Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Functional Characterization of a Novel Hybrid Peptide with High Potency against Gram-negative Bacteria

Author(s): Yara Al Tall*, Baha’a Al-Rawashdeh, Ahmad Abualhaijaa, Ammar Almaaytah, Majed Masadeh and Karem H. Alzoubi

Volume 26, Issue 3, 2020

Page: [376 - 385] Pages: 10

DOI: 10.2174/1381612826666200128090700

Price: $65

Abstract

Background: Multi-drug resistant infections are a growing worldwide health concern. There is an urgent need to produce alternative antimicrobial agents.

Objective: The study aimed to design a new hybrid antimicrobial peptide, and to evaluate its antimicrobial activity alone and in combination with traditional antibiotics.

Methods: Herein, we designed a novel hybrid peptide (BMR-1) using the primary sequences of the parent peptides Frog Esculentin-1a and Monkey Rhesus cathelicidin (RL-37). The positive net charge was increased, and other physicochemical parameters were optimized. The antimicrobial activities of BMR-1 were tested against control and multi-drug resistant gram-negative bacteria.

Results: BMR-1 adopted a bactericidal behavior with MIC values of 25-30 µM. These values reduced by over 75% upon combination with conventional antibiotics (levofloxacin, chloramphenicol, ampicillin, and rifampicin). The combination showed strong synergistic activities in most cases and particularly against multi-drug resistance P. aeruginosa and E. coli. BMR-1 showed similar potency against all tested strains regardless of their resistant mechanisms. BMR-1 exhibited no hemolytic effect on human red blood cells with the effective MIC values against the tested strains.

Conclusion: BMR-1 hybrid peptide is a promising candidate to treat resistant infectious diseases caused by gramnegative bacteria.

Keywords: Antimicrobial peptides, hybridization, resistance, antibiotic adjuvant, synergism, BMR-1.

[1]
Zhang Y, Liu Y, Sun Y, et al. In vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Curr Microbiol 2014; 68(6): 685-92.
[http://dx.doi.org/10.1007/s00284-014-0529-4] [PMID: 24474334]
[2]
New report calls for urgent action to avert antimicrobial resistance crisis Available online:. https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis Accessed on 20-01-2020.
[3]
Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11(3): 297-308.
[http://dx.doi.org/10.1586/eri.13.12] [PMID: 23458769]
[4]
Yoshida M, Reyes SG, Tsuda S, Horinouchi T, Furusawa C, Cronin L. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat Commun 2017; 8: 15589.
[http://dx.doi.org/10.1038/ncomms15589] [PMID: 28593940]
[5]
Mechkarska M, Prajeep M, Radosavljevic GD, et al. An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides 2013; 50: 153-9.
[http://dx.doi.org/10.1016/j.peptides.2013.10.015] [PMID: 24172540]
[6]
Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 2008; 46(2): 155-64.
[http://dx.doi.org/10.1086/524891] [PMID: 18171244]
[7]
Li B, Webster TJ. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2018; 36(1): 22-32.
[PMID: 28722231]
[8]
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[9]
Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J Med Chem 2008; 51(7): 1981-90.
[http://dx.doi.org/10.1021/jm800038g] [PMID: 18338841]
[10]
Nakhate PH, Yadav DVK, Pathak AN. A review on daptomycin; the first US-FDA approved lipopeptide antibiotics. J Science Innov Res 2013; 2(5): 970-80.
[11]
Daum RS, Kar S, Kirkpatrick P. Retapamulin. Nat Rev Drug Discov 2007; 6: 865-6.
[http://dx.doi.org/10.1038/nrd2442]
[12]
Vaishnavi C. Fidaxomicin-the new drug for clostridium difficile infection. Indian J Med Res 2015; 141(4): 398-407.
[http://dx.doi.org/10.4103/0971-5916.159251] [PMID: 26112840]
[13]
Lakshmanan M, Xavier AS. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J Young Pharm 2013; 5(4): 112-5.
[http://dx.doi.org/10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[14]
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34(7): 832-85.
[http://dx.doi.org/10.1039/C7NP00006E] [PMID: 28530279]
[15]
Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D. Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control 2012; 1(1): 11.
[http://dx.doi.org/10.1186/2047-2994-1-11] [PMID: 22958833]
[16]
Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol 2016; 26(1): R14-9.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[17]
Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19(3): 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[18]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st Century. Perspect in Medicin Chem 2014; 6: 25-64.
[19]
Carlet J, Pulcini C, Piddock LJV. Antibiotic resistance: a geopolitical issue. Clin Microbiol Infect 2014; 20(10): 949-53.
[http://dx.doi.org/10.1111/1469-0691.12767] [PMID: 25040923]
[20]
Mojsoska B, Jenssen H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel) 2015; 8(3): 366-415.
[http://dx.doi.org/10.3390/ph8030366] [PMID: 26184232]
[21]
NPS@ : HNN secondary structure prediction Available online:. https://npsaprabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_hnn.html Accessed on 23-04-2019
[22]
Gasteiger E, Hoogland C, Gattiker A, et al. Protein Identification and analysis tools on the ExPASy server The Proteomics Protocols Handbook. Totowa, NJ: Humana Press 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[23]
Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44(D1): D1087-93.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[24]
Zimmermann L, Stephens A, Nam S-Z, et al. A completely reimplemented mpi bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430(15): 2237-43.
[http://dx.doi.org/10.1016/j.jmb.2017.12.007] [PMID: 29258817]
[25]
Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 2016; 54 5.6.4-5.6.37
[26]
RAMPAGE: Ramachandran Plot Assessment Available online:. http://mordred.bioc.cam.ac.uk/~rapper/rampage2.php Accessed on 03-09-2018.
[27]
The PyMOL Molecular Graphics System. Version 20. Schrodinger, LLC 2008.
[28]
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9: 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[29]
Cockerill FR. Clinical and laboratory standards institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Wayne, Pa: Clinical and Laboratory Standards Institute 2018; pp. M07-A11.
[30]
Hsieh MH, Yu CM, Yu VL, Chow JW. Synergy assessed by checkerboard. A critical analysis. Diagn Microbiol Infect Dis 1993; 16(4): 343-9.
[http://dx.doi.org/10.1016/0732-8893(93)90087-N] [PMID: 8495592]
[31]
Jain SNJ, Vishwanatha T, Reena V, et al. Antibiotic synergy test : checkerboard method on multidrug resistant Pseudomonas aeruginosa. Int Res J Pharmacy 2011; 2(12): 196-8.
[32]
Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of vero cell lines. Curr Protoc Microbiol 2008.Appendix 4, Appendix 4E.
[http://dx.doi.org/10.1002/9780471729259.mca04es11]
[33]
Protein identification and analysis tools in the ExPASy server Available online:. https://web.expasy.org/tagident/tagident-doc.html Accessed on 23-04-2019
[34]
Farias SE, Kline KG, Klepacki J, Wu CC. Quantitative improvements in peptide recovery at elevated chromatographic temperatures from microcapillary liquid chromatography-mass spectrometry analyses of brain using selected reaction monitoring. Anal Chem 2010; 82(9): 3435-40.
[http://dx.doi.org/10.1021/ac100359p] [PMID: 20373813]
[35]
Schneider VAF, Coorens M, Tjeerdsma-van Bokhoven JLM, et al. Imaging the antistaphylococcal activity of CATH-2: mechanism of attack and regulation of inflammatory response. MSphere 2017; 2(6): e00370-17.
[http://dx.doi.org/10.1128/mSphere.00370-17] [PMID: 29104934]
[36]
Walker JM. The proteomics protocols handbook, Ed. Humana Press: Totowa, N.J 2005. 978-1-58829-343-5
[37]
Fernández M, Conde S, de la Torre J, Molina-Santiago C, Ramos J-L, Duque E. Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob Agents Chemother 2012; 56(2): 1001-9.
[http://dx.doi.org/10.1128/AAC.05398-11] [PMID: 22143519]
[38]
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45(6): 568-85.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001] [PMID: 25857949]
[39]
Raible KM, Sen B, Law N, et al. Molecular characterization of β-lactamase genes in clinical isolates of carbapenem-resistant Acinetobacter baumannii. Ann Clin Microbiol Antimicrob 2017; 16(1): 75.
[http://dx.doi.org/10.1186/s12941-017-0248-3] [PMID: 29145853]
[40]
Asokan GV, Kasimanickam RK. Emerging infectious diseases, antimicrobial resistance and millennium development goals: resolving the challenges through one health. Cent Asian J Glob Health 2014; 2(2): 76.
[http://dx.doi.org/10.5195/CAJGH.2013.76] [PMID: 29755885]
[41]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[42]
Saga T, Yamaguchi K. History of antimicrobial agents and resistant bacteria. Japan Med Assoc J 2009; 52: 6.
[43]
Ghebremedhin B, Olugbosi MO, Raji AM, et al. Emergence of a community-associated methicillin-resistant Staphylococcus aureus strain with a unique resistance profile in Southwest Nigeria. J Clin Microbiol 2009; 47(9): 2975-80.
[http://dx.doi.org/10.1128/JCM.00648-09] [PMID: 19571020]
[44]
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE Pathogens. BioMed Res Int 2016; 2016 2475076
[http://dx.doi.org/10.1155/2016/2475067]
[45]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: a review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[46]
Cole MR, Hobden JA, Warner IM. Recycling antibiotics into GUMBOS: a new combination strategy to combat multi-drug-resistant bacteria. Molecules 2015; 20(4): 6466-87.
[http://dx.doi.org/10.3390/molecules20046466] [PMID: 25867831]
[47]
Antibiotic resistance Available online:. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance Accessed on 23-04- 2019.
[48]
Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25(3): 450-70.
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[49]
Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol 2013; 31(3): 177-84.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.006] [PMID: 23333434]
[50]
Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 2019; 19(1): 54.
[http://dx.doi.org/10.1186/s12866-019-1416-8] [PMID: 30849936]
[51]
Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2012; 56(12): 6366-71.
[http://dx.doi.org/10.1128/AAC.01180-12] [PMID: 23070152]
[52]
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 2010; 135(1): 1-11.
[http://dx.doi.org/10.1016/j.clim.2009.12.004] [PMID: 20116332]
[53]
Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed Res Int 2014; 2014 867381
[54]
Ntwasa M. Cationic peptide interactions with biological macromolecules. In: Binding Protein. 2012; pp. 139-64.
[http://dx.doi.org/10.5772/48492]
[55]
Ghosh A, Kar RK, Jana J, et al. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 2014; 9(9): 2052-8.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[56]
Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 1998; 244(1): 253-7.
[http://dx.doi.org/10.1006/bbrc.1998.8159] [PMID: 9514864]
[57]
Mardirossian M, Grzela R, Giglione C, et al. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 2014; 21(12): 1639-47.
[http://dx.doi.org/10.1016/j.chembiol.2014.10.009] [PMID: 25455857]
[58]
Ho Y-H, Shah P, Chen Y-W, Chen C-S. Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Mol Cell Proteomics 2016; 15(6): 1837-47.
[http://dx.doi.org/10.1074/mcp.M115.054999] [PMID: 26902206]
[59]
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[60]
Le C-F, Fang C-M, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 2017; 61(4): e02340-16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[61]
Chaffey N, Alberts B, Johnson A, et al. Molecular biology of the cell.Annals of Botany. 4th edn.. 2003; 91: pp. 401-1.
[62]
Casciaro B, Cappiello F, Cacciafesta M, Mangoni ML. Promising approaches to optimize the biological properties of the antimicrobial peptide Esculentin-1a(1-21)NH2: amino acids substitution and conjugation to nanoparticles. Front Chem 2017; 5: 26.
[http://dx.doi.org/10.3389/fchem.2017.00026] [PMID: 28487853]
[63]
Conlon JM. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 2011; 68(13): 2303-15.
[http://dx.doi.org/10.1007/s00018-011-0720-8] [PMID: 21560068]
[64]
Mangoni ML, Fiocco D, Mignogna G, Barra D, Simmaco M. Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 2003; 24(11): 1771-7.
[http://dx.doi.org/10.1016/j.peptides.2003.07.029] [PMID: 15019209]
[65]
Wei G-X, Campagna AN, Bobek LA. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide. Ann Clin Microbiol Antimicrob 2007; 6: 14.
[http://dx.doi.org/10.1186/1476-0711-6-14] [PMID: 17996119]
[66]
Zhao C, Nguyen T, Boo LM, et al. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob Agents Chemother 2001; 45(10): 2695-702.
[http://dx.doi.org/10.1128/AAC.45.10.2695-2702.2001] [PMID: 11557457]
[67]
Kai-Larsen Y, Agerberth B. The role of the multifunctional peptide LL-37 in host defense. Front Biosci 2008; 13: 3760-7.
[http://dx.doi.org/10.2741/2964] [PMID: 18508470]
[68]
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009; 2(1): 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[69]
Pansu D, Bellaton C, Roche C, Bronner F. Theophylline inhibits active Ca transport in rat intestine by inhibiting Ca binding by CaBP. Prog Clin Biol Res 1988; 252: 115-20.
[PMID: 3347614]
[70]
Rodgers FG, Tzianabos AO, Elliott TSJ. The effect of antibiotics that inhibit cell-wall, protein, and DNA synthesis on the growth and morphology of Legionella pneumophila. J Med Microbiol 1990; 31(1): 37-44.
[http://dx.doi.org/10.1099/00222615-31-1-37] [PMID: 2296040]
[71]
Weisberger AS. Inhibition of protein synthesis by chloramphenicol. Annu Rev Med 1967; 18: 483-94.
[http://dx.doi.org/10.1146/annurev.me.18.020167.002411] [PMID: 5337537]
[72]
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 2014; 4: 422.
[http://dx.doi.org/10.3389/fmicb.2013.00422] [PMID: 24409175]
[73]
Rishi P, Vij S, Maurya IK, Kaur UJ, Bharati S, Tewari R. Peptides as adjuvants for ampicillin and oxacillin against Methicillin-Resistant Staphylococcus Aureus (MRSA). Microb Pathog 2018; 124: 11-20.
[http://dx.doi.org/10.1016/j.micpath.2018.08.023] [PMID: 30118800]
[74]
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7 7212527
[http://dx.doi.org/10.7573/dic.212527] [PMID: 29872449]
[75]
Azad MA, Huttunen-Hennelly HEK, Ross Friedman C. Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob Agents Chemother 2011; 55(5): 2137-45.
[http://dx.doi.org/10.1128/AAC.01148-10] [PMID: 21300831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy