/jcb.27170] [PMID: 30076739]
[3]
Ansari, N.A.; Dash, D. Amadori glycated proteins: role in production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation. Aging Dis., 2013, 4(1), 50-56.
[PMID: 23423609]
[4]
Salahuddin, P.; Rabbani, G.; Khan, R.H. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett., 2014, 19(3), 407-437.
[http://dx.doi.org/10.2478/s11658-014-0205-5] [PMID: 25141979]
[5]
Sharma, C.; Kaur, A.; Thind, S.S.; Singh, B.; Raina, S. Advanced glycation End-products (AGEs): an emerging concern for processed food industries. J. Food Sci. Technol., 2015, 52(12), 7561-7576.
[http://dx.doi.org/10.1007/s13197-015-1851-y] [PMID: 26604334]
[6]
Luevano-Contreras, C.; Chapman-Novakofski, K. Dietary advanced glycation end products and aging. Nutrients, 2010, 2(12), 1247-1265.
[http://dx.doi.org/10.3390/nu2121247] [PMID: 22254007]
[7]
Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J. Proteome Res., 2009, 8(2), 754-769.
[http://dx.doi.org/10.1021/pr800858h] [PMID: 19093874]
[8]
Younus, H.; Anwar, S. Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int. J. Health Sci. (Qassim), 2016, 10(2), 261-277.
[http://dx.doi.org/10.12816/0048818] [PMID: 27103908]
[9]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. J. Diabetes Res., 2007, 2007, 61038.
[10]
Ahmad, H.; Khan, I.; Wahid, A. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. J. Tradit. Chin. Med., 2012, 32(3), 411-414.
[http://dx.doi.org/10.1016/S0254-6272(13)60047-3] [PMID: 23297565]
[11]
Raghav, A.; Ahmad, J.; Alam, K. Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLoS One, 2017, 12(5)e0176970
[http://dx.doi.org/10.1371/journal.pone.0176970] [PMID: 28520799]
[12]
Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; Goldbourt, U.; Willeit, J.; Kiechl, S.; Yarnell, J.W.; Sweetnam, P.M.; Elwood, P.C.; Cushman, M.; Psaty, B.M.; Tracy, R.P.; Tybjaerg-Hansen, A.; Haverkate, F.; de Maat, M.P.; Fowkes, F.G.; Lee, A.J.; Smith, F.B.; Salomaa, V.; Harald, K.; Rasi, R.; Vahtera, E.; Jousilahti, P.; Pekkanen, J.; D’Agostino, R.; Kannel, W.B.; Wilson, P.W.; Tofler, G.; Arocha-Piñango, C.L.; Rodriguez-Larralde, A.; Nagy, E.; Mijares, M.; Espinosa, R.; Rodriquez-Roa, E.; Ryder, E.; Diez-Ewald, M.P.; Campos, G.; Fernandez, V.; Torres, E.; Marchioli, R.; Valagussa, F.; Rosengren, A.; Wilhelmsen, L.; Lappas, G.; Eriksson, H.; Cremer, P.; Nagel, D.; Curb, J.D.; Rodriguez, B.; Yano, K.; Salonen, J.T.; Nyyssönen, K.; Tuomainen, T.P.; Hedblad, B.; Lind, P.; Loewel, H.; Koenig, W.; Meade, T.W.; Cooper, J.A.; De Stavola, B.; Knottenbelt, C.; Miller, G.J.; Cooper, J.A.; Bauer, K.A.; Rosenberg, R.D.; Sato, S.; Kitamura, A.; Naito, Y.; Palosuo, T.; Ducimetiere, P.; Amouyel, P.; Arveiler, D.; Evans, A.E.; Ferrieres, J.; Juhan-Vague, I.; Bingham, A.; Schulte, H.; Assmann, G.; Cantin, B.; Lamarche, B.; Després, J.P.; Dagenais, G.R.; Tunstall-Pedoe, H.; Woodward, M.; Ben-Shlomo, Y.; Davey Smith, G.; Palmieri, V.; Yeh, J.L.; Rudnicka, A.; Ridker, P.; Rodeghiero, F.; Tosetto, A.; Shepherd, J.; Ford, I.; Robertson, M.; Brunner, E.; Shipley, M.; Feskens, E.J.; Kromhout, D.; Dickinson, A.; Ireland, B.; Juzwishin, K.; Kaptoge, S.; Lewington, S.; Memon, A.; Sarwar, N.; Walker, M.; Wheeler, J.; White, I.; Wood, A. Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA, 2005, 294(14), 1799-1809.
[PMID: 16219884]
[13]
Jairajpuri, D.S.; Fatima, S.; Saleemuddin, M. Immunoglobulin glycation with fructose: a comparative study. Clin. Chim. Acta, 2007, 378(1-2), 86-92.
[http://dx.doi.org/10.1016/j.cca.2006.10.020] [PMID: 17173886]
[14]
Dai, Y.; Shen, Y.; Li, Q.R.; Ding, F.H.; Wang, X.Q.; Liu, H.J.; Yan, X.X.; Wang, L.J.; Yang, K.; Wang, H.B.; Chen, Q.J.; Shen, W.F.; Zhang, R.Y.; Lu, L. Glycated apolipoprotein A-IV induces atherogenesis in patients with CAD in type 2 diabetes. J. Am. Coll. Cardiol., 2017, 70(16), 2006-2019.
[http://dx.doi.org/10.1016/j.jacc.2017.08.053] [PMID: 29025558]
[15]
Miyazawa, T.; Nakagawa, K.; Shimasaki, S.; Nagai, R. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids, 2012, 42(4), 1163-1170.
[http://dx.doi.org/10.1007/s00726-010-0772-3] [PMID: 20957396]
[16]
Hodgkinson, C.P.; Laxton, R.C.; Patel, K.; Ye, S. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2008, 28(12), 2275-2281.
[http://dx.doi.org/10.1161/ATVBAHA.108.175992] [PMID: 18818414]
[17]
Toma, L.; Stancu, C.S.; Botez, G.M.; Sima, A.V.; Simionescu, M. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem. Biophys. Res. Commun., 2009, 390(3), 877-882.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.066] [PMID: 19850013]
[18]
Ahmad, R.; Sah, A.K.; Ahsan, H. Biochemistry and Pathophysiology of Glycation of DNA: Implications in Diabetes. Arch. Clin. Biomed. Res., 2016, 1(1), 32-47.
[http://dx.doi.org/10.26502/acbr.5017004]
[19]
Yamagishi, S.I.; Matsui, T. Role of hyperglycemia-induced Advanced Glycation End Product (AGE) accumulation in atherosclerosis. Ann. Vasc. Dis., 2018, 11(3), 253-258.
[http://dx.doi.org/10.3400/avd.ra.18-00070]
[20]
Kosmopoulos, M.; Drekolias, D.; Zavras, P.D.; Piperi, C.; Papavassiliou, A.G. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochimica et Biophysica Acta, 2019, 1865(3), 611-619.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.006]]
[21]
Prasad, K. AGE-RAGE Stress in the Pathophysiology of Pulmonary Hypertension and its Treatment. Int. J. Angiol., 2019, 28(2), 71-79.
[http://dx.doi.org/10.1055/s-0039-1687818] [PMID: 31384104]
[22]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[23]
Chilukuri, H.; Kulkarni, M.J.; Fernandes, M. Revisiting amino acids and peptides as anti-glycation agents. MedChemComm, 2018, 9(4), 614-624.
[http://dx.doi.org/10.1039/C7MD00514H] [PMID: 30108952]
[24]
Xue, J.; Ray, R.; Singer, D.; Böhme, D.; Burz, D.S.; Rai, V.; Hoffmann, R.; Shekhtman, A. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry, 2014, 53(20), 3327-3335.
[http://dx.doi.org/10.1021/bi500046t] [PMID: 24824951]
[25]
Ramasamy, R.; Yan, S.F.; Herold, K.; Clynes, R.; Schmidt, A.M. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann. N. Y. Acad. Sci., 2008, 1126(1), 7-13.
[http://dx.doi.org/10.1196/annals.1433.056] [PMID: 18448789]
[26]
Soman, S.; Raju, R.; Sandhya, V.K.; Advani, J.; Khan, A.A.; Harsha, H.C.; Prasad, T.S.; Sudhakaran, P.R.; Pandey, A.; Adishesha, P.K. A multicellular signal transduction network of AGE/RAGE signaling. J. Cell Commun. Signal., 2013, 7(1), 19-23.
[http://dx.doi.org/10.1007/s12079-012-0181-3] [PMID: 23161412]
[27]
Goh, S.Y.; Cooper, M.E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab., 2008, 93(4), 1143-1152.
[http://dx.doi.org/10.1210/jc.2007-1817] [PMID: 18182449]
[28]
Cerami, C.; Founds, H.; Nicholl, I.; Mitsuhashi, T.; Giordano, D.; Vanpatten, S.; Lee, A.; Al-Abed, Y.; Vlassara, H.; Bucala, R.; Cerami, A. Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl. Acad. Sci. USA, 1997, 94(25), 13915-13920.
[http://dx.doi.org/10.1073/pnas.94.25.13915] [PMID: 9391127]
[29]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[30]
Morales, F.J.; Somoza, V.; Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids, 2012, 42(4), 1097-1109.
[http://dx.doi.org/10.1007/s00726-010-0774-1] [PMID: 20949365]
[31]
Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther., 2008, 88(11), 1322-1335.
[http://dx.doi.org/10.2522/ptj.20080008] [PMID: 18801863]
[32]
Hu, C.; Sun, L.; Xiao, L.; Han, Y.; Fu, X.; Xiong, X.; Xu, X.; Liu, Y.; Yang, S.; Liu, F.; Kanwar, Y.S. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem., 2015, 22(24), 2858-2870.
[http://dx.doi.org/10.2174/0929867322666150625095407] [PMID: 26119175]
[33]
Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2032-2045.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[34]
Loeffler, I.; Wolf, G. Transforming growth factor-β and the progression of renal disease.Nephrol. Dial. Transplant., 2013(suppl_1), i37-i45.,
[http://dx.doi.org/10.1093/ndt/gft267]
[35]
Wada, R.; Yagihashi, S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann. N. Y. Acad. Sci., 2005, 1043(1), 598-604.
[http://dx.doi.org/10.1196/annals.1338.067] [PMID: 16037282]
[36]
King, R.H.M. The role of glycation in the pathogenesis of diabetic polyneuropathy. MP. Mol. Pathol., 2001, 54(6), 400-408.
[PMID: 11724915]
[37]
Bucala, R.; Tracey, K.J.; Cerami, A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest., 1991, 87(2), 432-438.
[http://dx.doi.org/10.1172/JCI115014] [PMID: 1991829]
[38]
Hammes, H.P.; Alt, A.; Niwa, T.; Clausen, J.T.; Bretzel, R.G.; Brownlee, M.; Schleicher, E.D. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia, 1999, 42(6), 728-736.
[http://dx.doi.org/10.1007/s001250051221] [PMID: 10382593]
[39]
Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes, 2014, 5(4), 444-470.
[http://dx.doi.org/10.4239/wjd.v5.i4.444] [PMID: 25126392]
[40]
Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes, 2015, 6(13), 1246-1258.
[http://dx.doi.org/10.4239/wjd.v6.i13.1246] [PMID: 26468341]
[41]
Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol., 2018, 17(1), 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[42]
Hegab, Z.; Gibbons, S.; Neyses, L.; Mamas, M.A. Role of advanced glycation end products in cardiovascular disease. World J. Cardiol., 2012, 4(4), 90-102.
[http://dx.doi.org/10.4330/wjc.v4.i4.90] [PMID: 22558488]
[43]
Sparvero, L.J.; Asafu-Adjei, D.; Kang, R.; Tang, D.; Amin, N. Im, J.; Rutledge, R.; Lin, B.; Amoscato, A.A.; Zeh, H.J.; Lotze, M.T. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med., 2009, 7(1), 17.
[http://dx.doi.org/10.1186/1479-5876-7-17] [PMID: 19292913]
[44]
de Groot, L.; Hinkema, H.; Westra, J.; Smit, A.J.; Kallenberg, C.G.; Bijl, M.; Posthumus, M.D. Advanced glycation endproducts are increased in rheumatoid arthritis patients with controlled disease. Arthritis Res. Ther., 2011, 13(6), R205.
[http://dx.doi.org/10.1186/ar3538] [PMID: 22168993]
[45]
Furber, J.D. Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res., 2006, 9(2), 274-278.
[http://dx.doi.org/10.1089/rej.2006.9.274] [PMID: 16706655]
[46]
Basu, A.; Lucas, E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev., 2007, 65(8 Pt 1), 361-375.
[http://dx.doi.org/10.1111/j.1753-4887.2007.tb00314.x] [PMID: 17867370]
[47]
Babu, P.V.A.; Sabitha, K.E.; Shyamaladevi, C.S. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem. Toxicol., 2008, 46(1), 280-285.
[http://dx.doi.org/10.1016/j.fct.2007.08.005] [PMID: 17884275]
[48]
Ahmad, M.S.; Pischetsrieder, M.; Ahmed, N. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Eur. J. Pharmacol., 2007, 561(1-3), 32-38.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.041] [PMID: 17321518]
[49]
Al-Qattan, K.K.; Mansour, M.H.; Thomson, M.; Ali, M. Garlic decreases liver and kidney receptor for advanced glycation end products expression in experimental diabetes. Pathophysiology, 2016, 23(2), 135-145.
[http://dx.doi.org/10.1016/j.pathophys.2016.02.003] [PMID: 26968224]
[50]
Prathapan, A.; Nampoothiri, S.V.; Mini, S.; Raghu, K.G. Antioxidant, antiglycation and inhibitory potential of Saraca ashoka flowers against the enzymes linked to type 2 diabetes and LDL oxidation. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(1), 57-65.
[PMID: 22338549]
[51]
Shaerzadeh, F.; Ahmadiani, A.; Esmaeili, M.A.; Ansari, N.; Asadi, S.; Tusi, S.K.; Sonboli, A.; Ghahremanzamaneh, M.; Khodagholi, F. Antioxidant and antiglycating activities of Salvia sahendica and its protective effect against oxidative stress in neuron-like PC12 cells. J. Nat. Med., 2011, 65(3-4), 455-465.
[http://dx.doi.org/10.1007/s11418-011-0519-9] [PMID: 21424254]
[52]
Esmaeili, M.A.; Kanani, M.R.; Sonboli, A. Salvia reuterana extract prevents formation of advanced glycation end products: an in vitro study. Indian J. Pharm. Sci., 2010, 6(1), 33-50.
[53]
Kim, Y.S.; Jung, D.H.; Sohn, E.; Lee, Y.M.; Kim, C.S.; Kim, J.S. Extract of Cassiae semen attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in streptozotocin-induced diabetic rats. Phytomedicine, 2014, 21(5), 734-739.
[http://dx.doi.org/10.1016/j.phymed.2013.11.002] [PMID: 24374123]
[54]
Miroliaei, M.; Khazaei, S.; Moshkelgosha, S.; Shirvani, M. Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food Chem., 2011, 129(2), 267-271.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.039] [PMID: 30634225]
[55]
Kontogianni, V.G.; Charisiadis, P.; Margianni, E.; Lamari, F.N.; Gerothanassis, I.P.; Tzakos, A.G. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food, 2013, 16(9), 817-822.
[http://dx.doi.org/10.1089/jmf.2013.0016] [PMID: 24044491]
[56]
Liu, J.Y.; Zheng, C.Z.; Hao, X.P.; Zhang, D.J.; Mao, A.W.; Yuan, P. Catalpol ameliorates diabetic atherosclerosis in diabetic rabbits. Am. J. Transl. Res., 2016, 8(10), 4278-4288.
[PMID: 27830011]
[57]
Yarizade, A.; Niazi, A.; Kumleh, H.H. Investigation of antiglycation and antioxidant potential of some antidiabetic medicinal plants. J. Pharmaceut. Sci. Res., 2017, 9(12), 2382-2387.
[58]
Muñiz, A.; Garcia, E.; Gonzalez, D.; Zuñiga, L. Antioxidant activity and in vitro antiglycation of the fruit of Spondias purpurea. Evid. Based Complementary Altern. Med., 2018, 2018, 1-7.
[59]
Liu, H.; Wang, C.; Qi, X.; Zou, J.; Sun, Z. Antiglycation and antioxidant activities of mogroside extract from Siraitia grosvenorii (Swingle) fruits. J. Food Sci. Technol., 2018, 55(5), 1880-1888.
[http://dx.doi.org/10.1007/s13197-018-3105-2] [PMID: 29666541]
[60]
Khurm, M.; Chaudhry, B.A.; Uzair, M.; Hussain, K. Antiglycation and Insecticidal Potential of Heliotropium strigosum Willd. J Nat Prod Plant Resour, 2016, 6, 1-7.
[61]
Perez Gutierrez, R.M.; de Jesus Martinez Ortiz, M. Beneficial effect of Azadirachta indica on advanced glycation end-product in streptozotocin-diabetic rat. Pharm. Biol., 2014, 52(11), 1435-1444.
[http://dx.doi.org/10.3109/13880209.2014.895389] [PMID: 25026338]
[62]
Aljohi, A.; Matou-Nasri, S.; Ahmed, N. Antiglycation and antioxidant properties of Momordica charantia. PLoS One, 2016, 11(8)e0159985
[http://dx.doi.org/10.1371/journal.pone.0159985] [PMID: 27513747]
[63]
Kang, S.; Zhao, X.; Yue, L.; Liu, L. Main anthraquinone components in Aloe vera and their inhibitory effects on the formation of advanced glycation end-products. J. Food Process. Preserv., 2017, 41(5)e13160
[http://dx.doi.org/10.1111/jfpp.13160]
[64]
Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; Kulkarni, M.J.; Thulasiram, H.V.; Giri, A.P. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: proteomic and mechanistic insights. Sci. Rep., 2016, 6, 18798.
[http://dx.doi.org/10.1038/srep18798] [PMID: 26739611]
[65]
Jha, P.; Momin, A.R.; Kumar, D.; Ali, A. Reversal of glycoxidative damage of DNA and protein by antioxidants. Annals of Phytomedicine, 2018, 7(1), 101-105.
[http://dx.doi.org/10.21276/ap.2018.7.1.12]
[66]
Choi, H.J.; Jang, H.J.; Chung, T.W.; Jeong, S.I.; Cha, J.; Choi, J.Y.; Han, C.W.; Jang, Y.S.; Joo, M.; Jeong, H.S.; Ha, K.T. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia, 2013, 86, 19-28.
[http://dx.doi.org/10.1016/j.fitote.2013.01.014] [PMID: 23376161]
[67]
Zhu, R.; Zhang, X.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, G.; Fan, J.; Jia, Y.; Yan, F.; Ning, C. Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym., 2019, 210, 73-84.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.037] [PMID: 30732783]
[68]
Marzouka, W.; Chaoucha, M.A.; Hafsab, J.; LeCerfc, D.; Majdouba, H. Antioxidant and antiglycated activities of polysaccharides from Tunisian date seeds (Phoenix dactilyfera L.). J. Tunisian Chem. Soc., 2017, 19, 124-130.
[69]
Wang, C.; Gao, X.; Santhanam, R.K.; Chen, Z.; Chen, Y.; Xu, L.; Wang, C.; Ferri, N.; Chen, H. Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. Food Chem. Toxicol., 2018, 116(Pt B), 335-345.
[http://dx.doi.org/10.1016/j.fct.2018.04.047] [PMID: 29689356]
[70]
Adisakwattana, S.; Sompong, W.; Meeprom, A.; Ngamukote, S.
Yibchok-Anun, S. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int. J. Mol. Sci., 2012, 13(2), 1778-1789.
[http://dx.doi.org/10.3390/ijms13021778] [PMID: 22408423]
[71]
Sompong, W.; Cheng, H.; Adisakwattana, S. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells. J. Physiol. Biochem., 2017, 73(1), 121-131.
[http://dx.doi.org/10.1007/s13105-016-0531-3] [PMID: 27822918]
[72]
Meeprom, A.; Sompong, W.; Chan, C.B.; Adisakwattana, S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules, 2013, 18(6), 6439-6454.
[http://dx.doi.org/10.3390/molecules18066439] [PMID: 23722732]
[73]
Gugliucci, A.; Bastos, D.H.M.; Schulze, J.; Souza, M.F.F. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia, 2009, 80(6), 339-344.
[http://dx.doi.org/10.1016/j.fitote.2009.04.007] [PMID: 19409454]
[74]
Ou, J.; Huang, J.; Wang, M.; Ou, S. Effect of rosmarinic acid and carnosic acid on AGEs formation in vitro. Food Chem., 2017, 221, 1057-1061.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.056] [PMID: 27979058]
[75]
Lee, E.H.; Song, D.G.; Lee, J.Y.; Pan, C.H.; Um, B.H.; Jung, S.H. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull., 2008, 31(8), 1626-1630.
[http://dx.doi.org/10.1248/bpb.31.1626] [PMID: 18670102]
[76]
Yamabe, N.; Kang, K.S.; Park, C.H.; Tanaka, T.; Yokozawa, T. 7-O-galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biol. Pharm. Bull., 2009, 32(4), 657-664.
[http://dx.doi.org/10.1248/bpb.32.657] [PMID: 19336901]
[77]
Shen, Y.; Xu, Z.; Sheng, Z. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chem., 2017, 216, 153-160.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.034] [PMID: 27596404]
[78]
Chinchansure, A.A.; Korwar, A.M.; Kulkarni, M.J.; Joshi, S.P. Recent development of plant products with anti-glycation activity: a review. RSC Advances, 2015, 5(39), 31113-31138.
[http://dx.doi.org/10.1039/C4RA14211J]
[79]
Lv, L.; Shao, X.; Chen, H.; Ho, C.T.; Sang, S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol., 2011, 24(4), 579-586.
[http://dx.doi.org/10.1021/tx100457h] [PMID: 21344933]
[80]
Liu, R.; Wu, C.X.; Zhou, D.; Yang, F.; Tian, S.; Zhang, L.; Zhang, T.T.; Du, G.H. Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med., 2012, 10(1), 105.
[http://dx.doi.org/10.1186/1741-7015-10-105] [PMID: 22989295]
[81]
Dugé de Bernonville, T.; Guyot, S.; Paulin, J.P.; Gaucher, M.; Loufrani, L.; Henrion, D.; Derbré, S.; Guilet, D.; Richomme, P.; Dat, J.F.; Brisset, M.N. Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry, 2010, 71(4), 443-452.
[http://dx.doi.org/10.1016/j.phytochem.2009.11.004] [PMID: 20022617]
[82]
Kim, Y.S.; Jung, D.H.; Lee, I.S.; Choi, S.J.; Yu, S.Y.; Ku, S.K.; Kim, M.H.; Kim, J.S. Effects of Allium victorialis leaf extracts and its single compounds on aldose reductase, advanced glycation end products and TGF-β1 expression in mesangial cells. BMC Complement. Altern. Med., 2013, 13(1), 251.
[http://dx.doi.org/10.1186/1472-6882-13-251] [PMID: 24090434]
[83]
Zhu, D.; Wang, L.; Zhou, Q.; Yan, S.; Li, Z.; Sheng, J.; Zhang, W. (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice. Mol. Nutr. Food Res., 2014, 58(12), 2249-2260.
[http://dx.doi.org/10.1002/mnfr.201400533] [PMID: 25243815]
[84]
Peng, X.; Zheng, Z.; Cheng, K.W.; Shan, F.; Ren, G.X.; Chen, F.; Wang, M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem., 2008, 106(2), 475-481.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.016]
[85]
Tsuji-Naito, K.; Saeki, H.; Hamano, M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem., 2009, 116(4), 854-859.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.042]
[86]
Hosseinzadeh, H.; Nassiri-Asl, M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 2014, 37(9), 783-788.
[http://dx.doi.org/10.1007/s40618-014-0096-3] [PMID: 24879037]
[87]
Odjakova, M.; Popova, E.; Al Sharif, M.; Mironova, R. Plant-derived agents with anti-glycation activity.In: Glycosylation; IntechOpen,, 2012.
[http://dx.doi.org/10.5772/48186]
[88]
Sefi, M.; Fetoui, H.; Makni, M.; Zeghal, N. Mitigating effects of antioxidant properties of Artemisia campestris leaf extract on hyperlipidemia, advanced glycation end products and oxidative stress in alloxan-induced diabetic rats. Food Chem. Toxicol., 2010, 48(7), 1986-1993.
[http://dx.doi.org/10.1016/j.fct.2010.05.005] [PMID: 20457207]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy