Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

A Recent Look into Natural Products that have Potential to Inhibit Cholinesterases and Monoamine Oxidase B: Update for 2010-2019

Author(s): Hayrettin O. Gulcan and Ilkay E. Orhan*

Volume 23 , Issue 9 , 2020

Page: [862 - 876] Pages: 15

DOI: 10.2174/1386207323666200127145246

Price: $65

Abstract

With respect to the unknowns of pathophysiology of Alzheimer’s Disease (AD)-, and Parkinson’s Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.

Keywords: Acetylcholinesterase, butyrylcholinesterase, monoamine oxidase B, Alzheimer's disease, Parkinson’s disease, natural products.

[1]
Procaccini, C.; Santopaolo, M.; Faicchia, D.; Colamatteo, A.; Formisano, L.; de Candia, P.; Galgani, M.; De Rosa, V.; Matarese, G. Role of metabolism in neurodegenerative disorders. Metabolism, 2016, 65(9), 1376-1390.
[http://dx.doi.org/10.1016/j.metabol.2016.05.018] [PMID: 27506744]
[2]
Zecca, L.; Youdim, M.B.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci., 2004, 5(11), 863-873.
[http://dx.doi.org/10.1038/nrn1537] [PMID: 15496864]
[3]
Gulcan, H.O.; Unlu, S.; Esiringu, I.; Ercetin, T.; Sahin, Y.; Oz, D.; Sahin, M.F. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors. Bioorg. Med. Chem., 2014, 22(19), 5141-5154.
[http://dx.doi.org/10.1016/j.bmc.2014.08.016] [PMID: 25189690]
[4]
Orhan, I.E.; Senol, F.S. Designing multi-targeted therapeutics for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem., 2016, 16(17), 1889-1896.
[http://dx.doi.org/10.2174/1568026616666160204121832] [PMID: 26845553]
[5]
Schapira, A.H. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol. Sci., 2009, 30(1), 41-47.
[http://dx.doi.org/10.1016/j.tips.2008.10.005] [PMID: 19042040]
[6]
Everitt, B.J.; Robbins, T.W. Central cholinergic systems and cognition. Annu. Rev. Psychol., 1997, 48(1), 649-684.
[http://dx.doi.org/10.1146/annurev.psych.48.1.649] [PMID: 9046571]
[7]
Fotiou, D.F.; Stergiou, V.; Tsiptsios, D.; Lithari, C.; Nakou, M.; Karlovasitou, A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int. J. Psychophysiol., 2009, 73(2), 143-149.
[http://dx.doi.org/10.1016/j.ijpsycho.2009.01.011] [PMID: 19414041]
[8]
Giacobini, E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res., 2004, 50(4), 433-440.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[9]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[10]
Takeda, A.; Loveman, E.; Clegg, A.; Kirby, J.; Picot, J.; Payne, E.; Green, C. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2006, 21(1), 17-28.
[http://dx.doi.org/10.1002/gps.1402] [PMID: 16323253]
[11]
Van Dam, D.; Abramowski, D.; Staufenbiel, M.; De Deyn, P.P. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl.), 2005, 180(1), 177-190.
[http://dx.doi.org/10.1007/s00213-004-2132-z] [PMID: 15654502]
[12]
Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS & Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439.
[13]
Patočka, J.; Kuča, K.; Jun, D. Acetylcholinesterase and butyrylcholinesterase--important enzymes of human body. Acta Med. (Hradec Kralove), 2004, 47(4), 215-228.
[http://dx.doi.org/10.14712/18059694.2018.95] [PMID: 15841900]
[14]
Stahl, S.M. The new cholinesterase inhibitors for Alzheimer’s disease, Part 2: illustrating their mechanisms of action. J. Clin. Psychiatry, 2000, 61(11), 813-814.
[http://dx.doi.org/10.4088/JCP.v61n1101] [PMID: 11105732]
[15]
Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573.
[http://dx.doi.org/10.1016/j.bbr.2009.12.048] [PMID: 20060022]
[16]
Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: a review. JAMA, 2014, 311(16), 1670-1683.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[17]
Youdim, M.B.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[18]
Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(S1), S287-S296.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[19]
Ikeda, K.; Murata, K.; Kobayashi, M.; Noda, K. Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem. Pharm. Bull. (Tokyo), 1992, 40(8), 2155-2158.
[http://dx.doi.org/10.1248/cpb.40.2155] [PMID: 1423772]
[20]
Shih, J.C.; Chen, K.; Ridd, M.J. Role of MAO A and B in neurotransmitter metabolism and behavior. Pol. J. Pharmacol., 1999, 51(1), 25-29.
[PMID: 10389141]
[21]
Finberg, J.P.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol., 2016, 7, 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[22]
Tsugeno, Y.; Ito, A. A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J. Biol. Chem., 1997, 272(22), 14033-14036.
[http://dx.doi.org/10.1074/jbc.272.22.14033] [PMID: 9162023]
[23]
Kalgutkar, A.S.; Dalvie, D.K.; Castagnoli, N., Jr; Taylor, T.J. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem. Res. Toxicol., 2001, 14(9), 1139-1162.
[http://dx.doi.org/10.1021/tx010073b] [PMID: 11559028]
[24]
Meiser, J.; Weindl, D.; Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal., 2013, 11(1), 34.
[http://dx.doi.org/10.1186/1478-811X-11-34] [PMID: 23683503]
[25]
Betarbet, R.; Sherer, T.B.; Greenamyre, J.T. Animal models of Parkinson’s disease. BioEssays, 2002, 24(4), 308-318.
[http://dx.doi.org/10.1002/bies.10067] [PMID: 11948617]
[26]
Dézsi, L.; Vécsei, L. Safinamide for the treatment of Parkinson’s disease. Expert Opin. Investig. Drugs, 2014, 23(5), 729-742.
[http://dx.doi.org/10.1517/13543784.2014.897694] [PMID: 24650154]
[27]
Fernandez, H. H.; Chen, J. J. Monoamine oxidase‐B inhibition in the treatment of Parkinson's disease.Pharmacotherapy, 2007, 27(12P2), 174S-185S.
[28]
Martinez, A.; Castro, A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2006, 15(1), 1-12.
[http://dx.doi.org/10.1517/13543784.15.1.1] [PMID: 16370929]
[29]
Carradori, S.; Petzer, J.P. Novel monoamine oxidase inhibitors: a patent review (2012 - 2014). Expert Opin. Ther. Pat., 2015, 25(1), 91-110.
[http://dx.doi.org/10.1517/13543776.2014.982535] [PMID: 25399762]
[30]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[31]
Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci., 2016, 10, 375.
[http://dx.doi.org/10.3389/fnins.2016.00375] [PMID: 27597816]
[32]
Norouzbahari, M.; Burgaz, E.V.; Ercetin, T.; Fallah, A.; Foroumadi, A.; Firoozpour, L.; Gulcan, H.O. Design, synthesis and characterization of novel urolithin derivatives as cholinesterase inhibitor agents. Lett. Drug Des. Discov., 2018, 15(11), 1131-1140.
[http://dx.doi.org/10.2174/1570180815666180115144608]
[33]
Olğaç, A.; Orhan, I.E.; Banoglu, E. The potential role of in silico approaches to identify novel bioactive molecules from natural resources. Future Med. Chem., 2017, 9(14), 1665-1686.
[http://dx.doi.org/10.4155/fmc-2017-0124] [PMID: 28841048]
[34]
Gulcan, H.O.; Orhan, I.E.; Sener, B. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases. Curr. Pharm. Biotechnol., 2015, 16(3), 252-258.
[http://dx.doi.org/10.2174/1389201015666141202105105] [PMID: 25483718]
[35]
Orhan, I.E. Pharmacognosy: Science of natural products in drug discovery. Bioimpacts, 2014, 4(3), 109-110.
[http://dx.doi.org/10.15171/bi.2014.001] [PMID: 25337461]
[36]
Orhan, G.; Orhan, I.; Sener, B. Recent developments in natural and synthetic drug research for Alzheimer’s disease. Lett. Drug Des. Discov., 2006, 3(4), 268-274.
[http://dx.doi.org/10.2174/157018006776743215]
[37]
Loizzo, M.R.; Menichini, F.; Conforti, F.; Tundis, R.; Bonesi, M.; Saab, A.M.; Frega, N.G. Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem., 2009, 117(1), 174-180.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.095]
[38]
Loizzo, M.R.; Menichini, F.; Tundis, R.; Bonesi, M.; Conforti, F.; Nadjafi, F.; Statti, G.A.; Frega, N.G.; Menichini, F. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease. J. Oleo Sci., 2009, 58(8), 443-446.
[http://dx.doi.org/10.5650/jos.58.443] [PMID: 19584571]
[39]
Orhan, I.; Senol, F.S.; Gülpinar, A.R.; Kartal, M.; Sekeroglu, N.; Deveci, M.; Kan, Y.; Sener, B. Acetylcholinesterase inhibitory and antioxidant properties of Cyclotrichium niveum, Thymus praecox subsp. caucasicus var. caucasicus, Echinacea purpurea and E. pallida. Food Chem. Toxicol., 2009, 47(6), 1304-1310.
[http://dx.doi.org/10.1016/j.fct.2009.03.004] [PMID: 19285534]
[40]
Shahwar, D.; Rehman, S.U.; Raza, M.A. Acetylcholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn. J. Med. Plants Res., 2010, 4(3), 260-266.
[41]
Oztürk, M.; Kolak, U.; Topcu, G.; Oksuz, S.; Choudhary, M.I. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chem., 2011, 126(1), 31-38.
[http://dx.doi.org/10.1016/j.foodchem.2010.10.050]
[42]
Halldorsdottir, E.S.; Jaroszewski, J.W.; Olafsdottir, E.S. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre. Phytochemistry, 2010, 71(2-3), 149-157.
[http://dx.doi.org/10.1016/j.phytochem.2009.10.018] [PMID: 19939421]
[43]
Khan, I.; Nisar, M.; Khan, N.; Saeed, M.; Nadeem, S. Fazal-ur-Rehman; Ali, F.; Karim, N.; Kaleem, W.A.; Qayum, M.; Ahmad, H.; Khan, I.A. Structural insights to investigate conypododiol as a dual cholinesterase inhibitor from Asparagus adscendens. Fitoterapia, 2010, 81(8), 1020-1025.
[http://dx.doi.org/10.1016/j.fitote.2010.06.022] [PMID: 20600681]
[44]
Desilets, A.R.; Gickas, J.J.; Dunican, K.C. Role of huperzine a in the treatment of Alzheimer’s disease. Ann. Pharmacother., 2009, 43(3), 514-518.
[http://dx.doi.org/10.1345/aph.1L402] [PMID: 19240260]
[45]
Geissler, T.; Brandt, W.; Porzel, A.; Schlenzig, D.; Kehlen, A.; Wessjohann, L.; Arnold, N. Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg. Med. Chem., 2010, 18(6), 2173-2177.
[http://dx.doi.org/10.1016/j.bmc.2010.01.074] [PMID: 20176490]
[46]
Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 622-628.
[http://dx.doi.org/10.3109/14756360903389856] [PMID: 20429778]
[47]
Satheeshkumar, N.; Mukherjee, P.K.; Bhadra, S.; Saha, B.P. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine, 2010, 17(3-4), 292-295.
[http://dx.doi.org/10.1016/j.phymed.2009.06.006] [PMID: 19576740]
[48]
Mossa, A.T.H.; Nawwar, G.A.M. Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil. Hum. Exp. Toxicol., 2011, 30(10), 1501-1513.
[http://dx.doi.org/10.1177/0960327110391686] [PMID: 21239482]
[49]
Costa, P.; Gonçalves, S.; Andrade, P.B.; Valentão, P.; Romano, A. Inhibitory effect of Lavandula viridis on Fe(2+)-induced lipid peroxidation, antioxidant and anti-cholinesterase properties. Food Chem., 2011, 126(4), 1779-1786.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.085] [PMID: 25213957]
[50]
Bhadra, S.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A. Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia, 2011, 82(3), 342-346.
[http://dx.doi.org/10.1016/j.fitote.2010.11.003] [PMID: 21075180]
[51]
Lee, S.H.; Bafna, M.R.; Sancheti, S.S.; Seo, S.Y. Acetylcholineterase inhibitory and antioxidant properties of Rhododendron yedoense var. poukhanense bark. J. Med. Plants Res., 2011, 5(2), 248-254.
[52]
Ustun, O.; Senol, F.S.; Kurkcuoglu, M.; Orhan, I.E.; Kartal, M.; Baser, K.H.C. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind. Crops Prod., 2012, 38, 115-123.
[http://dx.doi.org/10.1016/j.indcrop.2012.01.016]
[53]
Chaiyana, W.; Okonogi, S. Inhibition of cholinesterase by essential oil from food plant. Phytomedicine, 2012, 19(8-9), 836-839.
[http://dx.doi.org/10.1016/j.phymed.2012.03.010] [PMID: 22510493]
[54]
Ali, F.; Khan, H.U.; Afzal, M.; Samad, A.; Khan, S.U.; Ali, I. Two new cholinesterase inhibitors asiatoates A and B from Buddleja asiatica. J. Asian Nat. Prod. Res., 2013, 15(6), 631-637.
[http://dx.doi.org/10.1080/10286020.2013.794417] [PMID: 23659547]
[55]
Chaiyana, W.; Schripsema, J.; Ingkaninan, K.; Okonogi, S. 3′-R/S-hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata. Phytomedicine, 2013, 20(6), 543-548.
[http://dx.doi.org/10.1016/j.phymed.2012.12.016] [PMID: 23375813]
[56]
Ijomone, O.M.; Obi, A.U. Kolaviron, isolated from Garcinia kola, inhibits acetylcholinesterase activities in the hippocampus and striatum of wistar rats. Ann. Neurosci., 2013, 20(2), 42-46.
[http://dx.doi.org/10.5214/ans.0972.7531.200203] [PMID: 25206011]
[57]
Zhang, X.; Oh, M.; Kim, S.; Kim, J.; Kim, H.; Kim, S.; Houghton, P.J.; Whang, W. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase. Nat. Prod. Res., 2013, 27(12), 1067-1074.
[http://dx.doi.org/10.1080/14786419.2012.708660] [PMID: 22823459]
[58]
Hajimehdipoor, H.; Mosaddegh, M.; Naghibi, F.; Haeri, A.; Hamzeloo-Moghadam, M. Natural sesquiterpene lactones as acetylcholinesterase inhibitors. An. Acad. Bras. Cienc., 2014, 86(2), 801-806.
[http://dx.doi.org/10.1590/0001-3765201420130005] [PMID: 24838542]
[59]
Khan, S.; Wang, Z.; Wang, R.; Zhang, L. Horizontoates A–C: New cholinesterase inhibitors from Cotoneaster horizontalis. Phytochem. Lett., 2014, 10, 204-208.
[http://dx.doi.org/10.1016/j.phytol.2014.09.007]
[60]
Koay, Y.H.; Basiri, A.; Murugaiyah, V.; Chan, K.L. Isocorilagin, a cholinesterase inhibitor from Phyllanthus niruri. Nat. Prod. Commun., 2014, 9(4), 515-517.
[http://dx.doi.org/10.1177/1934578X1400900423] [PMID: 24868872]
[61]
Huang, G.; Kling, B.; Darras, F.H.; Heilmann, J.; Decker, M. Identification of a neuroprotective and selective butyrylcholinesterase inhibitor derived from the natural alkaloid evodiamine. Eur. J. Med. Chem., 2014, 81, 15-21.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.002] [PMID: 24819955]
[62]
Alza, N.P.; Richmond, V.; Baier, C.J.; Freire, E.; Baggio, R.; Murray, A.P. Synthesis and cholinesterase inhibition of cativic acid derivatives. Bioorg. Med. Chem., 2014, 22(15), 3838-3849.
[http://dx.doi.org/10.1016/j.bmc.2014.06.030] [PMID: 25017625]
[63]
Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Looi, C.Y.; Wong, Y.L.; Mustafa, M.R.; Litaudon, M.; Awang, K. Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine, 2015, 22(1), 45-48.
[http://dx.doi.org/10.1016/j.phymed.2014.11.003] [PMID: 25636869]
[64]
Orhan, I.E.; Senol, F.S.; Shekfeh, S.; Skalicka-Wozniak, K.; Banoglu, E. Pteryxin - A promising butyrylcholinesterase-inhibiting coumarin derivative from Mutellina purpurea. Food Chem. Toxicol., 2017, 109(Pt 2), 970-974.
[http://dx.doi.org/10.1016/j.fct.2017.03.016] [PMID: 28286309]
[65]
Hošt’álková, A.; Opletal, L.; Kuneš, J.; Novák, Z.; Hrabinová, M.; Chlebek, J.; Čegan, L.; Cahlíková, L. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Nat. Prod. Commun., 2015, 10(4), 577-580.
[http://dx.doi.org/10.1177/1934578X1501000410] [PMID: 25973480]
[66]
Alarcón, J.; Cespedes, C.L.; Muñoz, E.; Balbontin, C.; Valdes, F.; Gutierrez, M.; Astudillo, L.; Seigler, D.S. Dihydroagarofuranoid sesquiterpenes as acetylcholinesterase inhibitors from Celastraceae plants: Maytenus disticha and Euonymus japonicus. J. Agric. Food Chem., 2015, 63(47), 10250-10256.
[http://dx.doi.org/10.1021/acs.jafc.5b04168] [PMID: 26545100]
[67]
Sichaem, J.; Rojpitikul, T.; Sawasdee, P.; Lugsannangarm, K.; Santi, T.P. Furoquinoline alkaloids from the leaves of Evodia lepta as potential cholinesterase inhibitors and their molecular docking. Nat. Prod. Commun., 2015, 10(8), 1359-1362.
[http://dx.doi.org/10.1177/1934578X1501000811] [PMID: 26434116]
[68]
Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem., 2016, 24(18), 4464-4469.
[http://dx.doi.org/10.1016/j.bmc.2016.07.043] [PMID: 27492195]
[69]
Abdul Wahab, S.M.; Sivasothy, Y.; Liew, S.Y.; Litaudon, M.; Mohamad, J.; Awang, K. Natural cholinesterase inhibitors from Myristica cinnamomea King. Bioorg. Med. Chem. Lett., 2016, 26(15), 3785-3792.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.046] [PMID: 27236720]
[70]
Ali, M.Y.; Seong, S.H.; Reddy, M.R.; Seo, S.Y.; Choi, J.S.; Jung, H.A. Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from Angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules, 2017, 22(10), 1604.
[http://dx.doi.org/10.3390/molecules22101604] [PMID: 28946641]
[71]
Kostelnik, A.; Pohanka, M. Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. BioMed Res. Int., 2018, 20189634349
[http://dx.doi.org/10.1155/2018/9634349] [PMID: 29850593]
[72]
Sichaem, J.; Tip-pyang, S.; Lugsanangarm, K. Bioactive aporphine alkaloids from the roots of Artabotrys spinosus: cholinesterase inhibitory activity and molecular docking studies. Nat. Prod. Commun., 2018, 13(10), 1279-1282.
[http://dx.doi.org/10.1177/1934578X1801301011]
[73]
Nugroho, A.; Choi, J.S.; Seong, S.H.; Song, B.M.; Park, K.S.; Park, H.J. Isolation of flavonoid glycosides with cholinesterase inhibition activity and quantification from Stachys japonica. Nat. Prod. Sci., 2018, 24(4), 259-265.
[http://dx.doi.org/10.20307/nps.2018.24.4.259]
[74]
Ahmad, H.; Ahmad, S.; Shah, S.A.A.; Khan, H.U.; Khan, F.A.; Ali, M.; Latif, A.; Shaheen, F.; Ahmad, M. Selective dual cholinesterase inhibitors from Aconitum laeve. J. Asian Nat. Prod. Res., 2018, 20(2), 172-181.
[http://dx.doi.org/10.1080/10286020.2017.1319820] [PMID: 28463565]
[75]
Ahmad, H.; Ahmad, S.; Ali, M.; Latif, A.; Shah, S.A.A.; Naz, H.; Ur Rahman, N.; Shaheen, F.; Wadood, A.; Khan, H.U.; Ahmad, M. Norditerpenoid alkaloids of Delphinium denudatum as cholinesterase inhibitors. Bioorg. Chem., 2018, 78, 427-435.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.008] [PMID: 29698893]
[76]
Karakaya, S.; Koca, M.; Sytar, O.; Duman, H. The natural phenolic compounds and their antioxidant and anticholinesterase potential of herb Leiotulus dasyanthus (K. Koch) Pimenov & Ostr. Nat. Prod. Res., 2019, 1-3.
[http://dx.doi.org/10.1080/14786419.2018.1557176] [PMID: 30657333]
[77]
Tu, Y.; Wu, C.; Kang, Y.; Li, Q.; Zhu, C.; Li, Y. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorg. Med. Chem. Lett., 2019, 29(10), 1194-1198.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.024] [PMID: 30910460]
[78]
Ślusarczyk, S.; Senol Deniz, F.S.; Woźniak, D.; Pecio, Ł.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P.; Orhan, I.E. Selective in vitro and in silico cholinesterase inhibitory activity of isoflavones and stilbenes from Belamcandae chinensis rhizoma. Phytochem. Lett., 2019, 30, 261-272.
[http://dx.doi.org/10.1016/j.phytol.2019.02.006]
[79]
Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol., 2010, 48(3), 839-845.
[http://dx.doi.org/10.1016/j.fct.2009.12.019] [PMID: 20036304]
[80]
Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol. Res., 2009, 59(5), 306-311.
[http://dx.doi.org/10.1016/j.phrs.2009.01.014] [PMID: 19416630]
[81]
van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol., 2009, 122(2), 397-401.
[http://dx.doi.org/10.1016/j.jep.2009.01.007] [PMID: 19168123]
[82]
Zhou, R.; Wang, J.; Li, S.; Liu, Y. Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Separ. Purif. Tech., 2009, 65(3), 275-281.
[http://dx.doi.org/10.1016/j.seppur.2008.10.036]
[83]
Ji, H.F.; Shen, L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules, 2011, 16(8), 6732-6740.
[http://dx.doi.org/10.3390/molecules16086732] [PMID: 21829148]
[84]
Kim, J.H.; Kim, G.H.; Hwang, K.H. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol. Ther. (Seoul), 2012, 20(2), 214-219.
[http://dx.doi.org/10.4062/biomolther.2012.20.2.214] [PMID: 24116298]
[85]
Hošek, J.; Bartos, M.; Chudík, S.; Dall’Acqua, S.; Innocenti, G.; Kartal, M.; Kokoška, L.; Kollár, P.; Kutil, Z.; Landa, P.; Marek, R.; Závalová, V.; Žemlička, M.; Šmejkal, K. Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro. J. Nat. Prod., 2011, 74(4), 614-619.
[http://dx.doi.org/10.1021/np100638h] [PMID: 21319773]
[86]
Chaurasiya, N.D.; Ibrahim, M.A.; Muhammad, I.; Walker, L.A.; Tekwani, B.L. Monoamine oxidase inhibitory constituents of propolis: kinetics and mechanism of inhibition of recombinant human MAO-A and MAO-B. Molecules, 2014, 19(11), 18936-18952.
[http://dx.doi.org/10.3390/molecules191118936] [PMID: 25412041]
[87]
Zarmouh, N.O.; Messeha, S.S.; Elshami, F.M.; Soliman, K.F. Evaluation of the isoflavone genistein as reversible human monoamine oxidase-A and-B inhibitor. Evid. Based Complement. Alternat. Med., 2016, 20161423052
[http://dx.doi.org/10.1155/2016/1423052] [PMID: 27118978]
[88]
Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Oh, S.R.; Kim, H. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg. Med. Chem. Lett., 2016, 26(19), 4714-4719.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.044] [PMID: 27575476]
[89]
Lee, H.W.; Ryu, H.W.; Baek, S.C.; Kang, M.G.; Park, D.; Han, H.Y.; An, J.H.; Oh, S.R.; Kim, H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol. 2017, 104(Pt A), 547-553.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.076] [PMID: 28634060]
[90]
Zarmouh, N.O.; Eyunni, S.K.; Soliman, K.F. The Benzopyrone Biochanin-A as a reversible, competitive, and selective monoamine oxidase B inhibitor. BMC Complement. Altern. Med., 2017, 17(1), 34.
[http://dx.doi.org/10.1186/s12906-016-1525-y] [PMID: 28069007]
[91]
Baek, S.C.; Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Kim, S.H.; Cho, M.L.; Oh, S.R.; Kim, H. Selective inhibition of monoamine oxidase A by hispidol. Bioorg. Med. Chem. Lett., 2018, 28(4), 584-588.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.049] [PMID: 29395970]
[92]
De Monte, C.; Carradori, S.; Chimenti, P.; Secci, D.; Mannina, L.; Alcaro, F.; Petzer, A.; N’Da, C.I.; Gidaro, M.C.; Costa, G.; Alcaro, S.; Petzer, J.P. New insights into the biological properties of Crocus sativus L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur. J. Med. Chem., 2014, 82, 164-171.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.048] [PMID: 24904963]
[93]
Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; Alcaro, S. Kaempferol as selective human MAO-A inhibitor: analytical detection in Calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem., 2016, 64(6), 1394-1400.
[http://dx.doi.org/10.1021/acs.jafc.5b06043] [PMID: 26821152]
[94]
Carradori, S.; Gidaro, M.C.; Petzer, A.; Costa, G.; Guglielmi, P.; Chimenti, P.; Alcaro, S.; Petzer, J.P. Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J. Agric. Food Chem., 2016, 64(47), 9004-9011.
[http://dx.doi.org/10.1021/acs.jafc.6b03529] [PMID: 27933876]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy