Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Coexistence of Metallo Beta Lactamase Resistant Gene Variants Among Clinical Isolates in Tertiary Care Hospital

Author(s): Santhiya K., Jayanthi S.*, Ananthasubramanian M. and Appalaraju B.

Volume 18, Issue 4, 2020

Page: [429 - 436] Pages: 8

DOI: 10.2174/2211352518666200121144301

Abstract

Background: Carbapenem-resistant Enterobacteriaceae (CRE) has emerged as a global threat with mortality risk ranging from 48%-71% worldwide. The emergence of MBL resistance is threatening as carbapenem is one of the last line antibiotics. A total 24 variants of NDM resistance raises a concern to the clinicians and epidemiologists worldwide.

Objective: The study aims at identifying MBL resistance (NDM, IMP, VIM, GIM, SPM, and SIM) and its coexistence in clinical isolates in a single tertiary care center.

Methodology: Forty five clinical isolates characterized phenotypically for Carbapenem resistance obtained from PSG Institute of Medical Science and Research (PSG IMSR), Coimbatore, between February to March 2018 were taken for analysis.

Results: Out of the 45 Clinical isolates, 38 isolates (84%) were detected as MBL carriers. VIM, NDM, GIM, and SPM were the predominant resistance genes, with detection rates of 48.8%, 28.8%, 24.4%, and 22.2% respectively. Fifteen isolates were observed to harbor more than one MBL gene in coexistence. Two isolates - U42 and R714 (K. pneumoniae) were found to harbor all 5 MBL variants in combination.

Conclusion: 33% of clinical isolates harboring multiple MBL variants is a concern in clinical settings. The presence of SPM and GIM gene amongst isolates in this geographical location within India is an indicator demanding continuous monitoring of these resistance determinants.

Keywords: Clinical isolates, carbapenem resistance, enterobacteriaceae, metallo beta lactamase, multidrug resistance, MBL variants.

Graphical Abstract
[1]
Dixit, A.; Kumar, N.; Kumar, S.; Trigun, V. Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med., 2019, 44(1), 4-8.
[PMID: 30983704]
[2]
Zilahi, G.; Artigas, A.; Martin-Loeches, I. What’s new in multidrug-resistant pathogens in the ICU? Ann. Intensive Care, 2016, 6(1), 96.
[http://dx.doi.org/10.1186/s13613-016-0199-4] [PMID: 27714706]
[3]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[4]
Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis., 2011, 11(5), 381-393.
[http://dx.doi.org/10.1016/S1473-3099(11)70056-1] [PMID: 21530894]
[5]
Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-beta-lactamases: the quiet before the storm? Clin. Microbiol. Rev., 2005, 18(2), 306-325.
[http://dx.doi.org/10.1128/CMR.18.2.306-325.2005] [PMID: 15831827]
[6]
Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis., 2011, 17(10), 1791-1798.
[http://dx.doi.org/10.3201/eid1710.110655] [PMID: 22000347]
[7]
Gupta, V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin. Investig. Drugs, 2008, 17(2), 131-143.
[http://dx.doi.org/10.1517/13543784.17.2.131] [PMID: 18230049]
[8]
Hong, D.J.; Bae, I.K.; Jang, I.H.; Jeong, S.H.; Kang, H.K.; Lee, K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother., 2015, 47(2), 81-97.
[http://dx.doi.org/10.3947/ic.2015.47.2.81] [PMID: 26157586]
[9]
Shalley, D.; Pooja, S.; Uma, C.; Bijender, S. A Review. Int J Adv Health Sci 2015, 2(4)
[10]
Lee, J.J.; Lee, J.H.; Kwon, D.B.; Jeon, J.H.; Park, K.S.; Lee, C.R.; Lee, S.H. Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance. Antimicrob. Agents Chemother., 2015, 59(10), 5967-5975.
[http://dx.doi.org/10.1128/AAC.04634-14] [PMID: 26169415]
[11]
Ben, A. A.; Oueslati, S.; Mliki, A. Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications 3 Biotech, 2017, 7(4), 246.
[12]
Shenoy, K.A.; Jyothi, E.K.; Ravikumar, R. Phenotypic identification & molecular detection of bla (ndm-1) gene in multidrug resistant Gram-negative bacilli in a tertiary care centre. Indian J. Med. Res., 2014, 139(4), 625-631.
[PMID: 24927351]
[13]
Ellington, M.J.; Kistler, J.; Livermore, D.M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J. Antimicrob. Chemother., 2007, 59(2), 321-322.
[http://dx.doi.org/10.1093/jac/dkl481] [PMID: 17185300]
[14]
Moosavian, M.; Rahimzadeh, M. Molecular detection of metallo-β-lactamase genes, bla IMP-1, bla VIM-2 and bla SPM-1 in imipenem resistant Pseudomonas aeruginosa isolated from clinical specimens in teaching hospitals of Ahvaz, Iran. Iran. J. Microbiol., 2015, 7(1), 2-6.
[PMID: 26644866]
[15]
Fouad, A.F.; Barry, J.; Caimano, M.; Clawson, M.; Zhu, Q.; Carver, R.; Hazlett, K.; Radolf, J.D. PCR-based identification of bacteria associated with endodontic infections. J. Clin. Microbiol., 2002, 40(9), 3223-3231.
[http://dx.doi.org/10.1128/JCM.40.9.3223-3231.2002] [PMID: 12202557]
[16]
Bhat, V.; Gupta, S.; Kelkar, R.; Biswas, S.; Khattry, N.; Moiyadi, A.; Bhat, P.; Ambulkar, R.; Chavan, P.; Chiplunkar, S.; Kotekar, A.; Gupta, T. Bacteriological profile and antibiotic susceptibility patterns of clinical isolates in a tertiary care cancer center. Indian J. Med. Paediatr. Oncol., 2016, 37(1), 20-24.
[http://dx.doi.org/10.4103/0971-5851.177010] [PMID: 27051152]
[17]
Saxena, S.; Banerjee, G.; Garg, R.; Singh, M.; Verma, S.K.; Kushwahar, A.S. ESBL, MBL AND AMP C-β lactamases produced by superbugs: an emerging threat to clinical therapeutics. Int. J. Pharm. Pharm. Sci., 2015, 7, 353-356.
[18]
Mohanam, L.; Menon, T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J. Med. Res., 2017, 146(Suppl.), S46-S52.
[http://dx.doi.org/10.4103/ijmr.IJMR_29_16] [PMID: 29205195]
[19]
Celikbilek, N.; Unaldi, O.; Kirca, F.; Gozalan, A.; Acikgoz, Z.C.; Durmaz, R. Molecular Characterization of Carbapenem-Resistant Klebsiella pneumoniae Species Isolated From a Tertiary Hospital, Ankara, Turkey. Jundishapur J. Microbiol., 2017, 10(10)
[http://dx.doi.org/10.5812/jjm.14341]
[20]
Pournajaf, A.; Rajabnia, R.; Razavi, S.; Solgi, S.; Ardebili, A.; Yaghoubi, S.; Khodabandeh, M.; Yahyapour, Y.; Emadi, B.; Irajian, G. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolated from pediatric burns patients in an Iranian hospital. Trop. J. Pharm. Res., 2018, 17(1), 135-141.
[http://dx.doi.org/10.4314/tjpr.v17i1.19]
[21]
Jose, J.; Santhiya, K.; Jayanthi, S.; Ananthasubramanian, M. Insertion sequence based analysis of clinical isolates with NDM (NDM-1) resistance. Indian J. Biotechnol., 2017, 16(2), 182-188.
[22]
Wendel, A.F.; Brodner, A.H.; Wydra, S.; Ressina, S.; Henrich, B.; Pfeffer, K.; Toleman, M.A.; Mackenzie, C.R. Genetic characterization and emergence of the metallo-β-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob. Agents Chemother., 2013, 57(10), 5162-5165.
[http://dx.doi.org/10.1128/AAC.00118-13] [PMID: 23877696]
[23]
Castanheira, M.; Toleman, M.A.; Jones, R.N.; Schmidt, F.J.; Walsh, T.R. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob. Agents Chemother., 2004, 48(12), 4654-4661.
[http://dx.doi.org/10.1128/AAC.48.12.4654-4661.2004] [PMID: 15561840]
[24]
Abaza, A.F.; El Shazly, S.A.; Selim, H.S.A.; Aly, G.S.A. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt. Pol. J. Microbiol., 2017, 66(3), 297-308.
[http://dx.doi.org/10.5604/01.3001.0010.4855] [PMID: 29319510]
[25]
Adwan, G.; Shtayah, A.; Adwan, K.; Al-Sheboul, S.; Othman, S. Prevalence and Molecular Characterization of P. aeruginosa isolates in the West Bank-Palestine for ESBLs, MBLs and Integrons. J. Appl. Life Sci. Int, 2016, 8(2), 1-11.
[http://dx.doi.org/10.9734/JALSI/2016/29259]
[26]
Mushi, M.F.; Mshana, S.E.; Imirzalioglu, C.; Bwanga, F. Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. BioMed Res. Int., 2014.2014303104
[http://dx.doi.org/10.1155/2014/303104] [PMID: 24707481]
[27]
de Jager, P.; Chirwa, T.; Naidoo, S.; Perovic, O.; Thomas, J. Nosocomial Outbreak of New Delhi Metallo-β-Lactamase-1-Producing Gram-Negative Bacteria in South Africa: A Case-Control Study. PLoS One, 2015, 10(4)e0123337
[http://dx.doi.org/10.1371/journal.pone.0123337] [PMID: 25909482]
[28]
Gladstone, P.; Rajendran, P.; Brahmadathan, K.N. Incidence of carbapenem resistant nonfermenting gram negative bacilli from patients with respiratory infections in the intensive care units. Indian J. Med. Microbiol., 2005, 23(3), 189-191.
[http://dx.doi.org/10.4103/0255-0857.16593] [PMID: 16100428]
[29]
Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs, 2014, 74(12), 1315-1333.
[http://dx.doi.org/10.1007/s40265-014-0267-8] [PMID: 25091170]

© 2022 Bentham Science Publishers | Privacy Policy