Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Review of MiRNA-Disease Association Prediction

Author(s): Lei Jiang and Ji Zhu*

Volume 21 , Issue 11 , 2020

Page: [1044 - 1053] Pages: 10

DOI: 10.2174/1389203721666200210102751

Price: $65

Abstract

Accumulating evidence demonstrates that miRNAs serve as critical biomarkers in various complex human diseases. Thus, identifying potential miRNA-disease associations has become a hot research topic for providing a better understanding of disease pathology, including cell carcinoma, cell proliferation and mevalonate pathway. Recently, based on various biological datasets, more and more computational prediction methods have been designed to uncover disease-related miRNAs for further experimental validation. Due to the fact that different limitations exist in previous computational methods, we proposed the model of Decision Template-based MiRNA-Disease Association prediction (DTMDA) to prioritize potential related miRNAs for diseases of interest. By integrating miRNA functional similarity network, miRNA Gaussian interaction profile kernel similarity network, two disease semantic similarity networks and disease Gaussian interaction profile kernel similarity network, we trained five multi-label K nearest neighbors-based core classifiers.

Keywords: Similarity networks, esophageal squamous cell carcinoma, cell proliferation, mevalonate pathway, MiRNA, DTMDA.

Graphical Abstract
[1]
Crick, F.H.; Barnett, L.; Brenner, S.; Watts-Tobin, R.J. General nature of the genetic code for proteins. Nature, 1961, 192, 1227-1232.
[http://dx.doi.org/10.1038/1921227a0] [PMID: 13882203]
[2]
Yanofsky, C. Establishing the triplet nature of the genetic code. Cell, 2007, 128(5), 815-818.
[http://dx.doi.org/10.1016/j.cell.2007.02.029] [PMID: 17350564]
[3]
Bertone, P.; Stolc, V.; Royce, T.E.; Rozowsky, J.S.; Urban, A.E.; Zhu, X.; Rinn, J.L.; Tongprasit, W.; Samanta, M.; Weissman, S.; Gerstein, M.; Snyder, M. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306(5705), 2242-2246.
[http://dx.doi.org/10.1126/science.1103388] [PMID: 15539566]
[4]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[5]
Mattick, J.S.; Makunin, I.V. Non-coding RNA. Hum. Mol. Genet., 2006, 15(Spec No 1)(Suppl. 1), R17-R29.
[http://dx.doi.org/10.1093/hmg/ddl046] [PMID: 16651366]
[6]
Gutschner, T.; Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[7]
Goodrich, J.A.; Kugel, J.F. Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol., 2006, 7(8), 612-616.
[http://dx.doi.org/10.1038/nrm1946] [PMID: 16723972]
[8]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[9]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[10]
Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005, 309(5740), 1577-1581.
[http://dx.doi.org/10.1126/science.1113329] [PMID: 16141076]
[11]
Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007, 318(5858), 1931-1934.
[http://dx.doi.org/10.1126/science.1149460] [PMID: 18048652]
[12]
Kozomara, A.; Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 2011, 39(Database issue), D152-D157.
[http://dx.doi.org/10.1093/nar/gkq1027] [PMID: 21037258]
[13]
Chen, K.; Rajewsky, N. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb. Symp. Quant. Biol., 2006, 71, 149-156.
[http://dx.doi.org/10.1101/sqb.2006.71.039] [PMID: 17381291]
[14]
Cheng, A.M.; Byrom, M.W.; Shelton, J.; Ford, L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res., 2005, 33(4), 1290-1297.
[http://dx.doi.org/10.1093/nar/gki200] [PMID: 15741182]
[15]
Karp, X.; Ambros, V. Developmental biology. Encountering microRNAs in cell fate signaling. Science, 2005, 310(5752), 1288-1289.
[http://dx.doi.org/10.1126/science.1121566] [PMID: 16311325]
[16]
Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev., 2005, 15(5), 563-568.
[http://dx.doi.org/10.1016/j.gde.2005.08.005] [PMID: 16099643]
[17]
Cui, Q.; Yu, Z.; Purisima, E.O.; Wang, E. Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol., 2006, 2, 46.
[http://dx.doi.org/10.1038/msb4100089] [PMID: 16969338]
[18]
Xu, P.; Guo, M.; Hay, B.A. MicroRNAs and the regulation of cell death. Trends Genet., 2004, 20(12), 617-624.
[http://dx.doi.org/10.1016/j.tig.2004.09.010] [PMID: 15522457]
[19]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[20]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[21]
Latronico, M.V.; Catalucci, D.; Condorelli, G. Emerging role of microRNAs in cardiovascular biology. Circ. Res., 2007, 101(12), 1225-1236.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.163147] [PMID: 18063818]
[22]
Lu, M.; Zhang, Q.; Deng, M.; Miao, J.; Guo, Y.; Gao, W.; Cui, Q. An analysis of human microRNA and disease associations. PLoS One, 2008, 3(10)e3420
[http://dx.doi.org/10.1371/journal.pone.0003420] [PMID: 18923704]
[23]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[24]
Duttagupta, R.; Jiang, R.; Gollub, J.; Getts, R.C.; Jones, K.W. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One, 2011, 6(6)e20769
[http://dx.doi.org/10.1371/journal.pone.0020769] [PMID: 21698099]
[25]
Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.; Yokota, J.; Tanaka, T.; Calin, G.A.; Liu, C.G.; Croce, C.M.; Harris, C.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9(3), 189-198.
[http://dx.doi.org/10.1016/j.ccr.2006.01.025] [PMID: 16530703]
[26]
Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[27]
Weinberg, M.S.; Wood, M.J. Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum. Mol. Genet., 2009, 18(R1), R27-R39.
[http://dx.doi.org/10.1093/hmg/ddp070] [PMID: 19297399]
[28]
Liu, S.G.; Qin, X.G.; Zhao, B.S.; Qi, B.; Yao, W.J.; Wang, T.Y.; Li, H.C.; Wu, X.N. Differential expression of miRNAs in esophageal cancer tissue. Oncol. Lett., 2013, 5(5), 1639-1642.
[http://dx.doi.org/10.3892/ol.2013.1251] [PMID: 23761828]
[29]
Bonci, D.; Coppola, V.; Musumeci, M.; Addario, A.; Giuffrida, R.; Memeo, L.; D’Urso, L.; Pagliuca, A.; Biffoni, M.; Labbaye, C.; Bartucci, M.; Muto, G.; Peschle, C.; De Maria, R. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med., 2008, 14(11), 1271-1277.
[http://dx.doi.org/10.1038/nm.1880] [PMID: 18931683]
[30]
Foss, K.M.; Sima, C.; Ugolini, D.; Neri, M.; Allen, K.E.; Weiss, G.J. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(3), 482-488.
[http://dx.doi.org/10.1097/JTO.0b013e318208c785] [PMID: 21258252]
[31]
Ge, T.T.; Liang, Y.; Fu, R.; Wang, G.J.; Ruan, E.B.; Qu, W.; Wang, X.M.; Liu, H.; Wu, Y.H.; Song, J.; Wang, H.Q.; Xing, L.M.; Guan, J.; Li, L.J.; Shao, Z.H. [Expressions of miR-21, miR-155 and miR-210 in plasma of patients with lymphoma and its clinical significance]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2012, 20(2), 305-309..
[PMID: 2541087]
[32]
Li, Y.; Qiu, C.; Tu, J.; Geng, B.; Yang, J.; Jiang, T.; Cui, Q. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res., 2014, 42(Database issue), D1070-D1074.
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[33]
Cui, H.L.; Zhang, Y.D.; Ren, F.; Amp, N.H. dbDEMC2.0: a database of differentially expressed miRNAs in human cancers v2.0. China J. Mod. Med., 2014, 24(3), 77-79.
[34]
Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 2009, 37(Database issue), D98-D104.
[http://dx.doi.org/10.1093/nar/gkn714] [PMID: 18927107]
[35]
Jiang, Q.; Hao, Y.; Wang, G.; Juan, L.; Zhang, T.; Teng, M.; Liu, Y.; Wang, Y. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst. Biol., 2010, 4(Suppl. 1), S2.
[http://dx.doi.org/10.1186/1752-0509-4-S1-S2] [PMID: 20522252]
[36]
Mørk, S.; Pletscher-Frankild, S.; Palleja Caro, A.; Gorodkin, J.; Jensen, L.J. Protein-driven inference of miRNA-disease associations. Bioinformatics, 2014, 30(3), 392-397.
[http://dx.doi.org/10.1093/bioinformatics/btt677] [PMID: 24273243]
[37]
Shi, H.; Xu, J.; Zhang, G.; Xu, L.; Li, C.; Wang, L.; Zhao, Z.; Jiang, W.; Guo, Z.; Li, X. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst. Biol., 2013, 7, 101.
[http://dx.doi.org/10.1186/1752-0509-7-101] [PMID: 24103777]
[38]
Xuan, P.; Han, K.; Guo, M.; Guo, Y.; Li, J.; Ding, J.; Liu, Y.; Dai, Q.; Li, J.; Teng, Z.; Huang, Y. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS One, 2013, 8(8)e70204
[http://dx.doi.org/10.1371/journal.pone.0070204] [PMID: 23950912]
[39]
Chen, X.; Liu, M.X.; Yan, G.Y. RWRMDA: predicting novel human microRNA-disease associations. Mol. Biosyst., 2012, 8(10), 2792-2798.
[http://dx.doi.org/10.1039/c2mb25180a] [PMID: 22875290]
[40]
Xuan, P.; Han, K.; Guo, Y.; Li, J.; Li, X.; Zhong, Y.; Zhang, Z.; Ding, J. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics, 2015, 31(11), 1805-1815.
[http://dx.doi.org/10.1093/bioinformatics/btv039] [PMID: 25618864]
[41]
Xu, J.; Li, C.X.; Lv, J.Y.; Li, Y.S.; Xiao, Y.; Shao, T.T.; Huo, X.; Li, X.; Zou, Y.; Han, Q.L.; Li, X.; Wang, L.H.; Ren, H. Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol. Cancer Ther., 2011, 10(10), 1857-1866.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0055] [PMID: 21768329]
[42]
Chen, X.; Yan, G.Y. Semi-supervised learning for potential human microRNA-disease associations inference. Sci. Rep., 2014, 4, 5501.
[http://dx.doi.org/10.1038/srep05501] [PMID: 24975600]
[43]
Chen, X.; Yan, C.C.; Zhang, X.; Li, Z.; Deng, L.; Zhang, Y.; Dai, Q. RBMMMDA: predicting multiple types of disease-microRNA associations. Sci. Rep., 2015, 5, 13877.
[http://dx.doi.org/10.1038/srep13877] [PMID: 26347258]
[44]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Deng, L.; Liu, Y.; Zhang, Y.; Dai, Q. WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Sci. Rep., 2016, 6, 21106.
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[45]
Chen, X.; Clarence Yan, C.; Zhang, X.; You, Z.H.; Huang, Y.A.; Yan, G.Y. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget, 2016, 7(40), 65257-65269.
[http://dx.doi.org/10.18632]
[46]
Chen, X.; Yan, C.C.; Luo, C.; Ji, W.; Zhang, Y.; Dai, Q. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci. Rep., 2015, 5, 11338.
[http://dx.doi.org/10.1038/srep11338] [PMID: 26061969]
[47]
van Laarhoven, T.; Nabuurs, S.B.; Marchiori, E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 2011, 27(21), 3036-3043.
[http://dx.doi.org/10.1093/bioinformatics/btr500] [PMID: 21893517]
[48]
Chen, X.; Yan, G.Y. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics, 2013, 29(20), 2617-2624.
[http://dx.doi.org/10.1093/bioinformatics/btt426] [PMID: 24002109]
[49]
Chen, X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci. Rep., 2015, 5, 16840.
[http://dx.doi.org/10.1038/srep16840] [PMID: 26577439]
[50]
Ward, J.; Joe, H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc., 1963, 58(301), 236-244.
[http://dx.doi.org/10.1080/01621459.1963.10500845]
[51]
Kuncheva, L.I.; Bezdek, J.C.; Duin, R.P. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognit., 2001, 34(2), 299-314.
[http://dx.doi.org/10.1016/S0031-3203(99)00223-X]
[52]
Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit., 2007, 40(7), 2038-2048.
[http://dx.doi.org/10.1016/j.patcog.2006.12.019]
[53]
Doghman, M.; El Wakil, A.; Cardinaud, B.; Thomas, E.; Wang, J.; Zhao, W.; Peralta-Del Valle, M.H.; Figueiredo, B.C.; Zambetti, G.P.; Lalli, E. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res., 2010, 70(11), 4666-4675.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3970] [PMID: 20484036]
[54]
Birks, D.K.; Barton, V.N.; Donson, A.M.; Handler, M.H.; Vibhakar, R.; Foreman, N.K. Survey of MicroRNA expression in pediatric brain tumors. Pediatr. Blood Cancer, 2011, 56(2), 211-216.
[http://dx.doi.org/10.1002/pbc.22723] [PMID: 21157891]
[55]
Rahman, M.M.; Qian, Z.R.; Wang, E.L.; Sultana, R.; Kudo, E.; Nakasono, M.; Hayashi, T.; Kakiuchi, S.; Sano, T. Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation. Br. J. Cancer, 2009, 100(3), 501-510.
[http://dx.doi.org/10.1038/sj.bjc.6604883] [PMID: 19156147]
[56]
Zhang, R.; He, Y.; Zhang, X.; Xing, B.; Sheng, Y.; Lu, H.; Wei, Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett., 2012, 314(2), 155-165.
[http://dx.doi.org/10.1016/j.canlet.2011.09.027] [PMID: 22014978]
[57]
Alder, H.; Taccioli, C.; Chen, H.; Jiang, Y.; Smalley, K.J.; Fadda, P.; Ozer, H.G.; Huebner, K.; Farber, J.L.; Croce, C.M.; Fong, L.Y. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis, 2012, 33(9), 1736-1744.
[http://dx.doi.org/10.1093/carcin/bgs204] [PMID: 22689922]
[58]
Dai, Y.; Xie, C.H.; Neis, J.P.; Fan, C.Y.; Vural, E.; Spring, P.M. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck, 2011, 33(6), 786-791.
[http://dx.doi.org/10.1002/hed.21540] [PMID: 21560177]
[59]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[60]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4)e92921
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[61]
Drusco, A.; Nuovo, G.J.; Zanesi, N.; Di Leva, G.; Pichiorri, F.; Volinia, S.; Fernandez, C.; Antenucci, A.; Costinean, S.; Bottoni, A.; Rosito, I.A.; Liu, C.G.; Burch, A.; Acunzo, M.; Pekarsky, Y.; Alder, H.; Ciardi, A.; Croce, C.M. MicroRNA profiles discriminate among colon cancer metastasis. PLoS One, 2014, 9(6)e96670
[http://dx.doi.org/10.1371/journal.pone.0096670] [PMID: 24921248]
[62]
Hu, M.; Xia, M.; Chen, X.; Lin, Z.; Xu, Y.; Ma, Y.; Su, L. MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig. Dis. Sci., 2010, 55(8), 2365-2372.
[http://dx.doi.org/10.1007/s10620-009-1008-9] [PMID: 19830559]
[63]
Slaby, O.; Svoboda, M.; Fabian, P.; Smerdova, T.; Knoflickova, D.; Bednarikova, M.; Nenutil, R.; Vyzula, R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology, 2007, 72(5-6), 397-402.
[http://dx.doi.org/10.1159/000113489] [PMID: 18196926]
[64]
Zhang, G.J.; Li, Y.; Zhou, H.; Xiao, H.X.; Zhou, T. miR 20a is an independent prognostic factor in colorectal cancer and is involved in cell metastasis. Mol. Med. Rep., 2014, 10(1), 283-291.
[http://dx.doi.org/10.3892/mmr.2014.2144] [PMID: 24737193]
[65]
Qu, Y.L.; Wang, H.F.; Sun, Z.Q.; Tang, Y.; Han, X.N.; Yu, X.B.; Liu, K. Up-regulated miR-155-5p promotes cell proliferation, invasion and metastasis in colorectal carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6988-6994.
[PMID: 26261588]
[66]
Nishida, N.; Yokobori, T.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Kuwano, H.; Mori, M. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int. J. Oncol., 2011, 38(5), 1437-1443.
[PMID: 21399871]
[67]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[68]
Yu, F.; Jiao, Y.; Zhu, Y.; Wang, Y.; Zhu, J.; Cui, X.; Liu, Y.; He, Y.; Park, E.Y.; Zhang, H.; Lv, X.; Ma, K.; Su, F.; Park, J.H.; Song, E. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J. Biol. Chem., 2012, 287(1), 465-473.
[http://dx.doi.org/10.1074/jbc.M111.280768] [PMID: 22074923]
[69]
Cai, J.; Guan, H.; Fang, L.; Yang, Y.; Zhu, X.; Yuan, J.; Wu, J.; Li, M. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J. Clin. Invest., 2013, 123(2), 566-579.
[http://dx.doi.org/10.1172/JCI65871] [PMID: 23321667]
[70]
Zhou, A.D.; Diao, L.T.; Xu, H.; Xiao, Z.D.; Li, J.H.; Zhou, H.; Qu, L.H. β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene, 2012, 31(24), 2968-2978.
[http://dx.doi.org/10.1038/onc.2011.461] [PMID: 22020335]
[71]
Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol., 2010, 119(3), 586-593.
[http://dx.doi.org/10.1016/j.ygyno.2010.07.021] [PMID: 20801493]
[72]
Huang, S.; Chen, Y.; Wu, W.; Ouyang, N.; Chen, J.; Li, H.; Liu, X.; Su, F.; Lin, L.; Yao, Y. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One, 2013, 8(12)e80707
[http://dx.doi.org/10.1371/journal.pone.0080707] [PMID: 24312495]
[73]
Hu, Y.; Zhu, Q.; Tang, L. MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS One, 2014, 9(3)e92099
[http://dx.doi.org/10.1371/journal.pone.0092099] [PMID: 24637915]
[74]
Linehan, W.M. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res., 2012, 22(11), 2089-2100.
[http://dx.doi.org/10.1101/gr.131110.111] [PMID: 23038766]
[75]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[76]
Linehan, W.M.; Zbar, B. Focus on kidney cancer. Cancer Cell, 2004, 6(3), 223-228.
[http://dx.doi.org/10.1016/j.ccr.2004.09.006] [PMID: 15380513]
[77]
Senanayake, U.; Das, S.; Vesely, P.; Alzoughbi, W.; Fröhlich, L.F.; Chowdhury, P.; Leuschner, I.; Hoefler, G.; Guertl, B. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis, 2012, 33(5), 1014-1021.
[http://dx.doi.org/10.1093/carcin/bgs126] [PMID: 22431721]
[78]
Zaman, M.S.; Shahryari, V.; Deng, G.; Thamminana, S.; Saini, S.; Majid, S.; Chang, I.; Hirata, H.; Ueno, K.; Yamamura, S.; Singh, K.; Tanaka, Y.; Tabatabai, Z.L.; Dahiya, R. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One, 2012, 7(2)e31060
[http://dx.doi.org/10.1371/journal.pone.0031060] [PMID: 22347428]
[79]
Oba, S.; Kumano, S.; Suzuki, E.; Nishimatsu, H.; Takahashi, M.; Takamori, H.; Kasuya, M.; Ogawa, Y.; Sato, K.; Kimura, K.; Homma, Y.; Hirata, Y.; Fujita, T. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One, 2010, 5(10)e13614
[http://dx.doi.org/10.1371/journal.pone.0013614] [PMID: 21049046]
[80]
Youssef, Y.M.; White, N.M.; Grigull, J.; Krizova, A.; Samy, C.; Mejia-Guerrero, S.; Evans, A.; Yousef, G.M. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur. Urol., 2011, 59(5), 721-730.
[http://dx.doi.org/10.1016/j.eururo.2011.01.004] [PMID: 21272993]
[81]
Girgis, A.H.; Iakovlev, V.V.; Beheshti, B.; Bayani, J.; Squire, J.A.; Bui, A.; Mankaruos, M.; Youssef, Y.; Khalil, B.; Khella, H.; Pasic, M.; Yousef, G.M. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res., 2012, 72(20), 5273-5284.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0656] [PMID: 22926558]
[82]
Wang, B.; Koh, P.; Winbanks, C.; Coughlan, M.T.; McClelland, A.; Watson, A.; Jandeleit-Dahm, K.; Burns, W.C.; Thomas, M.C.; Cooper, M.E.; Kantharidis, P. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes, 2011, 60(1), 280-287.
[http://dx.doi.org/10.2337/db10-0892] [PMID: 20952520]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy