Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

MicroRNA (miR)-429 Promotes Inflammatory Injury by Targeting Kruppel-like Factor 4 (KLF4) in Neonatal Pneumonia

Author(s): Lan Zhang*, HuanLi Yan, Huiping Wang, Li Wang, Boling Bai, Yingjun Ma, Yingchun Tie and Zhaoxia Xi

Volume 17, Issue 1, 2020

Page: [102 - 109] Pages: 8

DOI: 10.2174/1567202617666200128143634

Price: $65

Abstract

Background: Neonatal pneumonia is a common disease in the neonatal period with a high incidence and death. This study aimed to investigate the molecular mechanism and effect of microRNA (miR)-429 in neonatal pneumonia.

Methods: The peripheral blood was collected from neonatal pneumonia and healthy patients, respectively. Human lung fibroblast WI-38 cells were treated with lipopolysaccharide (LPS) to establish neonatal pneumonia cell model. Then, the miR-429 expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the relationship between miR- 429 and kruppel-like factor 4 (KLF4) was confirmed by dual luciferase reporter assay. Cell viability, the level of interleukin 6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) and apoptosis were measured by Cell Counting Kit-8 (CCK-8), enzyme linked immunosorbent assay (ELISA) and flow cytometry. Meanwhile, apoptosis and nuclear factor kappa-B (NF-κB) pathway related proteins expression were analyzed by western blot.

Results: MiR-429 expression level was increased in neonatal peripheral blood and LPS-stimulated WI-38 cells. Then, miR-429 overexpression increased apoptosis, the level of IL-6, IL-1β, TNF-α, Bax and cleaved caspase-3, while reduced cell viability in LPS-stimulated WI-38 cells. Besides, KLF4 was identified as the target gene of miR-429, and reversed the changes caused by miR-429 overexpression. Finally, miR-429 suppressor down-regulated p-NF-κB level in LPS-stimulated cells and KLF4 knockdown reversed these reductions.

Conclusion: MiR-429 promotes inflammatory injury, apoptosis and activates the NF-κB signaling pathway by targeting KLF4 in neonatal pneumonia, and then these results provide evidence for clinical diagnosis and treatment for neonatal pneumonia.

Keywords: Neonatal pneumonia, miR-429, kruppel-like factor 4 (KLF4), apoptosis, inflammatory injury, lipopolysaccharide (LPS).

[1]
Thaver, D.; Zaidi, A.K. Burden of neonatal infections in developing countries: A review of evidence from community-based studies. Pediatr. Infect. Dis. J., 2009, 28(Suppl.), S3-S9.
[http://dx.doi.org/10.1097/INF.0b013e3181958755] [PMID: 19106760]
[2]
Zaidi, A.K.; Ganatra, H.A.; Syed, S. Effect of case management on neonatal mortality due to sepsis and pneumonia. BMC Public Health, 2011, 11(Suppl. 3), S13.
[http://dx.doi.org/10.1186/1471-2458-11-S3-S13] [PMID: 21501430]
[3]
Duke, T. Neonatal pneumonia in developing countries. Arch. Dis. Child. Fetal Neonatal Ed., 2005, 90(3), F211-F219.
[http://dx.doi.org/10.1136/adc.2003.048108] [PMID: 15846010]
[4]
Wang, H.J.; Shi, H.; Zhou, W. Common pathogens and clinical characteristics of neonatal pneumonia. Zhongguo Dang Dai Er Ke Za Zhi, 2012, 14(12), 898-902.https://www.ncbi.nlm.nih.gov/pubmed/23234773
[PMID: 23234773]
[5]
Li, S.; Li, X.; Yang, T. Application and time-effect analysis of antibiotics among neonatal pneumonia treatment. Zhonghua Liu Xing Bing Xue Za Zhi, 2001, 22(6), 411-413.https://www.ncbi.nlm.nih.gov/pubmed/11851052
[PMID: 11851052]
[6]
Wang, H.; Tang, J.; Xiong, Y.; Li, X.; Gonzalez, F.; Mu, D. Neonatal community-acquired pneumonia: Pathogens and treatment. J. Paediatr. Child Health, 2010, 46(11), 668-672.
[http://dx.doi.org/10.1111/j.1440-1754.2010.01814.x] [PMID: 20796185]
[7]
Li, M.; Li, J.; Ding, X.; He, M.; Cheng, S.Y. MicroRNA and cancer. AAPS J., 2010, 12(3), 309-317.https://www.ncbi.nlm.nih.gov/pubmed/20422339
[PMID: 20422339]
[8]
Salehi, E.; Eftekhari, R.; Oraei, M.; Gharib, A.; Bidad, K. MicroRNAs in rheumatoid arthritis. Clin. Rheumatol., 2015, 34(4), 615-628.
[http://dx.doi.org/10.1007/s10067-015-2898-x] [PMID: 25736037]
[9]
Xiao, J.; Tang, J.; Chen, Q. miR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury. Biochem. J., 2015, 471(2), 281-291.
[http://dx.doi.org/10.1042/BJ20131510] [PMID: 26431850]
[10]
Zammarchi, F.; Morelli, M.; Menicagli, M. KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am. J. Pathol., 2011, 178(1), 361-372.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.021] [PMID: 21224073]
[11]
Hamik, A.; Lin, Z.; Kumar, A. Kruppel-like factor 4 regulates endothelial inflammation. J. Biol. Chem., 2007, 282(18), 13769-13779.
[http://dx.doi.org/10.1074/jbc.M700078200] [PMID: 17339326]
[12]
Villarreal, G., Jr; Zhang, Y.; Larman, H.B.; Gracia-Sancho, J.; Koo, A.; García-Cardeña, G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem. Biophys. Res. Commun., 2010, 391(1), 984-989.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.002] [PMID: 19968965]
[13]
Zahlten, J.; Steinicke, R.; Bertrams, W. TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. Eur. Respir. J., 2013, 41(2), 384-391.
[http://dx.doi.org/10.1183/09031936.00196311] [PMID: 22653776]
[14]
Li, J.; Dong, J.; Zhang, Z.H. miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4. J. Cell. Physiol., 2013, 228(12), 2324-2336.
[http://dx.doi.org/10.1002/jcp.24402] [PMID: 23696417]
[15]
Liu, H.; Lin, H.; Zhang, L. miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J. Biol. Chem., 2013, 288(13), 9261-9271.
[http://dx.doi.org/10.1074/jbc.M112.433730] [PMID: 23430263]
[16]
Chen, H.Y.; Lin, Y.M.; Chung, H.C. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res., 2012, 72(14), 3631-3641.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0667] [PMID: 22593189]
[17]
Li, Q.; Weng, K.; Zhu, L.; Mei, X.; Xu, L.; Lin, J. Changes and clinical significance of peripheral blood natural killer cells in neonates with bacterial pneumonia. Xibao Yu Fenzi Mianyixue Zazhi, 2014, 30(10), 1067-1070.https://www.ncbi.nlm.nih.gov/pubmed/20422339
[PMID: 25270210]
[18]
Liu, M.; Han, T.; Shi, S.; Chen, E. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38-cells via modulating miR-100/NF-κB axis. Biochem. Biophys. Res. Commun., 2018, 500(3), 589-596.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.109] [PMID: 29673591]
[19]
Wang, G.C.; He, Q.Y.; Tong, D.K. MiR-367 negatively regulates apoptosis induced by adriamycin in osteosarcoma cells by targeting KLF4. J. Bone Oncol., 2016, 5(2), 51-56.
[http://dx.doi.org/10.1016/j.jbo.2016.02.002] [PMID: 27335771]
[20]
Faramarz-Gaznagh, S.; Rasmi, Y.; Khadem-Ansari, M.H. Transcriptional activity of gene encoding subunits r1 and r2 of interferon gamma receptor in peripheral blood mononuclear cells in patients with slow coronary flow. J. Med. Biochem., 2016, 35(2), 144-149.
[http://dx.doi.org/10.1515/jomb-2015-0019] [PMID: 28356874]
[21]
Wei, J.; Ma, Z.; Li, Y. miR-143 inhibits cell proliferation by targeting autophagy-related 2B in non-small cell lung cancer H1299 cells. Mol. Med. Rep., 2015, 11(1), 571-576.
[http://dx.doi.org/10.3892/mmr.2014.2675] [PMID: 25322940]
[22]
Fan, J.Y.; Fan, Y.J.; Wang, X.L. miR-429 is involved in regulation of NF-κBactivity by targeting IKKβ and suppresses oncogenic activity in cervical cancer cells. FEBS Lett., 2017, 591(1), 118-128.
[http://dx.doi.org/10.1002/1873-3468.12502] [PMID: 27883176]
[23]
Lang, Y.; Xu, S.; Ma, J. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes. Biochem. Biophys. Res. Commun., 2014, 450(1), 154-159.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.084] [PMID: 24866238]
[24]
Zhu, W.; He, J.; Chen, D. Expression of miR-29c, miR-93, and miR-429 as potential biomarkers for detection of early stage non-small lung cancer. PLoS One, 2014, 9(2)e87780
[http://dx.doi.org/10.1371/journal.pone.0087780] [PMID: 24523873]
[25]
Uematsu, T.; Iizasa, E.; Kobayashi, N.; Yoshida, H.; Hara, H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci. Rep., 2015, 5, 17577.
[http://dx.doi.org/10.1038/srep17577] [PMID: 26627732]
[26]
Marçola, M.; Lopes-Ramos, C.M.; Pereira, E.P. Light/dark environmental cycle imposes a daily profile in the expression of microRNAs in rat CD133(+) Cells. J. Cell. Physiol., 2016, 231(9), 1953-1963.
[http://dx.doi.org/10.1002/jcp.25300] [PMID: 26728119]
[27]
Frazier, S.B.; Sepanski, R.; Mangum, C.; Bovat, C.; Zaritsky, A.; Godambe, S. Association of systemic inflammatory response syndrome with clinical outcomes of pediatric patients with pneumonia. South. Med. J., 2015, 108(11), 665-669.
[http://dx.doi.org/10.14423/SMJ.0000000000000362] [PMID: 26539945]
[28]
Wang, P.; Cao, J.; Liu, S. Upregulated microRNA-429 inhibits the migration of HCC cells by targeting TRAF6 through the NF-κB pathway. Oncol. Rep., 2017, 37(5), 2883-2890.
[http://dx.doi.org/10.3892/or.2017.5507] [PMID: 28440423]
[29]
Jean, J.C.; George, E.; Kaestner, K.H.; Brown, L.A.; Spira, A.; Joyce-Brady, M. Transcription factor Klf4, induced in the lung by oxygen at birth, regulates perinatal fibroblast and myofibroblast differentiation. PLoS One, 2013, 8(1)e54806
[http://dx.doi.org/10.1371/journal.pone.0054806] [PMID: 23372771]
[30]
Hu, W.; Jia, Y.; Xiao, X. KLF4 downregulates hTERT expression and telomerase activity to inhibit lung carcinoma growth. Oncotarget, 2016, 7(33), 52870-52887.
[http://dx.doi.org/10.18632/oncotarget.9141] [PMID: 27153563]
[31]
Yu, T.; Chen, X.; Zhang, W. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ., 2016, 23(2), 207-215.
[http://dx.doi.org/10.1038/cdd.2015.85] [PMID: 26113043]
[32]
Feinberg, M.W.; Cao, Z.; Wara, A.K.; Lebedeva, M.A.; Senbanerjee, S.; Jain, M.K. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J. Biol. Chem., 2005, 280(46), 38247-38258.
[http://dx.doi.org/10.1074/jbc.M509378200] [PMID: 16169848]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy