Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article (Mini-Review)

Electrochemical Detection of Neurotransmitters in the Brain and Other Molecules with Biological Activity in the Nervous System: Dopamine Analysis

Author(s): Erika Bustos*, Juan Manríquez, Ana Laura Colín-González, Edgar Rangel-López and Abel Santamaría

Volume 24 , Issue 21 , 2020

Page: [2498 - 2507] Pages: 10

DOI: 10.2174/1385272824666200204121746

Price: $65

Abstract

Monitoring the appropriate functions of the brain is a priority when the diagnosis of neurological diseases is carried out. In this regard, there are different analytical techniques to detect neurotransmitters and other molecules with biological activity in the nervous system. Among several analytical procedures, electrochemical techniques are very important since they can be applied in situ, without loss of sensibility and/or minimal handling of samples. In addition, it is also possible to combine them with specific detectors designed on the basis of chemically-modified electrodes in order to improve detection limits by promoting molecular recognition capabilities at their surfaces, thus favoring the development of electrochemical detection in vivo by microelectrodes. In this mini-review, we will describe the major characteristics of this analytical method and its advantages for the detection of neurotransmitters (mostly dopamine) in vivo.

Keywords: Electroanalysis, neurotransmitters, biological activity, central nervous system, chromatography, modified electrode.

Graphical Abstract
[1]
Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol., 2005, 5(3), 243-251.
[http://dx.doi.org/10.1038/nri1571] [PMID: 15738954]
[2]
Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest., 2007, 117(2), 289-296.
[http://dx.doi.org/10.1172/JCI30555] [PMID: 17273548]
[3]
Raiteri, L.; Raiteri, M.; Bonanno, G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons. Prog. Neurobiol., 2002, 68(4), 287-309.
[http://dx.doi.org/10.1016/S0301-0082(02)00059-X] [PMID: 12498989]
[4]
Torres, G.E.; Gainetdinov, R.R.; Caron, M.G. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci., 2003, 4(1), 13-25.
[http://dx.doi.org/10.1038/nrn1008] [PMID: 12511858]
[5]
Agnati, L.F.; Zoli, M.; Strömberg, I.; Fuxe, K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience, 1995, 69(3), 711-726.
[http://dx.doi.org/10.1016/0306-4522(95)00308-6] [PMID: 8596642]
[6]
Meder, D.; Herz, D.M.; Rowe, J.B.; Lehéricy, S.; Siebner, H.R. The role of dopamine in the brain - lessons learned from Parkinson’s disease. Neuroimage, 2019, 190, 79-93.
[http://dx.doi.org/10.1016/j.neuroimage.2018.11.021] [PMID: 30465864]
[7]
Jacobson, S.; Marcus, E. Introduction to the Central Nervous System. Neuroanatomy for the Neuroscientist; Springer: New York, 2008, pp. 3-22.
[8]
Chaudhry, F.A.; Boulland, J.L.; Jenstad, M.; Bredahl, M.K.; Edwards, R.H. Pharmacology of neurotransmitter transport into secretory vesicles. Handb. Exp. Pharmacol., 2008, 184(184), 77-106.
[http://dx.doi.org/10.1007/978-3-540-74805-2_4] [PMID: 18064412]
[9]
Nathanson, N.M. A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6245-6247.
[http://dx.doi.org/10.1073/pnas.97.12.6245] [PMID: 10841527]
[10]
Tata, A.M.; Velluto, L.; D’Angelo, C.; Reale, M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1294-1303.
[http://dx.doi.org/10.2174/1871527313666140917121132] [PMID: 25230223]
[11]
Willard, S.S.; Koochekpour, S. Glutamate, glutamate receptors, and downstream signaling pathways. Int. J. Biol. Sci., 2013, 9(9), 948-959.
[http://dx.doi.org/10.7150/ijbs.6426] [PMID: 24155668]
[12]
Mark, L.P.; Prost, R.W.; Ulmer, J.L.; Smith, M.M.; Daniels, D.L.; Strottmann, J.M.; Brown, W.D.; Hacein-Bey, L. Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol., 2001, 22(10), 1813-1824.
[PMID: 11733308]
[13]
Schoepp, D.D.; Jane, D.E.; Monn, J.A. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 1999, 38(10), 1431-1476.
[http://dx.doi.org/10.1016/S0028-3908(99)00092-1] [PMID: 10530808]
[14]
Jensen, A.A.; Fahlke, C.; Bjørn-Yoshimoto, W.E.; Bunch, L. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr. Opin. Pharmacol., 2015, 20, 116-123.
[http://dx.doi.org/10.1016/j.coph.2014.10.008] [PMID: 25466154]
[15]
Möhler, H. Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J. Neurochem., 2007, 102(1), 1-12.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04454.x] [PMID: 17394533]
[16]
Wijtenburg, S.A.; Yang, S.; Fischer, B.A.; Rowland, L.M. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci. Biobehav. Rev., 2015, 51, 276-295.
[http://dx.doi.org/10.1016/j.neubiorev.2015.01.007] [PMID: 25614132]
[17]
Barker, J.L.; Behar, T.; Li, Y.X.; Liu, Q.Y.; Ma, W.; Maric, D.; Maric, I.; Schaffner, A.E.; Serafini, R.; Smith, S.V.; Somogyi, R.; Vautrin, J.Y.; Wen, X.L.; Xian, H. GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol., 1998, 5(2-3), 305-322.
[PMID: 9777645]
[18]
Jembrek, M.J.; Vlainic, J. GABA receptors: pharmacological potential and pitfalls. Curr. Pharm. Des., 2015, 21(34), 4943-4959.
[http://dx.doi.org/10.2174/1381612821666150914121624] [PMID: 26365137]
[19]
Schür, R.R.; Draisma, L.W.; Wijnen, J.P.; Boks, M.P.; Koevoets, M.G.; Joëls, M.; Klomp, D.W.; Kahn, R.S.; Vinkers, C.H. Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of (1) H-MRS studies. Hum. Brain Mapp., 2016, 37(9), 3337-3352.
[http://dx.doi.org/10.1002/hbm.23244] [PMID: 27145016]
[20]
Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: a review. J. Vet. Pharmacol. Ther., 2008, 31(3), 187-199.
[http://dx.doi.org/10.1111/j.1365-2885.2008.00944.x] [PMID: 18471139]
[21]
Erspamer, V.; Asero, B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature, 1952, 169(4306), 800-801.
[http://dx.doi.org/10.1038/169800b0] [PMID: 14941051]
[22]
Tyce, G.M. Origin and metabolism of serotonin. J. Cardiovasc. Pharmacol., 1990, 16(3), S1-S7.
[http://dx.doi.org/10.1097/00005344-199000163-00002] [PMID: 1369709]
[23]
Raymond, J.R.; Mukhin, Y.V.; Gelasco, A.; Turner, J.; Collinsworth, G.; Gettys, T.W.; Grewal, J.S.; Garnovskaya, M.N. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther., 2001, 92(2-3), 179-212.
[http://dx.doi.org/10.1016/S0163-7258(01)00169-3] [PMID: 11916537]
[24]
Kandel, E. Depression, mania and anxiety disorders. Principles of Neural Science, 4th ed.; Kandel, E.; Schwartz, J.; Jessell, T. McGraw-Hill: New York; , 2001, pp. 1209-1225.
[25]
Di Marzo, V.; Piscitelli, F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics, 2015, 12(4), 692-698.
[http://dx.doi.org/10.1007/s13311-015-0374-6] [PMID: 26271952]
[26]
Lu, Y.; Anderson, H.D. Cannabinoid signaling in health and disease. Can. J. Physiol. Pharmacol., 2017, 95(4), 311-327.
[http://dx.doi.org/10.1139/cjpp-2016-0346] [PMID: 28263083]
[27]
Cohen, K.; Weizman, A.; Weinstein, A. Modulatory effects of cannabinoids on brain neurotransmission. Eur. J. Neurosci., 2019, 50(3), 2322-2345.
[http://dx.doi.org/10.1111/ejn.14407] [PMID: 30882962]
[28]
Rodríguez-Muñoz, M.; Sánchez-Blázquez, P.; Merlos, M.; Garzón-Niño, J. Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget, 2016, 7(34), 55840-55862.
[http://dx.doi.org/10.18632/oncotarget.10095] [PMID: 27323834]
[29]
Naderi, N.; Shafaghi, B.; Khodayar, M.J.; Zarindast, M.R. Interaction between gamma-aminobutyric acid GABAB and cannabinoid CB1 receptors in spinal pain pathways in rat. Eur. J. Pharmacol., 2005, 514(2-3), 159-164.
[http://dx.doi.org/10.1016/j.ejphar.2005.03.037] [PMID: 15910802]
[30]
Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoid system in neurodegenerative disorders. J. Neurochem., 2017, 142(5), 624-648.
[http://dx.doi.org/10.1111/jnc.14098] [PMID: 28608560]
[31]
Scotter, E.L.; Abood, M.E.; Glass, M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br. J. Pharmacol., 2010, 160(3), 480-498.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00735.x] [PMID: 20590559]
[32]
Brady, S.; Siegel, R.G.; Albers, W.; Price, D. Basic Neurochemistry. Principles of Molecular, Cellular, and Medical Neurobiology, 8th ed; Academic Press: Cambridge, 2011.
[33]
Roberts, K.M.; Fitzpatrick, P.F. Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life, 2013, 65(4), 350-357.
[http://dx.doi.org/10.1002/iub.1144] [PMID: 23441081]
[34]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[35]
Volkow, N.D.; Wise, R.A.; Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci., 2017, 18(12), 741-752.
[http://dx.doi.org/10.1038/nrn.2017.130] [PMID: 29142296]
[36]
de la Mora, M.P.; Hernandez-Mondragon, C.; Crespo-Ramirez, M.; Rejón-Orantes, J.; Borroto-Escuela, D.O.; Fuxe, K. Conventional and novel pharmacological approaches to treat dopamine-related disorders: focus on Parkinson’s disease and schizophrenia. Neurosci., 2020, 2020, 301-318.
[http://dx.doi.org/10.1016/j.neuroscience.2019.07.026]]
[37]
Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front. Aging Neurosci., 2019, 11(11), 175.
[http://dx.doi.org/10.3389/fnagi.2019.00175] [PMID: 31354471]
[38]
García-Sáinz, J.A.; Vázquez-Prado, J.; Villalobos-Molina, R. Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. Arch. Med. Res., 1999, 30(6), 449-458.
[PMID: 10714357]
[39]
Raharjo, T.J.; Verpoorte, R. Methods for the analysis of cannabinoids in biological materials: a review. Phytochem. Anal., 2004, 15(2), 79-94.
[http://dx.doi.org/10.1002/pca.753] [PMID: 15116938]
[40]
Battista, N.; Sergi, M.; Montesano, C.; Napoletano, S.; Compagnone, D.; Maccarrone, M. Analytical approaches for the determination of phytocannabinoids and endocannabinoids in human matrices. Drug Test. Anal., 2014, 6(1-2), 7-16.
[http://dx.doi.org/10.1002/dta.1574] [PMID: 24218186]
[41]
Meng, Q.; Buchanan, B.; Zuccolo, J.; Poulin, M.M.; Gabriele, J.; Baranowski, D.C. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS One, 2018, 13(5)
[http://dx.doi.org/10.1371/journal.pone.0196396] [PMID: 29718956]
[42]
Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: a critical review. J. Pharm. Biomed. Anal., 2018, 147(147), 565-579.
[http://dx.doi.org/10.1016/j.jpba.2017.06.003] [PMID: 28641906]
[43]
Fanelli, F.; Di Lallo, V.D.; Belluomo, I.; De Iasio, R.; Baccini, M.; Casadio, E.; Gasparini, D.I.; Colavita, M.; Gambineri, A.; Grossi, G.; Vicennati, V.; Pasquali, R.; Pagotto, U. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J. Lipid Res., 2012, 53(3), 481-493.
[http://dx.doi.org/10.1194/jlr.M021378] [PMID: 22172516]
[44]
Zoerner, A.A.; Batkai, S.; Suchy, M.T.; Gutzki, F.M.; Engeli, S.; Jordan, J.; Tsikas, D. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 883-884, 161-171.
[http://dx.doi.org/10.1016/j.jchromb.2011.06.025] [PMID: 21752730]
[45]
Sergi, M.; Montesano, C.; Odoardi, S.; Mainero Rocca, L.; Fabrizi, G.; Compagnone, D.; Curini, R. Micro extraction by packed sorbent coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J. Chromatogr. A, 2013, 1301, 139-146.
[http://dx.doi.org/10.1016/j.chroma.2013.05.072] [PMID: 23806358]
[46]
Felder, C.C.; Nielsen, A.; Briley, E.M.; Palkovits, M.; Priller, J.; Axelrod, J.; Nguyen, D.N.; Richardson, J.M.; Riggin, R.M.; Koppel, G.A.; Paul, S.M.; Becker, G.W. Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett., 1996, 393(2-3), 231-235.
[http://dx.doi.org/10.1016/0014-5793(96)00891-5] [PMID: 8814296]
[47]
Maccarrone, M.; Attinà, M.; Cartoni, A.; Bari, M.; Finazzi-Agrò, A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J. Neurochem., 2001, 76(2), 594-601.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00092.x] [PMID: 11208922]
[48]
Vinod, K.Y.; Arango, V.; Xie, S.; Kassir, S.A.; Mann, J.J.; Cooper, T.B.; Hungund, B.L. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol. Psychiatry, 2005, 57(5), 480-486.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.033] [PMID: 15737662]
[49]
Boger, D.L.; Patterson, J.E.; Guan, X.; Cravatt, B.F.; Lerner, R.A.; Gilula, N.B. Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 4810-4815.
[http://dx.doi.org/10.1073/pnas.95.9.4810] [PMID: 9560184]
[50]
Fedorova, I.; Hashimoto, A.; Fecik, R.A.; Hedrick, M.P.; Hanus, L.O.; Boger, D.L.; Rice, K.C.; Basile, A.S. Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J. Pharmacol. Exp. Ther., 2001, 299(1), 332-342.
[PMID: 11561096]
[51]
Yang, J.Y.; Abe, K.; Xu, N.J.; Matsuki, N.; Wu, C.F. Oleamide attenuates apoptotic death in cultured rat cerebellar granule neurons. Neurosci. Lett., 2002, 328(2), 165-169.
[http://dx.doi.org/10.1016/S0304-3940(02)00460-3] [PMID: 12133580]
[52]
Maya-López, M.; Rubio-López, L.C.; Rodríguez-Alvarez, I.V.; Orduño-Piceno, J.; Flores-Valdivia, Y.; Colonnello, A.; Rangel-López, E.; Túnez, I.; Prospero-García, O.; Santamaría, A. A cannabinoid receptor-mediated mechanism participates in the neuroprotective effects of oleamide against excitotoxic damage in rat brain synaptosomes and cortical slices. Neurotox. Res., 2019, 37(1), 126-135.
[http://dx.doi.org/10.1007/s12640-019-00083-1PMID: 31286434]
[53]
Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol., 2018, 56, 179-185.
[http://dx.doi.org/10.1016/j.intimp.2018.01.032] [PMID: 29414648]
[54]
Gronewold, A.; Skopp, G. A preliminary investigation on the distribution of cannabinoids in man. Forensic Sci. Int., 2011, 210(1-3), e7-e11.
[http://dx.doi.org/10.1016/j.forsciint.2011.04.010] [PMID: 21570784]
[55]
Desrosiers, N.A.; Scheidweiler, K.B.; Huestis, M.A. Quantification of six cannabinoids and metabolites in oral fluid by liquid chromatography-tandem mass spectrometry. Drug Test. Anal., 2015, 7(8), 684-694.
[http://dx.doi.org/10.1002/dta.1753] [PMID: 25428610]
[56]
Elian, A.A.; Hackett, J. Solid-phase extraction and analysis of THC and carboxy-THC from whole blood using a novel fluorinated solid-phase extraction sorbent and fast liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol., 2009, 33(8), 461-468.
[http://dx.doi.org/10.1093/jat/33.8.461] [PMID: 19874653]
[57]
Kumar, S.S.; Mathiyarasu, J.; Phani, K.L. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J. Electroanal. Chem. , 2005, 578(1), 95-103.
[http://dx.doi.org/10.1016/j.jelechem.2004.12.023]
[58]
Armendariz, G.; Manríquez, J.; Santamaría, A.; Herrera-Gómez, A.; Bustos, E. Electrochemical detection of dopamine using graphite electrodes modified with PAMAM G4. 0-64 OH dendrimers in synthetic cerebrospinal fluid.Biosensors: Recent Advances and Mathematical Challenges; Osma, J.F.; Stoytchevam, M., Eds.; OmniaScience: Barcelona, 2014, pp. 129-140.
[http://dx.doi.org/10.3926/oms.122]
[59]
Venton, B.; Wightman, R. Psychoanalytical electrochemistry: dopamine and behavior. Anal. Chem., 2003, 75(19), 414-421.
[http://dx.doi.org/10.1021/ac031421c]]
[60]
Bito, L.; Davson, H.; Levin, E.; Murray, M.; Snider, N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J. Neurochem., 1966, 13(11), 1057-1067.
[http://dx.doi.org/10.1111/j.1471-4159.1966.tb04265.x] [PMID: 5924657]
[61]
Wassell, J.; Reed, P.; Kane, J.; Weinkove, C. Freedom from drug interference in new immunoassays for urinary catecholamines and metanephrines. Clin. Chem., 1999, 45(12), 2216-2223.
[http://dx.doi.org/10.1093/clinchem/45.12.2216] [PMID: 10585355]
[62]
Lin, L.; Qiu, P.; Yang, L.; Cao, X.; Jin, L. Determination of dopamine in rat striatum by microdialysis and high-performance liquid chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube electrode. Anal. Bioanal. Chem., 2006, 384(6), 1308-1313.
[http://dx.doi.org/10.1007/s00216-005-0275-3] [PMID: 16496134]
[63]
Bergquist, J.; Sciubisz, A.; Kaczor, A.; Silberring, J. Catecholamines and methods for their identification and quantitation in biological tissues and fluids. J. Neurosci. Methods, 2002, 113(1), 1-13.
[http://dx.doi.org/10.1016/S0165-0270(01)00502-7] [PMID: 11741716]
[64]
Peaston, R.T.; Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem., 2004, 41(1), 17-38.
[http://dx.doi.org/10.1258/000456304322664663] [PMID: 14713382]
[65]
Chefer, V.I.; Thompson, A.C.; Zapata, A.; Shippenberg, T.S. Overview of brain microdialysis. Curr. Protoc. Neurosci., 2009, 47(1), 7-1.
[PMID: 19340812]
[66]
Dale, N.; Hatz, S.; Tian, F.; Llaudet, E. Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol., 2005, 23(8), 420-428.
[http://dx.doi.org/10.1016/j.tibtech.2005.05.010] [PMID: 15950302]
[67]
LaCourse, W.R. Pulsed Electrochemical Detection in High Performance Liquid Chromatography; John Wiley & Sons. Inc.: New York, 1997, pp. 13-148.
[68]
Nohta, H.; Yukizawa, T.; Ohkura, Y.; Yoshimura, M.; Ishida, J.; Yamaguchi, M. Aromatic glycinonitriles and methylamines as pre-column fluorescence derivatization reagents for catecholamines. Anal. Chim. Acta, 1997, 344(3), 233-240.
[http://dx.doi.org/10.1016/S0003-2670(96)00614-9]
[69]
Jin, W.; Jin, L.T.; Shi, G.S.; Ye, Y.N. Determination of monoamine transmitters and their metabolites by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta, 1999, 382, 33-37.
[http://dx.doi.org/10.1016/S0003-2670(98)00766-1]
[70]
Israël, M.; Tomasi, M. A chemiluminescent catecholamine assay: its application for monitoring adrenergic transmitter release. J. Neurosci. Methods, 1999, 91(1-2), 101-107.
[http://dx.doi.org/10.1016/S0165-0270(99)00079-5] [PMID: 10522828]
[71]
Lin, L.; Cai, Y.P.; Lin, R.P.; Yu, Li.; Song, C.Y.; Gao, H.C.; Li, X.K. New integrated in vivo microdialysis-electrochemical device for determination of the neurotransmitter dopamine in rat striatum of freely moving rats. Mikrochim. Acta, 2011, 172, 217-223.
[http://dx.doi.org/10.1007/s00604-010-0484-0]
[72]
Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Kinetic study of the oxidation of some catecholamines by digital simulation of cyclic voltammograms. Int. J. Chem. Kinet., 2005, 37(1), 17-24.
[http://dx.doi.org/10.1002/kin.20046]
[73]
Luczak, T. Electrochemical oxidation of dopamine in the presence of secondary amine. An alternative way for quantitative dopamine determination at a gold electrode. Electroanal., 2008, 20(15), 1639.
[http://dx.doi.org/10.1002/elan.200804223]
[74]
Li, Y.; Liu, M.; Xiang, C.; Xie, Q.; Yao, S. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solution. Thin Sol. films,, 2006, 497(1-2), 270-278.
[75]
Kissinger, P.T.; Hart, J.B.; Adams, R.N. Voltammetry in brain tissue--a new neurophysiological measurement. Brain Res., 1973, 55(1), 209-213.
[http://dx.doi.org/10.1016/0006-8993(73)90503-9] [PMID: 4145914]
[76]
Roy, P.R.; Saha, M.S.; Okajima, T.; Park, S.G.; Fujishima, A.; Ohsaka, T. Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanal., 2004, 16(21), 1777-1784.
[http://dx.doi.org/10.1002/elan.200303026]
[77]
Winter, E.; Codognoto, L.; Rath, S. Electrochemical behavior of dopamine at a mercury electrode in the presence of citrate. Anal. Lett., 2007, 40(6), 1197-1208.
[http://dx.doi.org/10.1080/00032710701297166]
[78]
Mazloum-Ardakani, M.; Rajabi, H.; Beitollahi, H.; Mirijalili, B.B.F.; Akbari, A.; Taghavinia, N. Voltammetric determination of dopamine at the surface of TiO2 nanoparticles modified carbón paste electrode. Int. J. Electrochem. Sci., 2010, 5, 147-157.
[79]
Gilbert, O.; Chandra, U.; Kumara, B.E.; Panduranga, M.; Nagaraj, C.; Sherigara, B.S. Poly(alanine) modified carbon paste electrode for simultaneous detection of dopamine and ascorbic acid. Int. J. Electrochem. Sci., 2008, 3, 1186-1195.
[80]
Chen, Q.P.; Ai, S.Y.; Qiang, M.; Yin, H. Selective determination of dopamine in the presence of ascorbic acid using ferrocenyl-tethered PAMAM dendrimers modified glassy carbon electrode. J. Appl. Electrochem., 2010, 40(7), 1379-1385.
[http://dx.doi.org/10.1007/s10800-010-0105-y]
[81]
Zhang, L.; Lin, X. Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid. Anal. Bioanal. Chem., 2005, 382(7), 1669-1677.
[http://dx.doi.org/10.1007/s00216-005-3318-x] [PMID: 15997381]
[82]
Wang, Y.L.; Peng, W.; Lin, L.; Tang, M.; Gao, F.; Li, M.G. Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered doublé hydroxides for selectively sensing of dopamine. Mikrochim. Acta, 2011, 174, 41-46.
[http://dx.doi.org/10.1007/s00604-011-0593-4]
[83]
Bustos, E.B.; Jiménez, M.G.; Díaz-Sánchez, B.R.; Juaristi, E.; Chapman, T.W.; Godínez, L.A. Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta, 2007, 72(4), 1586-1592.
[http://dx.doi.org/10.1016/j.talanta.2007.02.017] [PMID: 19071801]
[84]
Salimi, A.; Abdi, K.; Khayatian, G.R. Amperometric detection of dopamine in the presence of ascorbic acid using a nafion coated glassy carbon electrode modified with catechin hydrate as a natural antioxidant. Mikrochim. Acta, 2004, 144(1-3), 161-169.
[http://dx.doi.org/10.1007/s00604-003-0048-7]
[85]
Martínez-Huitle, C.A.; Cerro-López, M.; Quiroz, M.A. Electrochemical behavior of dopamine at covalent modified glassy carbon electrode with I-cysteine: preliminary results. Mater. Res., 2009, 12(4), 375-384.
[http://dx.doi.org/10.1590/S1516-14392009000400002]
[86]
Yavich, L.; Tiihonen, J. In vivo voltammetry with removable carbon fiber electrodes in freely-moving mice: dopamine release during intracranial self-stimulation. J. Neurosci. Methods, 2000, 104(1), 55-63.
[http://dx.doi.org/10.1016/S0165-0270(00)00321-6] [PMID: 11163411]
[87]
Budai, D.; Gulya, K.; Mézáros, B.; Hernándi, I.; Bali, Z.K. Electrochemical responses of carbon fiber microelectrodes to dopamine in vitro and in vivo. Acta Biol. Szeged., 2010, 54(2), 155-160.
[88]
Özcan, L.; Sahin, M.; Sahin, Y. Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors (Basel), 2008, 8(9), 5792-5805.
[http://dx.doi.org/10.3390/s8095792] [PMID: 27873840]
[89]
de Toledo, R.A.; Santos, M.C.; Cavalheiro, E.T.G.; Mazo, L.H. Determination of dopamine in synthetic cerebrospinal fluid by SWV with a graphite-polyurethane composite electrode. Anal. Bioanal. Chem., 2005, 381(6), 1161-1166.
[http://dx.doi.org/10.1007/s00216-005-3066-y] [PMID: 15714300]
[90]
Dong, J.; Hu, Y.; Zhu, S.; Xu, J.; Xu, Y. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Anal. Bioanal. Chem., 2010, 396(5), 1755-1762.
[http://dx.doi.org/10.1007/s00216-009-3423-3] [PMID: 20091157]
[91]
Yin, T.; Wei, W.; Zeng, J. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated beta-cyclodextrin. Anal. Bioanal. Chem., 2006, 386(7-8), 2087-2094.
[http://dx.doi.org/10.1007/s00216-006-0845-z] [PMID: 17115144]
[92]
Li, Y.; Huang, X.; Chen, Y.; Wang, L.; Lin, X. Simultaneous determination of dopamine and serotonin by use of covalent modificaiton of 5- hydroxytryptophan on glassy carbon electrode. Microchim acta 2009, 164(1-2), 107-112.
[93]
Kinoshita, K. Carbon: electrochemical and physicochemical properties; John Wiley & Sons, Inc.: New York, 1988.
[94]
Schwarz, M.A.; Hauser, P.C. Chiral on-chip separations of neurotransmitters. Anal. Chem., 2003, 75(17), 4691-4695.
[http://dx.doi.org/10.1021/ac030148b] [PMID: 14632083]
[95]
Bustos, E.; Manríquez, J.; Orozco, G.; Godínez, L.A. Preparation, characterization, and electrocatalytic activity of surface anchored, Prussian Blue containing starburst PAMAM dendrimers on gold electrodes. Langmuir, 2005, 21(7), 3013-3021.
[http://dx.doi.org/10.1021/la047478r] [PMID: 15779979]
[96]
Bustos Bustos, E.; Chapman, Th. W.; Rodríguez-Valadez, F.; Godínez Tovar, L.A. Amperometric detection of H2O2 using gold electrodes modified with starburst PAMAM dendrimers and Prussian Blue. Electroanal., 2006, 18(21), 2092-2098.
[http://dx.doi.org/10.1002/elan.200603619]
[97]
Bustos Bustos, E.; García Jiménez, M.G.; Juaristi, E.; Chapman, T.W.; Godínez Mora-Tovar, L.A. Electrodes modified with nanocomposites of PAMAM dendrimers and inorganic electrocatalysts: sensing molecules with biological importance. ECS Trans., 2006, 12(3), 45-57.
[98]
González-Fuentes, M.A.; Manríquez, J.; Gutiérrez-Granados, S.; Alatorre-Ordaz, A.; Godínez, L.A. Ni(II) 1,4,8,11-tetraazacyclotetradecane electrocatalytic films prepare don top of Surface anchored PAMAM dendrimers layers. A new type of electrocatalytic material. Chem. Commun. (Camb.), 2005, 7, 898-901.
[http://dx.doi.org/10.1039/B412442A] [PMID: 15700074]
[99]
García, M.G.; Armendáriz, G.M.E.; Godínez, L.A.; Torres, J.; Sepúlveda-Guzmán, S.; Bustos, E. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites. Electrochim. Acta, 2011, 56(22), 7712-7717.
[http://dx.doi.org/10.1016/j.electacta.2011.06.035]
[100]
Zhu, R.; Kok, W.T. Determination of catecholamines and related compounds by capillary electrophoresis with postcolumn terbium complexation and sensitized luminescence detection. Anal. Chem., 1997, 69(19), 4010-4016.
[http://dx.doi.org/10.1021/ac970323m] [PMID: 9322438]
[101]
O’Shea, T.J.; Telting-Díaz, M.W.; Lunte, S.M.; Lunte, C.E.; Smyth, M.R. Capillary electrophoresis-electrochemistry of microdialysis samples for pharmacokinetic studies. Electroanal., 1992, 4(4), 463-466.
[http://dx.doi.org/10.1002/elan.1140040412]
[102]
Milman, G.; Schwope, D.M.; Gorelick, D.A.; Huestis, M.A. Cannabinoids and metabolites in expectorated oral fluid following controlled smoked cannabis. Clin. Chim. Acta, 2012, 413(7-8), 765-770.
[http://dx.doi.org/10.1016/j.cca.2012.01.011] [PMID: 22285315]
[103]
Molnar, A.; Fu, S.; Lewis, J.; Allsop, D.J.; Copeland, J. The detection of THC, CBD and CBN in the oral fluid of Sativex® patients using two on-site screening tests and LC-MS/MS. Forensic Sci. Int., 2014, 238, 113-119.
[http://dx.doi.org/10.1016/j.forsciint.2014.03.004] [PMID: 24699310]
[104]
Concheiro, M.; Lee, D.; Lendoiro, E.; Huestis, M.A. Simultaneous quantification of 9-tetrahydrocannabinol, 11-nor-9-carboxy-tetrahydrocannabinol, cannabidiol and cannabinol in oral fluid by micro flow-liquid chromatography-high resolution mass spectrometry. J. Chromatogr. A, 2007, 454, 42-54.
[105]
Schwope, D.M.; Scheidweiler, K.B.; Huestis, M.A. Direct quantification of cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2011, 401(4), 1273-1283.
[http://dx.doi.org/10.1007/s00216-011-5197-7] [PMID: 21727996]
[106]
König, S.; Aebi, B.; Lanz, S.; Gasser, M.; Weinmann, W. On-line SPE LC-MS/MS for the quantification of Δ9-tetrahydrocannabinol (THC) and its two major metabolites in human peripheral blood by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem., 2011, 400(1), 9-16.
[http://dx.doi.org/10.1007/s00216-011-4708-x] [PMID: 21311875]
[107]
Mercolini, L.; Musenga, A.; Comin, I.; Baccini, C.; Conti, M.; Raggi, M.A. Determination of plasma and urine levels of Δ9-tetrahydrocannabinol and its main metabolite by liquid chromatography after solid-phase extraction. J. Pharm. Biomed. Anal., 2008, 47(1), 156-163.
[http://dx.doi.org/10.1016/j.jpba.2007.12.023] [PMID: 18242913]
[108]
Jagerdeo, E.; Schaff, J.E.; Montgomery, M.A.; LeBeau, M.A. A semi-automated solid-phase extraction liquid chromatography/tandem mass spectrometry method for the analysis of tetrahydrocannabinol and metabolites in whole blood. Rapid Commun. Mass Spectrom., 2009, 23(17), 2697-2705.
[http://dx.doi.org/10.1002/rcm.4174] [PMID: 19630026]
[109]
Thomas, A.; Widmer, C.; Hopfgartner, G.; Staub, C. Fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry for forensic analysis of cannabinoids in whole blood. J. Pharm. Biomed. Anal., 2007, 45(3), 495-503.
[http://dx.doi.org/10.1016/j.jpba.2007.08.019] [PMID: 17913432]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy