Review Article

程序性细胞死亡配体-1/程序性细胞死亡-1 (PD-L1/PD-1)在hpv诱导的宫颈癌中的作用及其在阻断治疗中的应用潜力

卷 28, 期 5, 2021

发表于: 28 January, 2020

页: [893 - 909] 页: 17

弟呕挨: 10.2174/0929867327666200128105459

价格: $65

摘要

背景:虽然预防性疫苗和早期诊断降低了发病率和死亡率,但由人类乳头瘤病毒(HPV)感染引起的宫颈癌仍然是全世界妇女死亡的主要原因。晚期子宫颈癌只能用化疗或放疗来治疗,但效果很差。晚期宫颈癌患者的中位生存期仅为16.8个月。 方法:我们进行了结构性搜索发表的同行评审研究基于1). 细胞程序性死亡的特征ligand-1 /程序性细胞死亡1 (PD-L1 / PD-1)表达在宫颈癌和上游的监管信号PD-L1 / PD-1表达式,2). PD-L1的角色/ PD-1宫颈HPV感染引起的致癌作用和3). 轴是否PD-L1 / PD-1轴已成为宫颈癌治疗的潜在目标。 结果:这篇综述包括126篇已发表的论文,表明PD-L1/PD-1的表达与HPV引起的癌症相关,特别是与HPV 16和18相关,这两种疾病约占宫颈癌病例的70%。HPV E5/E6/E7致癌基因可激活多种信号通路,包括PI3K/AKT、MAPK、缺氧诱导因子1α、STAT3/NF-kB和microRNA,通过调控PD-L1/PD-1轴促进HPV诱导的宫颈癌发生。PD-L1/PD-1轴通过抑制宿主免疫应答在宫颈癌免疫逃逸中发挥关键作用。为最初的病毒感染和随后的适应性免疫抵抗创建了一个“免疫特权”位点,这为治疗性阻断hpv阳性癌症中的这一轴提供了理论依据。目前,评估PDL1/ PD-1靶向治疗宫颈癌疗效的I/II期临床试验正在进行中,这为抗pd - l1 /抗PD-1抗体在宫颈癌治疗中的应用提供了重要机遇。 结论:最近的研究发展导致了一类全新的药物使用PD-L1/PD-1抗体,从而促进人体免疫系统对抗癌症。PD-L1/PD-1轴在宫颈癌进展中的表达和作用为使用PD-L1/PD-1抗体作为靶向癌症治疗提供了巨大的潜力。

关键词: 程序性细胞死亡配体-1(PD-L1),程序性细胞死亡-1(PD-1),宫颈癌,人乳头瘤病毒,癌症免疫治疗,疫苗

[1]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[2]
Forouzanfar, M.H.; Foreman, K.J.; Delossantos, A.M.; Lozano, R.; Lopez, A.D.; Murray, C.J.; Naghavi, M. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet, 2011, 378(9801), 1461-1484.
[http://dx.doi.org/10.1016/S0140-6736(11)61351-2] [PMID: 21924486]
[3]
Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K-N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer, 2015, 14, 87.
[http://dx.doi.org/10.1186/s12943-015-0361-x] [PMID: 26022660]
[4]
Wu, J.; Chen, C.; Zhao, K-N. Phosphatidylinositol 3-kinase signaling as a therapeutic target for cervical cancer. Curr. Cancer Drug Targets, 2013, 13(2), 143-156.
[http://dx.doi.org/10.2174/1568009611313020004] [PMID: 23297827]
[5]
Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. International agency for research on cancer multicenter cervical cancer study group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med., 2003, 348(6), 518-527.
[http://dx.doi.org/10.1056/NEJMoa021641] [PMID: 12571259]
[6]
Petry, K.U. HPV and cervical cancer. Scand. J. Clin. Lab. Invest. Suppl., 2014, 244(S244), 59-62.
[http://dx.doi.org/10.3109/00365513.2014.936683] [PMID: 25083895]
[7]
Zhang, L.; Zhou, F.; Zhao, K.N. Molecular approaches target to immunotherapy for HPV-associated cancers. Curr. Cancer Drug Targets, 2017, 17(6), 512-521.
[http://dx.doi.org/10.2174/1568009616666161216094701] [PMID: 27993116]
[8]
Saslow, D.; Castle, P.E.; Cox, J.T.; Davey, D.D.; Einstein, M.H.; Ferris, D.G.; Goldie, S.J.; Harper, D.M.; Kinney, W.; Moscicki, A.B.; Noller, K.L.; Wheeler, C.M.; Ades, T.; Andrews, K.S.; Doroshenk, M.K.; Kahn, K.G.; Schmidt, C.; Shafey, O.; Smith, R.A.; Partridge, E.E.; Garcia, F. Gynecologic cancer advisory group. American cancer society guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA Cancer J. Clin., 2007, 57(1), 7-28.
[http://dx.doi.org/10.3322/canjclin.57.1.7] [PMID: 17237032]
[9]
Harper, D.M.; Franco, E.L.; Wheeler, C.; Ferris, D.G.; Jenkins, D.; Schuind, A.; Zahaf, T.; Innis, B.; Naud, P.; De Carvalho, N.S.; Roteli-Martins, C.M.; Teixeira, J.; Blatter, M.M.; Korn, A.P.; Quint, W.; Dubin, G. GlaxoSmithKline HPV Vaccine Study Group. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet, 2004, 364(9447), 1757-1765.
[http://dx.doi.org/10.1016/S0140-6736(04)17398-4] [PMID: 15541448]
[10]
Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D. Jr.; Penny, M.E.; Aranda, C.; Vardas, E.; Moi, H.; Jessen, H.; Hillman, R.; Chang, Y.H.; Ferris, D.; Rouleau, D.; Bryan, J.; Marshall, J.B.; Vuocolo, S.; Barr, E.; Radley, D.; Haupt, R.M.; Guris, D. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med., 2011, 364(5), 401-411.
[http://dx.doi.org/10.1056/NEJMoa0909537] [PMID: 21288094]
[11]
Huh, W.K.; Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; de Andrade, R.P.; Ault, K.A.; Bartholomew, D.; Cestero, R.M.; Fedrizzi, E.N.; Hirschberg, A.L.; Mayrand, M.H.; Ruiz-Sternberg, A.M.; Stapleton, J.T.; Wiley, D.J.; Ferenczy, A.; Kurman, R.; Ronnett, B.M.; Stoler, M.H.; Cuzick, J.; Garland, S.M.; Kjaer, S.K.; Bautista, O.M.; Haupt, R.; Moeller, E.; Ritter, M.; Roberts, C.C.; Shields, C.; Luxembourg, A. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16-26 years: a randomised, double-blind trial. Lancet, 2017, 390(10108), 2143-2159.
[http://dx.doi.org/10.1016/S0140-6736(17)31821-4] [PMID: 28886907]
[12]
Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet, 1997, 350(9077), 535-540.
[http://dx.doi.org/10.1016/S0140-6736(97)02250-2] [PMID: 9284774]
[13]
Friedlander, M.; Grogan, M.U.S. Preventative services task force. Guidelines for the treatment of recurrent and metastatic cervical cancer. Oncologist, 2002, 7(4), 342-347.
[http://dx.doi.org/10.1634/theoncologist.2002-0342] [PMID: 12185296]
[14]
Orbegoso, C.; Murali, K.; Banerjee, S. The current status of immunotherapy for cervical cancer. Rep. Pract. Oncol. Radiother., 2018, 23(6), 580-588.
[http://dx.doi.org/10.1016/j.rpor.2018.05.001] [PMID: 30534022]
[15]
Westermann, C.; Fischer, A.; Clad, A. Treatment of vulvar intraepithelial neoplasia with topical 5% imiquimod cream. Int. J. Gynaecol. Obstet., 2013, 120(3), 266-270.
[http://dx.doi.org/10.1016/j.ijgo.2012.09.020] [PMID: 23219095]
[16]
Daayana, S.; Elkord, E.; Winters, U.; Pawlita, M.; Roden, R.; Stern, P.L.; Kitchener, H.C. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer, 2010, 102(7), 1129-1136.
[http://dx.doi.org/10.1038/sj.bjc.6605611] [PMID: 20234368]
[17]
Grimm, C.; Polterauer, S.; Natter, C.; Rahhal, J.; Hefler, L.; Tempfer, C.B.; Heinze, G.; Stary, G.; Reinthaller, A.; Speiser, P. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet. Gynecol., 2012, 120(1), 152-159.
[http://dx.doi.org/10.1097/AOG.0b013e31825bc6e8] [PMID: 22914404]
[18]
Terlou, A.; van Seters, M.; Kleinjan, A.; Heijmans-Antonissen, C.; Santegoets, L.A.; Beckmann, I.; van Beurden, M.; Helmerhorst, T.J.; Blok, L.J. Imiquimod-induced clearance of HPV is associated with normalization of immune cell counts in usual type vulvar intraepithelial neoplasia. Int. J. Cancer, 2010, 127(12), 2831-2840.
[http://dx.doi.org/10.1002/ijc.25302] [PMID: 21351262]
[19]
Soong, R.S.; Song, L.; Trieu, J.; Knoff, J.; He, L.; Tsai, Y.C.; Huh, W.; Chang, Y.N.; Cheng, W.F.; Roden, R.B.; Wu, T.C.; Trimble, C.L.; Hung, C.F. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNγ. Clin. Cancer Res., 2014, 20(21), 5456-5467.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0344] [PMID: 24893628]
[20]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[21]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol., 2012, 24(2), 207-212.
[http://dx.doi.org/10.1016/j.coi.2011.12.009] [PMID: 22236695]
[22]
Li, Z.; Song, W.; Rubinstein, M.; Liu, D. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China cancer immunotherapy workshop in Beijing. J. Hematol. Oncol., 2018, 11(1), 142.
[http://dx.doi.org/10.1186/s13045-018-0684-3] [PMID: 30577797]
[23]
Lin, D.Y.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3011-3016.
[http://dx.doi.org/10.1073/pnas.0712278105] [PMID: 18287011]
[24]
George, J.; Saito, M.; Tsuta, K.; Iwakawa, R.; Shiraishi, K.; Scheel, A.H.; Uchida, S.; Watanabe, S.I.; Nishikawa, R.; Noguchi, M.; Peifer, M.; Jang, S.J.; Petersen, I.; Büttner, R.; Harris, C.C.; Yokota, J.; Thomas, R.K.; Kohno, T. Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin. Cancer Res., 2017, 23(5), 1220-1226.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1069] [PMID: 27620277]
[25]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[26]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[27]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R-A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[28]
Mkrtichyan, M.; Najjar, Y.G.; Raulfs, E.C.; Abdalla, M.Y.; Samara, R.; Rotem-Yehudar, R.; Cook, L.; Khleif, S.N. Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur. J. Immunol., 2011, 41(10), 2977-2986.
[http://dx.doi.org/10.1002/eji.201141639] [PMID: 21710477]
[29]
Youngblood, B.; Oestreich, K.J.; Ha, S.J.; Duraiswamy, J.; Akondy, R.S.; West, E.E.; Wei, Z.; Lu, P.; Austin, J.W.; Riley, J.L.; Boss, J.M.; Ahmed, R. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity, 2011, 35(3), 400-412.
[http://dx.doi.org/10.1016/j.immuni.2011.06.015] [PMID: 21943489]
[30]
Mezache, L.; Paniccia, B.; Nyinawabera, A.; Nuovo, G.J. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol., 2015, 28(12), 1594-1602.
[http://dx.doi.org/10.1038/modpathol.2015.108] [PMID: 26403783]
[31]
Reddy, O.L.; Shintaku, P.I.; Moatamed, N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol., 2017, 12(1), 45.
[http://dx.doi.org/10.1186/s13000-017-0631-6] [PMID: 28623908]
[32]
Malm, I-J.; Bruno, T.C.; Fu, J.; Zeng, Q.; Taube, J.M.; Westra, W.; Pardoll, D.; Drake, C.G.; Kim, Y.J. Expression profile and in vitro blockade of programmed death-1 in human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck, 2015, 37(8), 1088-1095.
[http://dx.doi.org/10.1002/hed.23706] [PMID: 24710745]
[33]
Zhang, H.; Zhang, T.; You, Z.; Zhang, Y. Positive surgical margin, HPV persistence, and expression of both TPX2 and PD-L1 are associated with persistence/recurrence of cervical intraepithelial neoplasia after cervical conization. PLoS One, 2015, 10(12)e0142868
[http://dx.doi.org/10.1371/journal.pone.0142868] [PMID: 26624896]
[34]
Enwere, E.K.; Kornaga, E.N.; Dean, M.; Koulis, T.A.; Phan, T.; Kalantarian, M.; Köbel, M.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; Doll, C.M. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol., 2017, 30(4), 577-586.
[http://dx.doi.org/10.1038/modpathol.2016.221] [PMID: 28059093]
[35]
Saglam, O.; Conejo-Garcia, J. PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr. Cancer Sci. Ther., 2018, 5(2)
[http://dx.doi.org/10.15761/ICST.1000272] [http://dx.doi.org/10.15761/ICST.1000272] [PMID: 29955379]
[36]
Kim, M.; Kim, H.; Suh, D.H.; Kim, K.; Kim, H.; Kim, Y.B.; No, J.H. Identifying rational candidates for immunotherapy targeting PD-1/PD-L1 in cervical cancer. Anticancer Res., 2017, 37(9), 5087-5094.
[http://dx.doi.org/10.21873/anticanres.11926] [PMID: 28870938]
[37]
Feng, Y-C.; Ji, W-L.; Yue, N.; Huang, Y-C.; Ma, X-M. The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance. Cancer Manag. Res., 2018, 10, 105-113.
[http://dx.doi.org/10.2147/CMAR.S152232] [PMID: 29403308]
[38]
Lin, P-L.; Cheng, Y-M.; Wu, D-W.; Huang, Y-J.; Lin, H-C.; Chen, C-Y.; Lee, H. A combination of anti-PD-L1 mAb plus Lm-LLO-E6 vaccine efficiently suppresses tumor growth and metastasis in HPV-infected cancers. Cancer Med., 2017, 6(9), 2052-2062.
[http://dx.doi.org/10.1002/cam4.1143] [PMID: 28795532]
[39]
Budczies, J.; Bockmayr, M.; Denkert, C.; Klauschen, F.; Gröschel, S.; Darb-Esfahani, S.; Pfarr, N.; Leichsenring, J.; Onozato, M.L.; Lennerz, J.K.; Dietel, M.; Fröhling, S.; Schirmacher, P.; Iafrate, A.J.; Weichert, W.; Stenzinger, A. Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274) - associations with gene expression, mutational load, and survival. Genes Chrom. Cancer, 2016, 55(8), 626-639.
[http://dx.doi.org/10.1002/gcc.22365] [PMID: 27106868]
[40]
Budczies, J.; Denkert, C.; Győrffy, B.; Schirmacher, P.; Stenzinger, A. Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types. BMC Med. Genomics, 2017, 10(1), 74.
[http://dx.doi.org/10.1186/s12920-017-0308-8] [PMID: 29212506]
[41]
Ock, C.Y.; Keam, B.; Kim, S.; Lee, J.S.; Kim, M.; Kim, T.M.; Jeon, Y.K.; Kim, D.W.; Chung, D.H.; Heo, D.S. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T cell infiltration. Clin. Cancer Res., 2016, 22(9), 2261-2270.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2834] [PMID: 26819449]
[42]
Mushtaq, M.U.; Papadas, A.; Pagenkopf, A.; Flietner, E.; Morrow, Z.; Chaudhary, S.G.; Asimakopoulos, F. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J. Immunother. Cancer, 2018, 6(1), 65.
[http://dx.doi.org/10.1186/s40425-018-0376-0] [PMID: 29970158]
[43]
Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416.
[http://dx.doi.org/10.1093/annonc/mdv615] [PMID: 26681673]
[44]
Chen, J.; Zhang, X.D.; Proud, C. Dissecting the signaling pathways that mediate cancer in PTEN and LKB1 double-knockout mice. Sci. Signal., 2015, 8(392), pe1-pe1.
[http://dx.doi.org/10.1126/scisignal.aac8321] [PMID: 26329580]
[45]
Chen, J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev. Med. Virol., 2015, 25(Suppl. 1), 24-53.
[http://dx.doi.org/10.1002/rmv.1823] [PMID: 25752815]
[46]
Wu, J.; Chen, J.; Zhang, L.; Masci, P.P.; Zhao, K.N. Four major factors regulate phosphatidylinositol 3-kinase signaling pathway in cancers induced by infection of human papilloma viruses. Curr. Med. Chem., 2014, 21(26), 3057-3069.
[http://dx.doi.org/10.2174/0929867321666140414101528] [PMID: 24735365]
[47]
Almozyan, S.; Colak, D.; Mansour, F.; Alaiya, A.; Al-Harazi, O.; Qattan, A.; Al-Mohanna, F.; Al-Alwan, M.; Ghebeh, H. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int. J. Cancer, 2017, 141(7), 1402-1412.
[http://dx.doi.org/10.1002/ijc.30834] [PMID: 28614911]
[48]
Lastwika, K.J.; Wilson, W., III; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; Liu, L.N.; Gills, J.J.; Dennis, P.A. control of pd-l1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res., 2016, 76(2), 227-238.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3362] [PMID: 26637667]
[49]
Dong, P.; Xiong, Y.; Yu, J.; Chen, L.; Tao, T.; Yi, S.; Hanley, S.J.B.; Yue, J.; Watari, H.; Sakuragi, N. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene, 2018, 37(39), 5257-5268.
[http://dx.doi.org/10.1038/s41388-018-0347-4] [PMID: 29855617]
[50]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[51]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[52]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[53]
Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med., 2006, 203(7), 1651-1656.
[http://dx.doi.org/10.1084/jem.20051848] [PMID: 16801397]
[54]
Vanden Borre, P.; Gunda, V.; McFadden, D.G.; Sadow, P.M.; Varmeh, S.; Bernasconi, M.; Parangi, S. Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget, 2014, 5(12), 3996-4010.
[http://dx.doi.org/10.18632/oncotarget.2130] [PMID: 24994118]
[55]
Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2731] [PMID: 23095323]
[56]
Ortmann, B.; Druker, J.; Rocha, S. Cell cycle progression in response to oxygen levels. Cell. Mol. Life Sci., 2014, 71(18), 3569-3582.
[http://dx.doi.org/10.1007/s00018-014-1645-9] [PMID: 24858415]
[57]
Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 2004, 4(6), 437-447.
[http://dx.doi.org/10.1038/nrc1367] [PMID: 15170446]
[58]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[59]
Vaupel, P.; Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev., 2007, 26(2), 225-239.
[http://dx.doi.org/10.1007/s10555-007-9055-1] [PMID: 17440684]
[60]
Birner, P.; Schindl, M.; Obermair, A.; Plank, C.; Breitenecker, G.; Oberhuber, G. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res., 2000, 60(17), 4693-4696.
[PMID: 10987269]
[61]
Yatabe, N.; Kyo, S.; Maida, Y.; Nishi, H.; Nakamura, M.; Kanaya, T.; Tanaka, M.; Isaka, K.; Ogawa, S.; Inoue, M. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene, 2004, 23(20), 3708-3715.
[http://dx.doi.org/10.1038/sj.onc.1207460] [PMID: 15048086]
[62]
Nakamura, M.; Bodily, J.M.; Beglin, M.; Kyo, S.; Inoue, M.; Laimins, L.A. Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology, 2009, 387(2), 442-448.
[http://dx.doi.org/10.1016/j.virol.2009.02.036] [PMID: 19321184]
[63]
Pollizzi, K.N.; Powell, J.D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol., 2014, 14(7), 435-446.
[http://dx.doi.org/10.1038/nri3701] [PMID: 24962260]
[64]
Pawelec, G.; Derhovanessian, E.; Larbi, A. Immunosenescence and cancer. Crit. Rev. Oncol. Hematol., 2010, 75(2), 165-172.
[http://dx.doi.org/10.1016/j.critrevonc.2010.06.012] [PMID: 20656212]
[65]
Barsoum, I.B.; Koti, M.; Siemens, D.R.; Graham, C.H. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res., 2014, 74(24), 7185-7190.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2598] [PMID: 25344227]
[66]
Shehade, H.; Oldenhove, G.; Moser, M. Hypoxia in the intestine or solid tumors: a beneficial or deleterious alarm signal? Eur. J. Immunol., 2014, 44(9), 2550-2557.
[http://dx.doi.org/10.1002/eji.201444719] [PMID: 25043839]
[67]
Barsoum, I.B.; Smallwood, C.A.; Siemens, D.R.; Graham, C.H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res., 2014, 74(3), 665-674.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[68]
Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med., 2014, 211(5), 781-790.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[69]
Koh, J.; Jang, J.Y.; Keam, B.; Kim, S.; Kim, M.Y.; Go, H.; Kim, T.M.; Kim, D.W.; Kim, C.W.; Jeon, Y.K.; Chung, D.H. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3. OncoImmunology, 2015, 5(3)e1108514
[http://dx.doi.org/10.1080/2162402X.2015.1108514] [PMID: 27141364]
[70]
Noman, M.Z.; Chouaib, S. Targeting hypoxia at the forefront of anticancer immune responses. OncoImmunology, 2015, 3(12)e954463
[http://dx.doi.org/10.4161/21624011.2014.954463] [PMID: 25964858]
[71]
Chen, C-L.; Hsieh, F-C.; Lieblein, J.C.; Brown, J.; Chan, C.; Wallace, J.A.; Cheng, G.; Hall, B.M.; Lin, J. Stat3 activation in human endometrial and cervical cancers. Br. J. Cancer, 2007, 96(4), 591-599.
[http://dx.doi.org/10.1038/sj.bjc.6603597] [PMID: 17311011]
[72]
Page, C.; Huang, M.; Jin, X.; Cho, K.; Lilja, J.; Reynolds, R.K.; Lin, J. Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int. J. Oncol., 2000, 17(1), 23-28.
[http://dx.doi.org/10.3892/ijo.17.1.23] [PMID: 10853013]
[73]
Marzec, M.; Zhang, Q.; Goradia, A.; Raghunath, P.N.; Liu, X.; Paessler, M.; Wang, H.Y.; Wysocka, M.; Cheng, M.; Ruggeri, B.A.; Wasik, M.A. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20852-20857.
[http://dx.doi.org/10.1073/pnas.0810958105] [PMID: 19088198]
[74]
Fang, W.; Zhang, J.; Hong, S.; Zhan, J.; Chen, N.; Qin, T.; Tang, Y.; Zhang, Y.; Kang, S.; Zhou, T.; Wu, X.; Liang, W.; Hu, Z.; Ma, Y.; Zhao, Y.; Tian, Y.; Yang, Y.; Xue, C.; Yan, Y.; Hou, X.; Huang, P.; Huang, Y.; Zhao, H.; Zhang, L. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget, 2014, 5(23), 12189-12202.
[http://dx.doi.org/10.18632/oncotarget.2608] [PMID: 25361008]
[75]
Gowrishankar, K.; Gunatilake, D.; Gallagher, S.-J.; Tiffen, J.; Rizos, H.; Hersey, P. Inducible but not constitutive expression of Pd-L1 in human melanoma cells is dependent on activation of NF-κB., 2015, 10(4)e0123410
[http://dx.doi.org/10.1371/journal.pone.0123410] [PMID: 25844720]
[76]
Ma, C.; Horlad, H.; Pan, C.; Yano, H.; Ohnishi, K.; Fujiwara, Y.; Matsuoka, M.; Lee, A.; Niidome, T.; Yamanaka, R.; Takeya, M.; Komohara, Y. Stat3 inhibitor abrogates the expression of PD-1 ligands on lymphoma cell lines. J. Clin. Exp. Hematop., 2017, 57(1), 21-25.
[http://dx.doi.org/10.3960/jslrt.17006] [PMID: 28496056]
[77]
Tilborghs, S.; Corthouts, J.; Verhoeven, Y.; Arias, D.; Rolfo, C.; Trinh, X.B.; van Dam, P.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol., 2017, 120, 141-150.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.001] [PMID: 29198328]
[78]
Liu, J.; Liu, Y.; Meng, L.; Liu, K.; Ji, B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol. Rep., 2017, 38(2), 899-907.
[http://dx.doi.org/10.3892/or.2017.5722] [PMID: 28627705]
[79]
Sun, C.; Lan, P.; Han, Q.; Huang, M.; Zhang, Z.; Xu, G.; Song, J.; Wang, J.; Wei, H.; Zhang, J.; Sun, R.; Zhang, C.; Tian, Z. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat. Commun., 2018, 9(1), 1241.
[http://dx.doi.org/10.1038/s41467-018-03584-3] [PMID: 29593314]
[80]
Pedroza-Torres, A.; López-Urrutia, E.; García-Castillo, V.; Jacobo-Herrera, N.; Herrera, L.A.; Peralta-Zaragoza, O.; López-Camarillo, C.; De Leon, D.C.; Fernández-Retana, J.; Cerna-Cortés, J.F.; Pérez-Plasencia, C. MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules, 2014, 19(5), 6263-6281.
[http://dx.doi.org/10.3390/molecules19056263] [PMID: 24840898]
[81]
Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; Diao, L.; Wang, J.; Roybal, J.; Patel, M.; Ungewiss, C.; Peng, D.; Antonia, S.; Mediavilla-Varela, M.; Robertson, G.; Suraokar, M.; Welsh, J.W.; Erez, B.; Wistuba, I.I.; Chen, L.; Peng, D.; Wang, S.; Ullrich, S.E.; Heymach, J.V.; Kurie, J.M.; Qin, F.X. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun., 2014, 5, 5241.
[http://dx.doi.org/10.1038/ncomms6241] [PMID: 25348003]
[82]
Geng, D.; Song, X.; Ning, F.; Song, Q.; Yin, H. MiR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting E2F3 and regulating survivin. Int. J. Gynecol. Cancer, 2015, 25(4), 707-713.
[http://dx.doi.org/10.1097/IGC.0000000000000399] [PMID: 25675046]
[83]
Chen, J.; Zhao, K.N. HPV-p53-miR-34a axis in HPV-associated cancers. Ann. Transl. Med., 2015, 3(21), 331.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.09.39] [PMID: 26734641]
[84]
Chiantore, M.V.; Mangino, G.; Iuliano, M.; Zangrillo, M.S.; De Lillis, I.; Vaccari, G.; Accardi, R.; Tommasino, M.; Columba Cabezas, S.; Federico, M.; Fiorucci, G.; Romeo, G. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. J. Cancer Res. Clin. Oncol., 2016, 142(8), 1751-1763.
[http://dx.doi.org/10.1007/s00432-016-2189-1] [PMID: 27300513]
[85]
Wu, Q.; Zhao, Y.; Wang, P. miR-204 inhibits angiogenesis and promotes sensitivity to cetuximab in head and neck squamous cell carcinoma cells by blocking JAK2-STAT3 signaling. Biomed. Pharmacother., 2018, 99, 278-285.
[http://dx.doi.org/10.1016/j.biopha.2018.01.055] [PMID: 29353201]
[86]
Heeren, A.M.; Punt, S.; Bleeker, M.C.; Gaarenstroom, K.N.; van der Velden, J.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod. Pathol., 2016, 29(7), 753-763.
[http://dx.doi.org/10.1038/modpathol.2016.64] [PMID: 27056074]
[87]
Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res., 2015, 3(1), 48-58.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0149] [PMID: 25361854]
[88]
Heeren, A.M.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. CD14+ macrophage-like cells as the linchpin of cervical cancer perpetrated immune suppression and early metastatic spread: A new therapeutic lead? OncoImmunology, 2015, 4(6)e1009296
[http://dx.doi.org/10.1080/2162402X.2015.1009296] [PMID: 26155430]
[89]
Heeren, A.M.; de Boer, E.; Bleeker, M.C.; Musters, R.J.; Buist, M.R.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area. Oncotarget, 2015, 6(32), 32484-32493.
[http://dx.doi.org/10.18632/oncotarget.5398] [PMID: 26431490]
[90]
Yang, W.; Lu, Y.P.; Yang, Y.Z.; Kang, J.R.; Jin, Y.D.; Wang, H.W. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J. Obstet. Gynaecol. Res., 2017, 43(10), 1602-1612.
[http://dx.doi.org/10.1111/jog.13411] [PMID: 28833798]
[91]
Yang, W.; Song, Y.; Lu, Y.L.; Sun, J.Z.; Wang, H.W. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology, 2013, 139(4), 513-522.
[http://dx.doi.org/10.1111/imm.12101] [PMID: 23521696]
[92]
Karim, R.; Jordanova, E.S.; Piersma, S.J.; Kenter, G.G.; Chen, L.; Boer, J.M.; Melief, C.J.; van der Burg, S.H. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res., 2009, 15(20), 6341-6347.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1652] [PMID: 19825956]
[93]
Hatam, L.J.; Devoti, J.A.; Rosenthal, D.W.; Lam, F.; Abramson, A.L.; Steinberg, B.M.; Bonagura, V.R. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD-1/PD-L1/L2 expression. Clin. Cancer Res., 2012, 18(7), 1925-1935.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2941] [PMID: 22322668]
[94]
Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The immunobiology of the interleukin-12 family: room for discovery. Immunity, 2019, 50(4), 851-870.
[http://dx.doi.org/10.1016/j.immuni.2019.03.011] [PMID: 30995503]
[95]
Meng, Y.; Liang, H.; Hu, J.; Liu, S.; Hao, X.; Wong, M.S.K.; Li, X.; Hu, L. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J. Cancer, 2018, 9(16), 2938-2945.
[http://dx.doi.org/10.7150/jca.22532] [PMID: 30123362]
[96]
Thompson, R.H.; Gillett, M.D.; Cheville, J.C.; Lohse, C.M.; Dong, H.; Webster, W.S.; Krejci, K.G.; Lobo, J.R.; Sengupta, S.; Chen, L.; Zincke, H.; Blute, M.L.; Strome, S.E.; Leibovich, B.C.; Kwon, E.D. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 17174-17179.
[http://dx.doi.org/10.1073/pnas.0406351101] [PMID: 15569934]
[97]
Riella, L.V.; Paterson, A.M.; Sharpe, A.H.; Chandraker, A. Role of the PD-1 pathway in the immune response. Am. J. Transplant., 2012, 12(10), 2575-2587.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04224.x] [PMID: 22900886]
[98]
Chang, D.Y.; Song, S.H.; You, S.; Lee, J.; Kim, J.; Racanelli, V.; Son, H.; Shin, E.C. Programmed death-1 (PD-1)-dependent functional impairment of CD4(+) T cells in recurrent genital papilloma. Clin. Exp. Med., 2014, 14(3), 305-313.
[http://dx.doi.org/10.1007/s10238-013-0245-6] [PMID: 23824147]
[99]
Heeren, A.M.; Koster, B.D.; Samuels, S.; Ferns, D.M.; Chondronasiou, D.; Kenter, G.G.; Jordanova, E.S.; de Gruijl, T.D. High and interrelated rates of PD-L1+ CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol. Res., 2015, 3(1), 48-58.
[http://dx.doi.org/10.1158/2326-6066.cir-14-0149] [PMID: 25361854]
[100]
Chen, Y.; Wang, Q.; Shi, B.; Xu, P.; Hu, Z.; Bai, L.; Zhang, X. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine, 2011, 56(2), 231-238.
[http://dx.doi.org/10.1016/j.cyto.2011.06.004] [PMID: 21733718]
[101]
Rossille, D.; Gressier, M.; Damotte, D.; Maucort-Boulch, D.; Pangault, C.; Semana, G.; Le Gouill, S.; Haioun, C.; Tarte, K.; Lamy, T.; Milpied, N.; Fest, T. Groupe Ouest-Est des Leucémies et Autres Maladies du Sang; Groupe Ouest-Est des Leucémies et Autres Maladies du Sang. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial. Leukemia, 2014, 28(12), 2367-2375.
[http://dx.doi.org/10.1038/leu.2014.137] [PMID: 24732592]
[102]
Junjun, C.; Hongbing, S.; Xiao, Z.; Gui, C.; Jun, X.; Lujun, C.; Jin, J. Detection of soluble B7-H4 molecules in serum of patients with breast cancer and its clinical significance. J. Int. Trans. Med., 2013, 1(4), 215-218.
[103]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[104]
Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; Chen, L.; Drake, C.G.; Topalian, S.L.; Pardoll, D.M.; Pai, S.I. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res., 2013, 73(6), 1733-1741.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2384] [PMID: 23288508]
[105]
Song, M.Y.; Park, S.H.; Nam, H.J.; Choi, D.H.; Sung, Y.C. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J. Immunother., 2011, 34(3), 297-306.
[http://dx.doi.org/10.1097/CJI.0b013e318210ed0e] [PMID: 21389868]
[106]
Howitt, B.E.; Sun, H.H.; Roemer, M.G.; Kelley, A.; Chapuy, B.; Aviki, E.; Pak, C.; Connelly, C.; Gjini, E.; Shi, Y.; Lee, L.; Viswanathan, A.; Horowitz, N.; Neuberg, D.; Crum, C.P.; Lindeman, N.L.; Kuo, F.; Ligon, A.H.; Freeman, G.J.; Hodi, F.S.; Shipp, M.A.; Rodig, S.J. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol., 2016, 2(4), 518-522.
[http://dx.doi.org/10.1001/jamaoncol.2015.6326] [PMID: 26913631]
[107]
Liu, G.B.; Chen, J.; Wu, Z.H.; Zhao, K.N. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev. Med. Virol., 2015, 25(6), 345-353.
[http://dx.doi.org/10.1002/rmv.1834] [PMID: 25776992]
[108]
Reardon, D.A.; Gokhale, P.C.; Klein, S.R.; Ligon, K.L.; Rodig, S.J.; Ramkissoon, S.H.; Jones, K.L.; Conway, A.S.; Liao, X.; Zhou, J.; Wen, P.Y.; Van Den Abbeele, A.D.; Hodi, F.S.; Qin, L.; Kohl, N.E.; Sharpe, A.H.; Dranoff, G.; Freeman, G.J. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res., 2016, 4(2), 124-135.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0151] [PMID: 26546453]
[109]
Zhang, Y.; Gallastegui, N.; Rosenblatt, J.D. Regulatory B cells in anti-tumor immunity. Int. Immunol., 2015, 27(10), 521-530.
[http://dx.doi.org/10.1093/intimm/dxv034] [PMID: 25999597]
[110]
Scurr, M.; Pembroke, T.; Bloom, A.; Roberts, D.; Thomson, A.; Smart, K.; Bridgeman, H.; Adams, R.; Brewster, A.; Jones, R.; Gwynne, S.; Blount, D.; Harrop, R.; Hills, R.; Gallimore, A.; Godkin, A. Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal cancer. Clin. Cancer Res., 2017, 23(22), 6771-6780.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0895] [PMID: 28855352]
[111]
Rice, A.E.; Latchman, Y.E.; Balint, J.P.; Lee, J.H.; Gabitzsch, E.S.; Jones, F.R. An HPV-E6/E7 immunotherapy plus PD-1 checkpoint inhibition results in tumor regression and reduction in PD-L1 expression. Cancer Gene Ther., 2015, 22(9), 454-462.
[http://dx.doi.org/10.1038/cgt.2015.40] [PMID: 26337747]
[112]
Cheng, W-F.; Hung, C-F.; Chai, C-Y.; Hsu, K-F.; He, L.; Ling, M.; Wu, T-C. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest., 2001, 108(5), 669-678.
[http://dx.doi.org/10.1172/JCI200112346] [PMID: 11544272]
[113]
Chuang, C-M.; Monie, A.; Hung, C-F.; Wu, T-C. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J. Biomed. Sci., 2010, 17(1), 32.
[http://dx.doi.org/10.1186/1423-0127-17-32] [PMID: 20426849]
[114]
Liu, Z.; Zhou, H.; Wang, W.; Fu, Y.X.; Zhu, M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. OncoImmunology, 2016, 5(6)e1147641
[http://dx.doi.org/10.1080/2162402X.2016.1147641] [PMID: 27471615]
[115]
White, E.A.; Munger, K. Crowd control: E7 conservation is the key to cancer. Cell, 2017, 170(6), 1057-1059.
[http://dx.doi.org/10.1016/j.cell.2017.08.033] [PMID: 28886377]
[116]
Fischer, M.; Uxa, S.; Stanko, C.; Magin, T.M.; Engeland, K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci. Rep., 2017, 7(1), 2603.
[http://dx.doi.org/10.1038/s41598-017-02831-9] [PMID: 28572607]
[117]
Pai, S.I. Mission impossible: how HPV-associated head and neck cancers escape a primed immune response. Oral Oncol., 2013, 49(8), 723-725.
[http://dx.doi.org/10.1016/j.oraloncology.2013.03.453] [PMID: 23643070]
[118]
Badoual, C.; Hans, S.; Merillon, N.; Van Ryswick, C.; Ravel, P.; Benhamouda, N.; Levionnois, E.; Nizard, M.; Si-Mohamed, A.; Besnier, N.; Gey, A.; Rotem-Yehudar, R.; Pere, H.; Tran, T.; Guerin, C.L.; Chauvat, A.; Dransart, E.; Alanio, C.; Albert, S.; Barry, B.; Sandoval, F.; Quintin-Colonna, F.; Bruneval, P.; Fridman, W.H.; Lemoine, F.M.; Oudard, S.; Johannes, L.; Olive, D.; Brasnu, D.; Tartour, E. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res., 2013, 73(1), 128-138.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2606] [PMID: 23135914]
[119]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[120]
Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol., 2004, 4(5), 336-347.
[http://dx.doi.org/10.1038/nri1349] [PMID: 15122199]
[121]
Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8), 1537-1544.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[122]
Weber, J. Immune checkpoint proteins: a new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol., 2010, 37(5), 430-439.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.005] [PMID: 21074057]
[123]
Blackburn, S.D.; Crawford, A.; Shin, H.; Polley, A.; Freeman, G.J.; Wherry, E.J. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol., 2010, 84(4), 2078-2089.
[http://dx.doi.org/10.1128/JVI.01579-09] [PMID: 19955307]
[124]
Frenel, J.S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; Rangwala, R.; Varga, A. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol., 2017, 35(36), 4035-4041.
[http://dx.doi.org/10.1200/JCO.2017.74.5471] [PMID: 29095678]
[125]
Chung, H.C.; Ros, W.; Delord, J.P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; Pruitt, S.K.; Leary, A. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol., 2019, 37(17), 1470-1478.
[http://dx.doi.org/10.1200/JCO.18.01265] [PMID: 30943124]
[126]
Kranawetter, M.; Röhrich, S.; Müllauer, L.; Obermair, H.; Reinthaller, A.; Grimm, C.; Sturdza, A.; Köstler, W.J.; Polterauer, S. Activity of pembrolizumab in recurrent cervical cancer: case series and review of published data. Int. J. Gynecol. Cancer, 2018, 28(6), 1196-1202.
[http://dx.doi.org/10.1097/IGC.0000000000001291] [PMID: 29787422]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy