Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Ion-exchange Resins and Polypeptide Supported Catalysts: A Critical Review

Author(s): Kinkar Biswas, Sujit Ghosh and Basudeb Basu*

Volume 7, Issue 1, 2020

Page: [40 - 52] Pages: 13

DOI: 10.2174/2213346107666200204125435

Abstract

Heterogeneous catalysis represents one of the important areas in the field of organic synthesis. Major developments have been emerged during last few decades and polymer-supported catalysts have been employed successfully in various catalytic organic transformations. Ion-exchange resins and polypeptides are two important examples of such heterogeneous polymer-supported catalysts among others because of their easy accessibility, stability, recoverability and reusability. Cross-linked ion-exchange resins and polypeptides are highly insoluble, which make them better choice in terms of their easy separation from the reaction mixture and subsequent recyclability. The present review article provides an overview of different types of ion exchange resins as polymer-supported catalysts such as amberlite resin, polystyrene resin, polyionic gel-based systems, ion-exchange resins and prolineimmobilized species, PEG-bound poly (amino acid), amino acid anchored with Merrifild resin, amphiphilic block polypeptides etc. Their preparation, characterizations and catalytic applications in diverse organic transformations have been presented with critical analysis on their stability, mechanistic overview and suitability etc.

Keywords: Ion-exchange resins, polypeptides, polymer supports, nanoparticles, cross-coupling reactions, benign alternatives.

« Previous
Graphical Abstract
[1]
Green Chemistry and ten commandments of sustainability2nd ed, S.E. Manahan,; Chem. Char. Research, Inc. Publishers,; Columbia, Missouri U.S.A..
[2]
Sheldon, R. Introduction to green chemistry, Organic synthesis and pharmaceuticals, Chapter 1, Green Chemistry in the Pharmaceutical Industry.. P. J. Dunn, A. S. Wells, M. T. Williams,; 1-20.
[3]
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem., 2005, 7, 267-278.
[http://dx.doi.org/10.1039/b418069k]
[4]
Nielsen, M.; Junge, H.; Kammer, A.; Beller, M. Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew. Chem. Int. Ed. Engl., 2012, 51(23), 5711-5713.
[http://dx.doi.org/10.1002/anie.201200625] [PMID: 22517628]
[5]
Venkatesan, K.; Pujari, S.S.; Srinivasan, K.V. Proline-catalyzed simple and efficient synthesis of 1, 8-Dioxo-decahydroacridines in aqueous ethanol medium. Synth. Commun., 2008, 39, 228-241.
[http://dx.doi.org/10.1080/00397910802044306]
[6]
Olaru, N.; Olaru, L.; Stoleriu, A.; Ţimpu, D. Carboxymethylcellulose synthesis in organic media containing ethanol and/or acetone. J. Appl. Polym. Sci., 1998, 67, 481-486.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19980118)67:3<481::AID-APP11>3.0.CO;2-Z]
[7]
Chen, J.; Spear, S.K.; Huddleston, J.G.; Rogers, R.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem., 2005, 7, 64-82.
[http://dx.doi.org/10.1039/b413546f]
[8]
Welton, T.; Smith, P.J. Palladium catalyzed reactions in ionic liquids. Adv. Organomet. Chem., 2004, 51, 251-284.
[http://dx.doi.org/10.1016/S0065-3055(03)51006-1]
[9]
Keh, C.C.K.; Namboodiri, V.V.; Varma, R.S.; Li, C.J. Direct formation of tetrahydropyranols via catalysis in ionic liquid. Tetrahedron Lett., 2002, 43, 4993-4996.
[http://dx.doi.org/10.1016/S0040-4039(02)00889-4]
[10]
Namboodiri, V.V.; Varma, R.S. An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett., 2002, 43, 5381-5383.
[http://dx.doi.org/10.1016/S0040-4039(02)01075-4]
[11]
Jessop, P.G. The utility of carbon dioxide in homogeneously-catalyzed organic synthesis. Stud. Surf. Sci. Catal., 2004, Vol. 153, 355-362.
[http://dx.doi.org/10.1016/S0167-2991(04)80278-7]
[12]
McCarthy, M.; Stemmer, H.; Leitner, W. Catalysis in inverted supercritical CO2/aqueous biphasic media. Green Chem., 2002, 4, 501-504.
[http://dx.doi.org/10.1039/b204972b]
[13]
Liu, P.; Hao, J-W.; Mo, L-P.; Zhang, Z-H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[14]
Alonso, D.A.; Baeza, A.; Rafael, C.; Gabriela, G.; Pastor, I.M.; Ramon, D.J. Deep eutectic solvents: the organic reaction medium of the century. Eur. J. Org. Chem., 2016, 612-632.
[15]
Li, C.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev., 2005, 105(8), 3095-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[16]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.), 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[17]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[http://dx.doi.org/10.1039/b921171c]
[18]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[19]
Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1, 43-55.
[http://dx.doi.org/10.1039/a808223e]
[20]
Luque, R.; Macquarrie, D.J. Efficient solvent- and metal-free Sonogashira protocol catalysed by 1,4-diazabicyclo(2.2.2) octane (DABCO). Org. Biomol. Chem., 2009, 7(8), 1627-1632.
[http://dx.doi.org/10.1039/b821134p] [PMID: 19343249]
[21]
Banerjee, B.; Tajti, A.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds; Organophosphorus Chemistry, 2018, pp. 248-263.
[http://dx.doi.org/10.1515/9783110535839-013]
[22]
Gracia, M.J.; Campelo, J.M.; Losada, E.; Luque, R.; Marinas, J.M.; Romero, A.A. Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles. Org. Biomol. Chem., 2009, 7(23), 4821-4824.
[http://dx.doi.org/10.1039/b913695a] [PMID: 19907769]
[23]
Kappe, C.O.; Stadler, A.; Dallinger, D.; Manhold, R.; Kubinyi, H.; Folkers, G. Microwaves in Organic and Medicinal Chemistry, 2nd ed; Wiley Online Library: New York, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[24]
Kiss, N.Z.; Balint, E.; Keglevich, G. Microwave-assisted syntheses in organic chemistry. Milestones Microw. Chem., 2016, 11-45.
[http://dx.doi.org/10.1007/978-3-319-30632-2_2]
[25]
Cole–Hamilton, D. J.; Tooze, R. P (eds.) . Catalyst Separation, Recovery and Recycling. In: Chemistry and Process Design; Springer: The Netherland, 2006, pp. 183-213.
[26]
Croxtall, B.; Hope, E.G.; Stuart, A.M. Separation, recovery and recycling of a fluorous-tagged nickel catalyst using fluorous solid-phase extraction. Chem. Commun. (Camb.), 2003, (19), 2430-2431.
[http://dx.doi.org/10.1039/b308543k] [PMID: 14587716]
[27]
Mehnert, C.P.; Cook, R.A.; Dispenziere, N.C.; Afeworki, M. Supported ionic liquid catalysis--a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc., 2002, 124(44), 12932-12933.
[http://dx.doi.org/10.1021/ja0279242] [PMID: 12405804]
[28]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[29]
Arhancet, J.P.; Davis, M.E.; Merola, J.S.; Hanson, B.E. Hydroformylation by supported aqueous–phase catalysis: a new class of heterogeneous catalysts. Nature, 1989, (339), 454-455.
[http://dx.doi.org/10.1038/339454a0]
[30]
Mobaraki, A.; Movassagh, B.; Karimi, B. Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Comb. Sci., 2014, 16(7), 352-358.
[http://dx.doi.org/10.1021/co500022g] [PMID: 24932543]
[31]
Neckers, D.C. Solid phase synthesis. J. Chem. Educ., 1975, 52(11), 695-702.
[http://dx.doi.org/10.1021/ed052p695] [PMID: 1184677]
[32]
Blaney, P.; Grigg, R.; Sridharan, V. Traceless solid-phase organic synthesis. Chem. Rev., 2002, 102(7), 2607-2624.
[http://dx.doi.org/10.1021/cr0103827] [PMID: 12105937]
[33]
Genna, D.T.; Wong-Foy, A.G.; Matzger, A.J.; Sanford, M.S. Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J. Am. Chem. Soc., 2013, 135(29), 10586-10589.
[http://dx.doi.org/10.1021/ja402577s] [PMID: 23837970]
[34]
Lebedeva, M.A.; Chamberlain, T.W.; Schröder, M.; Khlobystov, A.N. New pathway for heterogenization of molecular catalysts by non–covalent interactions with carbon nanoreactors. Chem. Mater., 2014, 26, 6461-6466.
[http://dx.doi.org/10.1021/cm502986d]
[35]
Hubicki, Z.; Wawrzkiewicz, M.; Wolowicz, A. Application of ion exchange methods in recovery of Pd(II) ions–a review. Chem. Anal. (Warsaw), 2008, 53, 759-784.
[36]
Mimura, N.; Hiyoshi, N.; Fujitani, T.; Dumeignil, F. Liquid phase oxidation of glycerol in batch and flow–type reactors with oxygen over Au–Pd nanoparticles stabilized in anion–exchange resin. RSC Advances, 2014, 4, 33416-33423.
[http://dx.doi.org/10.1039/C4RA04960H]
[37]
Zhang, J.; Tian, T.; Chen, J.; Zu, J.; Wang, Y. Recycling of waste printed circuit boards into ion exchange resin. RSC Advances, 2015, 5, 2080-2087.
[http://dx.doi.org/10.1039/C4RA12094A]
[38]
Ihm, S-K.; Ahn, J-H.; Jo, Y-D. Interaction of reaction and mass transfer in ion–exchange resin catalysts. Ind. Eng. Chem. Res., 1996, 35, 2946-2954.
[http://dx.doi.org/10.1021/ie950724x]
[39]
Satoh, K.; Kamigaito, M.; Sawamoto, M. Transition metal complexes for metal–catalyzed atom transfer controlled/living radical polymerization. Polymer Sci.: Comprehen. Ref., 2012, 3, 429-461.
[40]
Bailey, D.C.; Langer, S.H. Immobilized transition–metal carbonyls and related catalysts. Chem. Rev., 1981, 81, 109-148.
[http://dx.doi.org/10.1021/cr00042a001]
[41]
Shi, Q-H.; Tian, Y.; Dong, X-Y.; Bai, S.; Sun, Y. Chitosan–coated silica beads as immobilized metal affinity support for protein adsorption. Biochem. Eng. J., 2003, 16, 317-322.
[http://dx.doi.org/10.1016/S1369-703X(03)00095-0]
[42]
Sun, L.; Crooks, R.M. Dendrimer-mediated immobilization of catalytic nanoparticles on flat, solid supports. Langmuir, 2002, 18, 8231-8236.
[http://dx.doi.org/10.1021/la020498d]
[43]
Partridge, F.M. Ion-exchange resins as molecular sieves. Nature, 1952, 169(4299), 496-497.
[http://dx.doi.org/10.1038/169496a0] [PMID: 14919616]
[44]
Thomas, G.G.; Davies, C.W.; Alexandratos, S.D. Ion-exchange resins: A retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res., 2009, 48, 388-398.
[http://dx.doi.org/10.1021/ie801242v]
[45]
Wachinski¸, A.M. Environmental ion exchange: Principles and Design, (2nd ed.); , 2016. Boca Raton, CRC Press..
[46]
Calmon, C. Recent developments in water treatment by ion exchange, Reactive Polymers, Ion Exchangers. Sorbents, 1986, 4, 131-146.
[47]
Jun-Jie, T.; Yu, H.; Zhi-Qi, W.; Xi, C. Ion Exchange resin on treatment of copper and nickel wastewater. IOP Conf. Series: Earth and Environmental Science, 2017, pp. 1-5.
[48]
Cavaco, S.A.; Fernandes, S.; Quina, M.M.; Ferreira, L.M. Removal of chromium from electroplating industry effluents by ion exchange resins. J. Hazard. Mater., 2007, 144(3), 634-638.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.087] [PMID: 17336455]
[49]
Shibukawa, M.; Taguchi, A.; Suzuki, Y.; Saitoh, K.; Hiaki, T.; Yarita, T. Evaluation of the thermal effect on separation selectivity in anion-exchange processes using superheated water ion-exchange chromatography. Analyst (Lond.), 2012, 137(13), 3154-3159.
[http://dx.doi.org/10.1039/c2an16229f] [PMID: 22614168]
[50]
Barakat, M.A.; Ismat-Shah, S. Utilization of anion exchange resin spectra/gel for separation of arsenic from water. Arab. J. Chem., 2013, 6, 307-311.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.011]
[51]
Kumar, S.; Jain, S. History, introduction, and kinetics of ion exchange materials. J. Chem., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/957647]
[52]
Soto, R.; Fité, C.; Ramírez, E.; Iborra, M.; Tejero, J. Catalytic activity dependence on morphological properties of acidic ion-exchange resins for the simultaneous ETBE and TAEE liquid-phase synthesis. React. Chem. Eng., 2018, 3, 195-205.
[http://dx.doi.org/10.1039/C7RE00177K]
[53]
Saito, T.; Goto, H.; Honda, K.; Fujii, T. Acid-base catalysts derived from weakly acidic ion exchange resin: Efficiency in the Knoevenagel condensation. Tetrahedron Lett., 1992, 33, 7535-7538.
[http://dx.doi.org/10.1016/S0040-4039(00)60817-1]
[54]
Sarkar, S.; Chatterjee, P.K.; Cumbal, L.H.; SenGupta, A.K. Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chem. Eng. J., 2011, 166, 923-931.
[http://dx.doi.org/10.1016/j.cej.2010.11.075]
[55]
Lin, J-M.; Sato, K.; Yamada, M. Hydrogen peroxide chemiluminescent flow-through sensor based on the oxidation with periodate immobilized on ion–exchange resin. Microchem. J., 2001, 69, 73-80.
[http://dx.doi.org/10.1016/S0026-265X(01)00064-9]
[56]
Nachod, F.C.; Schubert, J. Ion Exchange Technology; , 1956. Ion Exchange Technology.; Academic Press Inc., New York..
[57]
Helfferich, F. Ion Exchange; , 1962. McGraw–Hill Book Company: New York.
[58]
Barbaro, P.; Liguori, F. Ion exchange resins: catalyst recovery and recycle. Chem. Rev., 2009, 109(2), 515-529.
[http://dx.doi.org/10.1021/cr800404j] [PMID: 19105606]
[59]
Gierke, T.D.; Munn, G.E.; Wilson, F.C. The morphology in nafion perfluorinated membrane products, as determined by wide‐ and small‐angle x‐ray studies. J. Polym. Sci., Polym. Phys. Ed., 1981, 19, 1687-1704.
[http://dx.doi.org/10.1002/pol.1981.180191103]
[60]
Iwamoto, R.; Oguro, K.; Sato, M.; Iseki, Y. Water in perfluorinated sulfonic acid nafion membranes. J. Phys. Chem. B, 2002, 106, 6973-6979.
[http://dx.doi.org/10.1021/jp013709g]
[61]
Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules, 1982, 15, 136-144.
[http://dx.doi.org/10.1021/ma00229a028]
[62]
Seen, A.J. Nafion: An excellent support for metal–complex catalysts. J. Mol. Catal. Chem., 2001, 177, 105-112.
[http://dx.doi.org/10.1016/S1381-1169(01)00312-0]
[63]
Waller, F.J. Catalysis with metal cation-exchanged resins. Catal. Rev., Sci. Eng., 1986, 28, 1-12.
[http://dx.doi.org/10.1080/03602458608068084]
[64]
Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chern., 1994, 66, 1739-1758.
[http://dx.doi.org/10.1351/pac199466081739]
[65]
Praharaj, S.; Nath, S.; Ghosh, S.K.; Kundu, S.; Pal, T. Immobilization and recovery of au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir, 2004, 20(23), 9889-9892.
[http://dx.doi.org/10.1021/la0486281] [PMID: 15518467]
[66]
Chen, J-H.; Kao, Y-Y.; Lin, C-H. Selective Separation of Vanadium from Molybdenum using D2EHPA-Immobilized amberlite XAD-4 Resin. Sep. Sci. Technol., 2003, 38, 3827-3852.
[http://dx.doi.org/10.1081/SS-120024234]
[67]
Akbay, E.O.; Altiokka, M.R. Kinetics of esterification of acetic acid with n-amyl alcohol in the presence of amberlyst–36. Appl. Catal. A Gen., 2011, 396, 14-19.
[http://dx.doi.org/10.1016/j.apcata.2011.01.013]
[68]
Kirbaslar, S.I.; Baykal, Z.B.; Dramur, U. Esterification of acetic acid with ethanol catalyzed by an acidic ion–exchange resin. Turk. J. Chem., 2001, 25, 569-577.
[69]
Bamunusingha, B.A.N.N.; De Silva, E.C.L.; Gunasekera, M.Y. Performance of ion exchange resin as solid catalyst for the esterification of acetic acid with ethanol. J. Natl. Sci. Found. Sri Lanka, 2016, 44, 83-93.
[http://dx.doi.org/10.4038/jnsfsr.v44i1.7985]
[70]
Shan, C.; Wang, Y.; Nie, J.; He, Y. Advances in polymer technology, Volume 2019, Article ID 4854620, 8 pages.
[71]
Pothanagandhi, N.; Vijayakrishna, K. RAFT derived chiral and achiral poly(ionic liquids) resins: Synthesis and application in organocatalysis. Eur. Polym. J., 2017, 95, 785-794.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.002]
[72]
Chimal-Valencia, O.; Robau-Sánchez, A.; Collins-Martínez, V.; Aguilar-Elguézabal, A. Ion exchange resins as catalyst for the isomerization of α-pinene to camphene. Bioresour. Technol., 2004, 93(2), 119-123.
[http://dx.doi.org/10.1016/j.biortech.2003.10.016] [PMID: 15051072]
[73]
Jaitak, V.; Kaul, V.K.; Das, P. Enviornmentally benign Michael and Claisen Schmidt reaction of aromatic carbonyl compounds by alkaline polyionic resin. Indian J. Chem., 2013, 52B, 1137-1145.
[74]
Sengupta, D.; Basu, B. An efficient metal–free synthesis of organic disulfides from thiocyanates using poly–ionic resin hydroxide in aqueous medium. Tetrahedron Lett., 2013, 54, 2277-2281.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.070]
[75]
Diwakar, M.M.; Deshpande, R.M.; Chaudhari, R.V. Hydroformylation of 1-hexene using Rh/TPPTS complex exchanged on anion exchange resin: Kinetic studies. J. Mol. Catal. Chem., 2005, 232, 179-186.
[http://dx.doi.org/10.1016/j.molcata.2005.01.033]
[76]
Johnstone, R.A.W.; Wilby, A.H.; Entwistle, I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev., 1985, 85, 129-170.
[http://dx.doi.org/10.1021/cr00066a003]
[77]
Westerterp, K.R.; Molga, E.J.; van Gelder, K.B. Catalytic hydrogenation reactors for the fine chemicals industries. Their design and operation. Chem. Eng. Process.: Process Intensif., 1997, 36, 17-27.
[http://dx.doi.org/10.1016/S0255-2701(96)04168-2]
[78]
Nishimura, S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. ; , 2001. Wiley-VCH: New York. 2001. pp. 700
[79]
Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Developments in asymmetric hydrogenation from an industrial perspective. Acc. Chem. Res., 2007, 40(12), 1385-1393.
[http://dx.doi.org/10.1021/ar700101x] [PMID: 17685581]
[80]
Pérez, M.; Caputo, C.B.; Dobrovetsky, R.; Stephan, D.W. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis. Proc. Natl. Acad. Sci. USA, 2014, 111(30), 10917-10921.
[http://dx.doi.org/10.1073/pnas.1407484111] [PMID: 25002489]
[81]
Yang, X.; Fox, T.; Berke, H. Facile metal free regioselective transfer hydrogenation of polarized olefins with ammonia borane. Chem. Commun. (Camb.), 2011, 47(7), 2053-2055.
[http://dx.doi.org/10.1039/c0cc03163a] [PMID: 21210065]
[82]
ElAmin, B.; Anantharamaiah, G.M.; Royer, G.P.; Means, G.E. Removal of benzyl–type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 1979, 44, 3442-3444.
[http://dx.doi.org/10.1021/jo01333a048]
[83]
Pieber, B.; Martinez, S.T.; Cantillo, D.; Kappe, C.O. In situ generation of diimide from hydrazine and oxygen: continuous-flow transfer hydrogenation of olefins. Angew. Chem. Int. Ed. Engl., 2013, 52(39), 10241-10244.
[http://dx.doi.org/10.1002/anie.201303528] [PMID: 23946202]
[84]
Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev., 2015, 115(13), 6621-6686.
[http://dx.doi.org/10.1021/acs.chemrev.5b00203] [PMID: 26061159]
[85]
Brieger, G.; Nestrick, T.J. Catalytic Transfer Hydrogenation. Chem. Rev., 1974, 74, 567-580.
[http://dx.doi.org/10.1021/cr60291a003]
[86]
Long, J.; Zhou, Y.; Li, Y. Transfer hydrogenation of unsaturated bonds in the absence of base additives catalyzed by a cobalt-based heterogeneous catalyst. Chem. Commun. , 2015, 51(12), 2331-2334.
[http://dx.doi.org/10.1039/C4CC08946D] [PMID: 25562506]
[87]
Li, X.; Wu, X.; Chen, W.; Hancock, F.E.; King, F.; Xiao, J. Asymmetric transfer hydrogenation in water with a supported Noyori-Ikariya catalyst. Org. Lett., 2004, 6(19), 3321-3324.
[http://dx.doi.org/10.1021/ol0487175] [PMID: 15355042]
[88]
Vijayakrishna, K.; Charan, K.T.P.; Manojkumar, K.; Venkatesh, S.; Pothanagandhi, N.; Sivaramakrishna, A.; Mayuri, P.; Kumar, A.S.; Sreedhar, B. Ni nanoparticles stabilized by poly(ionic liquids) as chemoselective and magnetically recoverable catalysts for transfer hydrogenation reactions of carbonyl compounds. ChemCatChem, 2016, 8, 1139-1145.
[http://dx.doi.org/10.1002/cctc.201501313]
[89]
Grosselin, J.M.; Mercier, C.; Allmang, G.; Grass, F. Selective hydrogenation of α,β-unsaturated aldehydes in aqueous organic two–phase solvent systems using ruthenium or rhodium complexes of sulfonated phosphines. Organometallics, 1991, 10, 2126-2133.
[http://dx.doi.org/10.1021/om00053a014]
[90]
Kirschning, A.; Jas, G. Applications of immobilized catalysts in continuous flow processes. Top. Curr. Chem., 2004, 242, 209-239.
[http://dx.doi.org/10.1007/b96877] [PMID: 23900914]
[91]
Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chem. Eur. J., 2003, 9(23), 5708-5723.
[http://dx.doi.org/10.1002/chem.200305212] [PMID: 14673841]
[92]
Solodenko, W.; Wen, H.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Jas, G.; Schönfeld, H.; Kunz, U.; Kirschning, A. Development of a continuous‐flow system for catalysis with palladium(0) particles. Eur. J. Org. Chem., 2004, 3601-3610.
[http://dx.doi.org/10.1002/ejoc.200400194]
[93]
Basu, B.; Mandal, B.; Das, S.; Das, P.; Nanda, A.K. Chemoselective reduction of aldehydes by ruthenium trichloride and resin-bound formates. Beilstein J. Org. Chem., 2008, 4, 53.
[http://dx.doi.org/10.3762/bjoc.4.53] [PMID: 19190744]
[94]
Basu, B.; Das, S.; Das, P.; Nanda, A.K. Co-immobilized formate anion and palladium on a polymer surface: A novel heterogeneous combination for transfer hydrogenation. Tetrahedron Lett., 2005, 46, 8591-8593.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.187]
[95]
Basu, B.; Das, P.; Das, S. Transfer hydrogenation using recyclable polymer-supported formate (PSF): efficient and chemoselective reduction of nitroarenes. Mol. Divers., 2005, 9(4), 259-262.
[http://dx.doi.org/10.1007/s11030-005-8106-1] [PMID: 16311801]
[96]
Basu, B.; Paul, S.; Kundu, S.; Byström, E.; Irgum, K.; Almqvist, F. organic polymeric resins embedded with Pd NPs: Newly designed, efficient and chemoselective catalyst for reduction of nitrobenzenes. Curr. Organocatal., 2017, 4, 48-61.
[http://dx.doi.org/10.2174/2213337203666160524143615]
[97]
Wena, H.; Yao, K.; Zhang, Y.; Zhou, Z.; Kirschning, A. Catalytic transfer hydrogenation of aromatic nitro compounds in presence of polymer–supported nano–amorphous Ni–B catalyst. Catal. Commun., 2009, 10, 1207-1211.
[http://dx.doi.org/10.1016/j.catcom.2009.01.030]
[98]
Silva, T.R.; de Oliveira, D.C.; Pal, T.; Domingos, J.B. The catalytic evaluation of bimetallic Pd-based nanocatalysts supported on ion exchange resin in nitro and alkyne reduction reactions. New J. Chem., 2019, 43, 7083-7092.
[http://dx.doi.org/10.1039/C9NJ00285E]
[99]
Li, J.; Wang, W.; Moe, B.; Wang, H.; Li, X-F. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chem. Res. Toxicol., 2015, 28(3), 306-318.
[http://dx.doi.org/10.1021/tx500494r] [PMID: 25588181]
[100]
Min, H.; Lee, S.; Park, M.; Hwang, J.; Jung, H.M.; Lee, S. Preparation of polymer–bound palladium catalyst and its application to the reduction of nitro arenes and the hydrodehalogenation of aryl halides. J. Organomet. Chem., 2014, 755, 7-11.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.053]
[101]
Bhattacharjya, A.; Klumphu, P.; Lipshutz, B.H. Ligand-free, palladium-catalyzed dihydrogen generation from TMDS: dehalogenation of aryl halides on water. Org. Lett., 2015, 17(5), 1122-1125.
[http://dx.doi.org/10.1021/ol5037369] [PMID: 25679825]
[102]
Wei, B.; Hor, T.S.A. Room–temperature hydrodebromination of 4,4′–dibromobiphenyl catalyzed by 1,1′–bis(diphenylphosphino) ferrocene complexes of palladium. J. Mol. Catal. Chem., 1998, 132, 223-229.
[http://dx.doi.org/10.1016/S1381-1169(97)00274-4]
[103]
Lin, K.; Ding, J.; Huang, X. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: Kinetics, influencing factors, and pathways. Ind. Eng. Chem. Res., 2012, 51, 8378-8385.
[http://dx.doi.org/10.1021/ie300992v]
[104]
Weidauera, M.; Irran, E.; Someya, C.I.; Haberberger, M.; Enthale, S. Nickel–catalyzed hydrodehalogenation of aryl halides. J. Organomet. Chem., 2013, 729, 53-59.
[http://dx.doi.org/10.1016/j.jorganchem.2013.01.014]
[105]
Jadbabaei, N.; Ye, T.; Shuai, D.; Zhang, H. Development of palladium–resin composites for catalytic hydrodechlorination of 4–chlorophenol. Appl. Catal. B, 2017, 205, 576-586.
[http://dx.doi.org/10.1016/j.apcatb.2016.12.068]
[106]
Yang, L.; Lv, L.; Zhang, S.; Pan, B.; Zhang, W. Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chem. Eng. J., 2011, 178, 161-167.
[http://dx.doi.org/10.1016/j.cej.2011.10.039]
[107]
Ni, S.Q.; Yang, N. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation. J. Colloid Interface Sci., 2014, 420, 158-165.
[http://dx.doi.org/10.1016/j.jcis.2014.01.010] [PMID: 24559714]
[108]
Biswas, K.; Chattopadhyay, S.; Jing, Y.; Che, R.; De, G.; Basu, B.; Zhao, D. Polyionic resin supported Pd/fe2o3nanohybrids for catalytic hydrodehalogenation: Improved and versatile remediation for toxic pollutants. Ind. Eng. Chem. Res., 2019, 58, 2159-2169.
[http://dx.doi.org/10.1021/acs.iecr.8b04464]
[109]
Thiot, C.; Schmutz, M.; Wagner, A.; Mioskowski, C. Polyionic gels: efficient heterogeneous media for metal scavenging and catalysis. Angew. Chem. Int. Ed. Engl., 2006, 45(18), 2868-2871.
[http://dx.doi.org/10.1002/anie.200504580] [PMID: 16568484]
[110]
Thiot, C.; Wagner, A.; Mioskowski, C. Rh soaked in polyionic gel: an effective catalyst for dehydrogenative silylation of ketones. Org. Lett., 2006, 8(26), 5939-5942.
[http://dx.doi.org/10.1021/ol0623670] [PMID: 17165899]
[111]
Basu, B.; Das, S.; Das, P.; Mandal, B.; Banerjee, D.; Almqvist, F. Palladium supported on a polyionic resin as an efficient, ligand–free, and recyclable catalyst for heck, suzuki–miyaura, and sonogashira reactions. Synthesis, 2009, 1137-1146.
[http://dx.doi.org/10.1055/s-0028-1088003]
[112]
Basu, B.; Das, S.; Kundu, S.; Mandal, B. Polyionic Heterogeneous Phenylating Agent for Base–Free Suzuki–Miyaura Coupling Reaction. Synlett, 2008, 255-259
[http://dx.doi.org/10.1055/s-2008-1000874]
[113]
Sengupta, D.; Saha, J.; De, G.; Basu, B. Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: An excellent heterogeneous catalyst for the Sonogashira reaction. J. Mater. Chem. A., 2014, 2, 3986-3992.
[http://dx.doi.org/10.1039/c3ta14916a]
[114]
Vaerenbergh, B.V.; Lauwaert, J.; Bert, W.; Thybaut, J.W.; Clercq, J.D.; Vermeir, P. Effect of ion exchange resin functionality on catalytic activity and leaching of palladium nanoparticles in Suzuki cross-coupling. ChemCatChem, 2017, 9, 451-457.
[http://dx.doi.org/10.1002/cctc.201601175]
[115]
Bakherad, M.; Keivanloo, A.; Bahramian, B.; Rajaie, M. A copper–and solvent free coupling of acid chlorides with terminal alkynes catalyzed by a polystyrene–supported palladium(0)complex underaerobic condition. Tetrahedron Lett., 2010, 51, 33-35.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.029]
[116]
González-Aramundiz, J.V.; Lozano, M.V.; Sousa-Herves, A.; Fernandez-Megia, E.; Csaba, N. Polypeptides and polyaminoacids in drug delivery. Expert Opin. Drug Deliv., 2012, 9(2), 183-201.
[http://dx.doi.org/10.1517/17425247.2012.647906] [PMID: 22243132]
[117]
Grove, T.Z.; Forster, J.; Pimienta, G.; Dufresne, E.; Regan, L. A modular approach to the design of protein-based smart gels. Biopolymers, 2012, 97(7), 508-517.
[http://dx.doi.org/10.1002/bip.22033] [PMID: 22328209]
[118]
Bracalello, A.; Santopietro, V.; Vassalli, M.; Marletta, G.; Del Gaudio, R.; Bochicchio, B.; Pepe, A. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules, 2011, 12(8), 2957-2965.
[http://dx.doi.org/10.1021/bm2005388] [PMID: 21707089]
[119]
Fingerhut, A.; Grau, D.; Tsogoeva, S.B. Peptides as asymmetric organocatalysts; Sustainable Catalysis, 2015, pp. 309-353.
[http://dx.doi.org//10.1039/9781782622093-00309]
[120]
Freund, M.; Tsogoeva, S.B. Peptides for asymmetric catalysis. Chapter 13,Wiley Online Library: New York, 20011..
[http://dx.doi.org/10.1002/9781118087992.ch13]
[121]
Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew. Chem. Int. Ed. Engl., 2004, 43(3), 278-282.
[http://dx.doi.org/10.1002/anie.200301694] [PMID: 14705079]
[122]
Elias, S.; Vigalok, A. Amphiphilic block polypeptide-type ligands for miceller catalysis in water. Adv. Synth. Catal., 2009, 351, 1499-1504.
[http://dx.doi.org/10.1002/adsc.200900203]
[123]
Bálint, E.; Tajti, Á.; Tripolszky, A.; Keglevich, G. Synthesis of platinum, palladium and rhodium complexes of α-aminophosphine ligands. Dalton Trans., 2018, 47(14), 4755-4778.
[http://dx.doi.org/10.1039/C8DT00178B] [PMID: 29565437]
[124]
Boruah, J.J.; Das, S.P.; Ankireddy, S.R.; Gogoi, S.R.; Islam, N.S. Merrifield resin supported peroxomolybdenum (VI) compounds: Recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulphides with H2O2. Green Chem., 2013, 15, 2944-2959.
[http://dx.doi.org/10.1039/c3gc40304a]
[125]
Marcelo, G.; Bonilla, A.M.; Garcia, M.F. Magnetite-polypeptide hybrid materials decorated with gold nanoparticles: Study of their catalytic activity in 4-nitrophenol reduction. J. Phys. Chem. C, 2012, 116, 24717-24725.
[http://dx.doi.org/10.1021/jp309145r]
[126]
Zhang, M-T.; Chen, Z.; Kang, P.; Meyer, T.J. Electrocatalytic water oxidation with a copper(II) polypeptide complex. J. Am. Chem. Soc., 2013, 135(6), 2048-2051.
[http://dx.doi.org/10.1021/ja3097515] [PMID: 23350950]
[127]
Rhodes, A.J.; Deming, T.J. Tandem catalysis for the preparation of cylindrical polypeptide brushes. J. Am. Chem. Soc., 2012, 134(47), 19463-19467.
[http://dx.doi.org/10.1021/ja308620h] [PMID: 23134537]
[128]
Akagawa, K.; Kudo, K. Development of selective peptide catalysts with secondary structural frameworks. Acc. Chem. Res., 2017, 50(10), 2429-2439.
[http://dx.doi.org/10.1021/acs.accounts.7b00211] [PMID: 28872296]
[129]
Bentley, P.A.; Flood, R.W.; Roberts, S.M.; Skidmore, J.; Smith, C.B.; Smith, J.A. The effect of the primary structure of the polypeptide catalyst on the enantioselectivity of the Juliá-Colonna asymmetric epoxidation of enones. Chem. Commun., 2001, (17), 1616-1617.
[http://dx.doi.org/10.1039/b104123c] [PMID: 12240409]
[130]
Flood, R.W.; Geller, T.P.; Petty, S.A.; Roberts, S.M.; Skidmore, J.; Volk, M. Efficient asymmetric epoxidation of α,β-unsaturated ketones using a soluble triblock polyethylene glycol-polyamino acid catalyst. Org. Lett., 2001, 3(5), 683-686.
[http://dx.doi.org/10.1021/ol007005l] [PMID: 11259036]
[131]
Berkessel, A.; Gasch, N.; Glaubitz, K.; Koch, C. Highly enantioselective enone epoxidation catalyzed by short solid phase-bound peptides: dominant role of peptide helicity. Org. Lett., 2001, 3(24), 3839-3842.
[http://dx.doi.org/10.1021/ol0166451] [PMID: 11720549]
[132]
Benaglia, M.; Cinquini, M.; Cozzi, F.; Puglisi, A.; Celentano, G. Poly(Ethylene Glycol)-supported proline: A versatile catalyst for the enantioselective aldol and iminoaldol reactions. Adv. Synth. Catal., 2002, 344, 533-542.
[http://dx.doi.org/10.1002/1615-4169(200207)344:5<533::AIDADSC533>3.0.CO;2-Y]
[133]
Benaglia, M.; Cinquini, M.; Cozzi, F.; Puglisi, A.; Celentano, G. Poly(ethylene-glycol)-supported proline: A recyclable aminocatalyst for the enantioselective synthesis of γ-nitroketones by conjugate addition. J. Mol. Catal. Chem., 2003, 204-205, 157-163.
[http://dx.doi.org/10.1016/S1381-1169(03)00295-4]
[134]
Benaglia, M. Recoverable and recyclable chiral organic catalysts. New J. Chem., 2006, 30, 1525-1533.
[http://dx.doi.org/10.1039/b610416a]
[135]
Selkala, S.A.; Tois, J.; Pihko, P.M.; Koskinen, A.M.P. Asymmetric organocatalytic Diels–Alder reactions on solid support. Adv. Synth. Catal., 2002, 344, 941-945.
[http://dx.doi.org/10.1002/1615-4169(200210)344:9<941::AIDADSC941>3.0.CO;2-M]
[136]
Benaglia, M.; Celentano, G.; Cinquini, M.; Puglisi, A.; Cozzi, F. enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. Eur. J. Org. Chem., 2004, 567-573.
[http://dx.doi.org/10.1002/ejoc.200300571]

© 2024 Bentham Science Publishers | Privacy Policy