Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure

Author(s): Renu Chandra Segaran, Li Yun Chan, Hong Wang, Gautam Sethi* and Feng Ru Tang *

Volume 28, Issue 1, 2021

Published on: 21 January, 2020

Page: [19 - 52] Pages: 34

DOI: 10.2174/0929867327666200121122910

Price: $65

Abstract

Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.

Keywords: miRNAs, brain tissue, cerebrospinal fluid, blood, Alzheimer disease, depression, schizophrenia and radiation, Venn diagram.

[1]
Shafi, G.; Aliya, N.; Munshi, A. MicroRNA signatures in neurological disorders. Can. J. Neurol. Sci., 2010, 37(2), 177-185.
[http://dx.doi.org/10.1017/S0317167100009902] [PMID: 20437927]
[2]
Junn, E.; Mouradian, M.M. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol. Ther., 2012, 133(2), 142-150.
[http://dx.doi.org/10.1016/j.pharmthera.2011.10.002] [PMID: 22008259]
[3]
Saykin, A.J.; Shen, L.; Foroud, T.M.; Potkin, S.G.; Swaminathan, S.; Kim, S.; Risacher, S.L.; Nho, K.; Huentelman, M.J.; Craig, D.W.; Thompson, P.M.; Stein, J.L.; Moore, J.H.; Farrer, L.A.; Green, R.C.; Bertram, L.; Jack, C.R., Jr; Weiner, M.W. Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement., 2010, 6(3), 265-273.
[http://dx.doi.org/10.1016/j.jalz.2010.03.013] [PMID: 20451875]
[4]
Xie, B.; Liu, Z.; Jiang, L.; Liu, W.; Song, M.; Zhang, Q.; Zhang, R.; Cui, D.; Wang, X.; Xu, S. Increased serum mir-206 level predicts conversion from amnestic mild cognitive impairment to alzheimer’s disease: a 5-Year follow-up study. J. Alzheimers Dis., 2017, 55(2), 509-520.
[http://dx.doi.org/10.3233/JAD-160468] [PMID: 27662297]
[5]
Koturbash, I.; Zemp, F.; Kolb, B.; Kovalchuk, O. Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model. Mutat. Res., 2011, 722(2), 114-118.
[http://dx.doi.org/10.1016/j.mrgentox.2010.05.007] [PMID: 20478395]
[6]
Lehrer, S.; Rheinstein, P.H.; Rosenzweig, K.E. Association of radon background and total background ionizing radiation with Alzheimer’s disease deaths in U.S. J. Alzheimers Dis., 2017, 59(2), 737-741.
[http://dx.doi.org/10.3233/JAD-170308] [PMID: 28671130]
[7]
Lowe, X.R.; Bhattacharya, S.; Marchetti, F.; Wyrobek, A.J. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer’s disease. Radiat. Res., 2009, 171(1), 53-65.
[http://dx.doi.org/10.1667/RR1389.1] [PMID: 19138050]
[8]
Tang, F.R. Radiation and Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 418.
[http://dx.doi.org/10.4172/2161-0460.1000418]
[9]
Iwata, Y.; Suzuki, K.; Wakuda, T.; Seki, N.; Thanseem, I.; Matsuzaki, H.; Mamiya, T.; Ueki, T.; Mikawa, S.; Sasaki, T.; Suda, S.; Yamamoto, S.; Tsuchiya, K.J.; Sugihara, G.; Nakamura, K.; Sato, K.; Takei, N.; Hashimoto, K.; Mori, N. Irradiation in adulthood as a new model of schizophrenia. PLoS One, 2008, 3(5)e2283
[http://dx.doi.org/10.1371/journal.pone.0002283] [PMID: 18509473]
[10]
Loganovsky, K.N.; Loganovskaja, T.K. Schizophrenia spectrum disorders in persons exposed to ionizing radiation as a result of the Chernobyl accident. Schizophr. Bull., 2000, 26(4), 751-773.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a033492] [PMID: 11087010]
[11]
Loganovsky, K.; Havenaar, J.M.; Tintle, N.L.; Guey, L.T.; Kotov, R.; Bromet, E.J. The mental health of clean-up workers 18 years after the Chernobyl accident. Psychol. Med., 2008, 38(4), 481-488.
[http://dx.doi.org/10.1017/S0033291707002371] [PMID: 18047772]
[12]
Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; Li, Q.; Li, X.; Wang, W.; Zhang, Y.; Wang, J.; Jiang, X.; Xiang, Y.; Xu, C.; Zheng, P.; Zhang, J.; Li, R.; Zhang, H.; Shang, X.; Gong, T.; Ning, G.; Wang, J.; Zen, K.; Zhang, J.; Zhang, C.Y. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008, 18(10), 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[13]
Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 2012, 7(3)e30679
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[14]
Tomasik, B.; Chałubińska-Fendler, J.; Chowdhury, D.; Fendler, W. Potential of serum microRNAs as biomarkers of radiation injury and tools for individualization of radiotherapy. Transl. Res., 2018, 201, 71-83.
[http://dx.doi.org/10.1016/j.trsl.2018.06.001] [PMID: 30021695]
[15]
Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res., 2011, 39(16), 7223-7233.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[16]
Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res., 2010, 38(20), 7248-7259.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[17]
Wright, C.; Turner, J.A.; Calhoun, V.D.; Perrone-Bizzozero, N. Potential impact of miR-137 and its targets in schizophrenia. Front. Genet., 2013, 4(58), 58.
[http://dx.doi.org/10.3389/fgene.2013.00058] [PMID: 23637704]
[18]
Borghini, A.; Vecoli, C.; Mercuri, A.; Carpeggiani, C.; Piccaluga, E.; Guagliumi, G.; Picano, E.; Andreassi, M.G. Low-dose exposure to ionizing radiation deregulates the brain-specific microRNA-134 in interventional cardiologists. Circulation, 2017, 136(25), 2516-2518.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.03-1251] [PMID: 29038169]
[19]
Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol., 2013, 106-107, 1-16.
[http://dx.doi.org/10.1016/j.pneurobio.2013.04.001] [PMID: 23583307]
[20]
Shaffer, D.R.; Kipp, K. Developmental psychology: childhood and adolescence Belmont; Wadsworth/Thomson Learning: CA , 2002.
[21]
Blows, W.T. Child brain development. Nurs. Times, 2003, 99(17), 28-31.
[PMID: 12747179]
[22]
Kinney, D.K.; Munir, K.M.; Crowley, D.J.; Miller, A.M. Prenatal stress and risk for autism. Neurosci. Biobehav. Rev., 2008, 32(8), 1519-1532.
[http://dx.doi.org/10.1016/j.neubiorev.2008.06.004] [PMID: 18598714]
[23]
Nyagu, A.I.; Loganovsky, K.N.; Loganovskaja, T.K. Psychophysiologic after effects of prenatal irradiation. Int. J. Psychophysiol., 1998, 30(3), 303-311.
[http://dx.doi.org/10.1016/S0167-8760(98)00022-1] [PMID: 9834886]
[24]
Yakeley, J.W.; Murray, R.M. Schizophrenia. Med. Int., 1996, 10(33), 6-10.
[25]
Miska, E.A.; Alvarez-Saavedra, E.; Townsend, M.; Yoshii, A.; Sestan, N.; Rakic, P.; Constantine-Paton, M.; Horvitz, H.R. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol., 2004, 5(9), R68.
[http://dx.doi.org/10.1186/gb-2004-5-9-r68] [PMID: 15345052]
[26]
Sempere, L.F.; Freemantle, S.; Pitha-Rowe, I.; Moss, E.; Dmitrovsky, E.; Ambros, V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol., 2004, 5(3), R13.
[http://dx.doi.org/10.1186/gb-2004-5-3-r13] [PMID: 15003116]
[27]
Kocerha, J.; Kauppinen, S.; Wahlestedt, C. microRNAs in CNS disorders. Neuromolecular Med., 2009, 11(3), 162-172.
[http://dx.doi.org/10.1007/s12017-009-8066-1] [PMID: 19536656]
[28]
Oliver, R.J.; Mandyam, C.D. Regulation of adult neurogenesis by non-coding RNAs: implications for substance use disorders. Front. Neurosci., 2018, 12(849), 849.
[http://dx.doi.org/10.3389/fnins.2018.00849] [PMID: 30524229]
[29]
Smirnova, L.; Gräfe, A.; Seiler, A.; Schumacher, S.; Nitsch, R.; Wulczyn, F.G. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci., 2005, 21(6), 1469-1477.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03978.x] [PMID: 15845075]
[30]
Krichevsky, A.M.; King, K.S.; Donahue, C.P.; Khrapko, K.; Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 2003, 9(10), 1274-1281.
[http://dx.doi.org/10.1261/rna.5980303] [PMID: 13130141]
[31]
Liu, Q.; He, H.; Zeng, T.; Huang, Z.; Fan, T.; Wu, Q. Neural-specific expression of miR-344-3p during mouse embryonic development. J. Mol. Histol., 2014, 45(4), 363-372.
[http://dx.doi.org/10.1007/s10735-013-9555-y] [PMID: 24292630]
[32]
Hancock, M.L.; Preitner, N.; Quan, J.; Flanagan, J.G. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J. Neurosci., 2014, 34(1), 66-78.
[http://dx.doi.org/10.1523/JNEUROSCI.3371-13.2014] [PMID: 24381269]
[33]
Hernandez-Rapp, J.; Rainone, S.; Hébert, S.S. MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 73, 79-86.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.011] [PMID: 27117821]
[34]
Gupta, P.; Bhattacharjee, S.; Sharma, A.R.; Sharma, G.; Lee, S.S.; Chakraborty, C. miRNAs in Alzheimer disease - A therapeutic perspective. Curr. Alzheimer Res., 2017, 14(11), 1198-1206.
[http://dx.doi.org/10.2174/1567205014666170829101016] [PMID: 28847283]
[35]
Maoz, R.; Garfinkel, B.P.; Soreq, H. Alzheimer’s disease and ncRNAs. Adv. Exp. Med. Biol., 2017, 978, 337-361.
[http://dx.doi.org/10.1007/978-3-319-53889-1_18] [PMID: 28523555]
[36]
Barbash, S.; Soreq, H. Threshold-independent meta-analysis of Alzheimer’s disease transcriptomes shows progressive changes in hippocampal functions, epigenetics and microRNA regulation. Curr. Alzheimer Res., 2012, 9(4), 425-435.
[http://dx.doi.org/10.2174/156720512800492512] [PMID: 22191566]
[37]
Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; Prinjha, R.K.; Richardson, J.C.; Saunders, A.M.; Roses, A.D.; Richards, C.A. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis., 2008, 14(1), 27-41.
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[38]
Hébert, S.S.; Wang, W.X.; Zhu, Q.; Nelson, P.T. A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer’s disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J. Alzheimers Dis., 2013, 35(2), 335-348.
[http://dx.doi.org/10.3233/JAD-122350] [PMID: 23403535]
[39]
Kempf, S.J.; Casciati, A.; Buratovic, S.; Janik, D.; von Toerne, C.; Ueffing, M.; Neff, F.; Moertl, S.; Stenerlöw, B.; Saran, A.; Atkinson, M.J.; Eriksson, P.; Pazzaglia, S.; Tapio, S. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol. Neurodegener., 2014, 9(57), 57.
[http://dx.doi.org/10.1186/1750-1326-9-57] [PMID: 25515237]
[40]
Lukiw, W.J. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 2007, 18(3), 297-300.
[http://dx.doi.org/10.1097/WNR.0b013e3280148e8b] [PMID: 17314675]
[41]
Martin, N.A.; Molnar, V.; Szilagyi, G.T.; Elkjaer, M.L.; Nawrocki, A.; Okarmus, J.; Wlodarczyk, A.; Thygesen, E.K.; Palkovits, M.; Gallyas, F., Jr; Larsen, M.R.; Lassmann, H.; Benedikz, E.; Owens, T.; Svenningsen, A.F.; Illes, Z. Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice. Front. Immunol., 2018, 9(490), 490.
[http://dx.doi.org/10.3389/fimmu.2018.00490] [PMID: 29593734]
[42]
Müller, M.; Kuiperij, H.B.; Claassen, J.A.; Küsters, B.; Verbeek, M.M. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol. Aging, 2014, 35(1), 152-158.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.005] [PMID: 23962497]
[43]
Qian, Q.; Zhang, J.; He, F.P.; Bao, W.X.; Zheng, T.T.; Zhou, D.M.; Pan, H.Y.; Zhang, H.; Zhang, X.Q.; He, X.; Sun, B.G.; Luo, B.Y.; Chen, C.; Peng, G.P. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer’s disease. FASEB J., 2019, 33(3), 4404-4417.
[http://dx.doi.org/10.1096/fj.201801846R] [PMID: 30576233]
[44]
Song, Y.; Hu, M.; Zhang, J.; Teng, Z.Q.; Chen, C. A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. EBioMedicine, 2019, 39, 409-421.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.059] [PMID: 30522932]
[45]
Toyama, K.; Spin, J.M.; Deng, A.C.; Huang, T.T.; Wei, K.; Wagenhäuser, M.U.; Yoshino, T.; Nguyen, H.; Mulorz, J.; Kundu, S.; Raaz, U.; Adam, M.; Schellinger, I.N.; Jagger, A.; Tsao, P.S. MicroRNA-mediated therapy modulating blood-brain barrier disruption improves vascular cognitive impairment. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1392-1406.
[http://dx.doi.org/10.1161/ATVBAHA.118.310822] [PMID: 29650692]
[46]
Zhu, H.C.; Wang, L.M.; Wang, M.; Song, B.; Tan, S.; Teng, J.F.; Duan, D.X. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res. Bull., 2012, 88(6), 596-601.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.018] [PMID: 22721728]
[47]
Zovoilis, A.; Agbemenyah, H.Y.; Agis-Balboa, R.C.; Stilling, R.M.; Edbauer, D.; Rao, P.; Farinelli, L.; Delalle, I.; Schmitt, A.; Falkai, P.; Bahari-Javan, S.; Burkhardt, S.; Sananbenesi, F.; Fischer, A. microRNA-34c is a novel target to treat dementias. EMBO J., 2011, 30(20), 4299-4308.
[http://dx.doi.org/10.1038/emboj.2011.327] [PMID: 21946562]
[48]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6415-6420.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[49]
Wang, W.X.; Rajeev, B.W.; Stromberg, A.J.; Ren, N.; Tang, G.; Huang, Q.; Rigoutsos, I.; Nelson, P.T. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci., 2008, 28(5), 1213-1223.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[50]
Wang, W.X.; Huang, Q.; Hu, Y.; Stromberg, A.J.; Nelson, P.T. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol., 2011, 121(2), 193-205.
[http://dx.doi.org/10.1007/s00401-010-0756-0] [PMID: 20936480]
[51]
Chen-Plotkin, A.S.; Unger, T.L.; Gallagher, M.D.; Bill, E.; Kwong, L.K.; Volpicelli-Daley, L.; Busch, J.I.; Akle, S.; Grossman, M.; Van Deerlin, V.; Trojanowski, J.Q.; Lee, V.M. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J. Neurosci., 2012, 32(33), 11213-11227.
[http://dx.doi.org/10.1523/JNEUROSCI.0521-12.2012] [PMID: 22895706]
[52]
Van Deerlin, V.M.; Sleiman, P.M.A.; Martinez-Lage, M.; Chen-Plotkin, A.; Wang, L.S.; Graff-Radford, N.R.; Dickson, D.W.; Rademakers, R.; Boeve, B.F.; Grossman, M.; Arnold, S.E.; Mann, D.M.A.; Pickering-Brown, S.M.; Seelaar, H.; Heutink, P.; van Swieten, J.C.; Murrell, J.R.; Ghetti, B.; Spina, S.; Grafman, J.; Hodges, J.; Spillantini, M.G.; Gilman, S.; Lieberman, A.P.; Kaye, J.A.; Woltjer, R.L.; Bigio, E.H.; Mesulam, M.; Al-Sarraj, S.; Troakes, C.; Rosenberg, R.N.; White, C.L., III; Ferrer, I.; Lladó, A.; Neumann, M.; Kretzschmar, H.A.; Hulette, C.M.; Welsh-Bohmer, K.A.; Miller, B.L.; Alzualde, A.; Lopez de Munain, A.; McKee, A.C.; Gearing, M.; Levey, A.I.; Lah, J.J.; Hardy, J.; Rohrer, J.D.; Lashley, T.; Mackenzie, I.R.; Feldman, H.H.; Hamilton, R.L.; Dekosky, S.T.; van der Zee, J.; Kumar-Singh, S.; Van Broeckhoven, C.; Mayeux, R.; Vonsattel, J.P.; Troncoso, J.C.; Kril, J.J.; Kwok, J.B.; Halliday, G.M.; Bird, T.D.; Ince, P.G.; Shaw, P.J.; Cairns, N.J.; Morris, J.C.; McLean, C.A.; DeCarli, C.; Ellis, W.G.; Freeman, S.H.; Frosch, M.P.; Growdon, J.H.; Perl, D.P.; Sano, M.; Bennett, D.A.; Schneider, J.A.; Beach, T.G.; Reiman, E.M.; Woodruff, B.K.; Cummings, J.; Vinters, H.V.; Miller, C.A.; Chui, H.C.; Alafuzoff, I.; Hartikainen, P.; Seilhean, D.; Galasko, D.; Masliah, E.; Cotman, C.W.; Tuñón, M.T.; Martínez, M.C.; Munoz, D.G.; Carroll, S.L.; Marson, D.; Riederer, P.F.; Bogdanovic, N.; Schellenberg, G.D.; Hakonarson, H.; Trojanowski, J.Q.; Lee, V.M-Y. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet., 2010, 42(3), 234-239.
[http://dx.doi.org/10.1038/ng.536] [PMID: 20154673]
[53]
Chang, W.S.; Wang, Y.H.; Zhu, X.T.; Wu, C.J. Genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease. Med. Sci. Monit., 2017, 23, 2721-2731.
[http://dx.doi.org/10.12659/MSM.905064] [PMID: 28578378]
[54]
Fransquet, P.D.; Ryan, J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin. Biochem., 2018, 58, 5-14.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.020] [PMID: 29885309]
[55]
Geekiyanage, H.; Jicha, G.A.; Nelson, P.T.; Chan, C. Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp. Neurol., 2012, 235(2), 491-496.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.026] [PMID: 22155483]
[56]
Keller, A.; Backes, C.; Haas, J.; Leidinger, P.; Maetzler, W.; Deuschle, C.; Berg, D.; Ruschil, C.; Galata, V.; Ruprecht, K.; Stähler, C.; Würstle, M.; Sickert, D.; Gogol, M.; Meder, B.; Meese, E. Validating Alzheimer’s disease micro RNAs using next-generation sequencing. Alzheimers Dement., 2016, 12(5), 565-576.
[http://dx.doi.org/10.1016/j.jalz.2015.12.012] [PMID: 26806387]
[57]
Martinez, B.; Peplow, P.V. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: advances and limitations. Neural Regen. Res., 2019, 14(2), 242-255.
[http://dx.doi.org/10.4103/1673-5374.244784] [PMID: 30531004]
[58]
Nagaraj, S.; Laskowska-Kaszub, K.; Dębski, K.J.; Wojsiat, J.; Dąbrowski, M.; Gabryelewicz, T.; Kuźnicki, J.; Wojda, U. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget, 2017, 8(10), 16122-16143.
[http://dx.doi.org/10.18632/oncotarget.15109] [PMID: 28179587]
[59]
Schipper, H.M.; Maes, O.C.; Chertkow, H.M.; Wang, E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio., 2007, 1, 263-274.
[http://dx.doi.org/10.4137/GRSB.S361] [PMID: 19936094]
[60]
Sheinerman, K.S.; Tsivinsky, V.G.; Crawford, F.; Mullan, M.J.; Abdullah, L.; Umansky, S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY), 2012, 4(9), 590-605.
[http://dx.doi.org/10.18632/aging.100486] [PMID: 23001356]
[61]
Zendjabil, M. Circulating microRNAs as novel biomarkers of Alzheimer’s disease. Clin. Chim. Acta, 2018, 484, 99-104.
[http://dx.doi.org/10.1016/j.cca.2018.05.039] [PMID: 29800558]
[62]
Guo, R.; Fan, G.; Zhang, J.; Wu, C.; Du, Y.; Ye, H.; Li, Z.; Wang, L.; Zhang, Z.; Zhang, L.; Zhao, Y.; Lu, Z. 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1365-1377.
[http://dx.doi.org/10.3233/JAD-170343] [PMID: 29036818]
[63]
Leidinger, P.; Backes, C.; Deutscher, S.; Schmitt, K.; Mueller, S.C.; Frese, K.; Haas, J.; Ruprecht, K.; Paul, F.; Stähler, C.; Lang, C.J.; Meder, B.; Bartfai, T.; Meese, E.; Keller, A. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol., 2013, 14(7), R78.
[http://dx.doi.org/10.1186/gb-2013-14-7-r78] [PMID: 23895045]
[64]
Cosín-Tomás, M.; Antonell, A.; Lladó, A.; Alcolea, D.; Fortea, J.; Ezquerra, M.; Lleó, A.; Martí, M.J.; Pallàs, M.; Sanchez-Valle, R.; Molinuevo, J.L.; Sanfeliu, C.; Kaliman, P. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations. Mol. Neurobiol., 2017, 54(7), 5550-5562.
[http://dx.doi.org/10.1007/s12035-016-0088-8] [PMID: 27631879]
[65]
Kumar, S.; Vijayan, M.; Reddy, P.H. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum. Mol. Genet., 2017, 26(19), 3808-3822.
[http://dx.doi.org/10.1093/hmg/ddx267] [PMID: 28934394]
[66]
Hara, N.; Kikuchi, M.; Miyashita, A.; Hatsuta, H.; Saito, Y.; Kasuga, K.; Murayama, S.; Ikeuchi, T.; Kuwano, R. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol. Commun., 2017, 5(1), 10.
[http://dx.doi.org/10.1186/s40478-017-0414-z] [PMID: 28137310]
[67]
Zeng, Q.; Zou, L.; Qian, L.; Zhou, F.; Nie, H.; Yu, S.; Jiang, J.; Zhuang, A.; Wang, C.; Zhang, H. Expression of microRNA222 in serum of patients with Alzheimer’s disease. Mol. Med. Rep., 2017, 16(4), 5575-5579.
[http://dx.doi.org/10.3892/mmr.2017.7301] [PMID: 28849039]
[68]
Yang, T.T.; Liu, C.G.; Gao, S.C.; Zhang, Y.; Wang, P.C. The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed. Environ. Sci., 2018, 31(2), 87-96.
[http://dx.doi.org/10.3967/bes2018.011]] [PMID: 29606187]
[69]
Alexandrov, P.N.; Dua, P.; Hill, J.M.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int. J. Biochem. Mol. Biol., 2012, 3(4), 365-373.
[PMID: 23301201]
[70]
Lukiw, W.J.; Alexandrov, P.N.; Zhao, Y.; Hill, J.M.; Bhattacharjee, S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport, 2012, 23(10), 621-626.
[http://dx.doi.org/10.1097/WNR.0b013e32835542b0] [PMID: 22660168]
[71]
Sala Frigerio, C.; Lau, P.; Salta, E.; Tournoy, J.; Bossers, K.; Vandenberghe, R.; Wallin, A.; Bjerke, M.; Zetterberg, H.; Blennow, K.; De Strooper, B. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology, 2013, 81(24), 2103-2106.
[http://dx.doi.org/10.1212/01.wnl.0000437306.37850.22] [PMID: 24212398]
[72]
Dos Santos, M.C.T.; Barreto-Sanz, M.A.; Correia, B.R.S.; Bell, R.; Widnall, C.; Perez, L.T.; Berteau, C.; Schulte, C.; Scheller, D.; Berg, D.; Maetzler, W.; Galante, P.A.F.; Nogueira da Costa, A. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget, 2018, 9(25), 17455-17465.
[http://dx.doi.org/10.18632/oncotarget.24736] [PMID: 29707120]
[73]
Liu, C.G.; Wang, J.L.; Li, L.; Wang, P.C. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer’s disease. Int. J. Mol. Med., 2014, 34(1), 160-166.
[http://dx.doi.org/10.3892/ijmm.2014.1780] [PMID: 24827165]
[74]
Kiko, T.; Nakagawa, K.; Tsuduki, T.; Furukawa, K.; Arai, H.; Miyazawa, T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J. Alzheimers Dis., 2014, 39(2), 253-259.
[http://dx.doi.org/10.3233/JAD-130932] [PMID: 24157723]
[75]
Quinlan, S.; Kenny, A.; Medina, M.; Engel, T.; Jimenez-Mateos, E.M. MicroRNAs in neurodegenerative diseases. Int. Rev. Cell Mol. Biol., 2017, 334, 309-343.
[http://dx.doi.org/10.1016/bs.ircmb.2017.04.002] [PMID: 28838542]
[76]
Dangla-Valls, A.; Molinuevo, J.L.; Altirriba, J.; Sánchez-Valle, R.; Alcolea, D.; Fortea, J.; Rami, L.; Balasa, M.; Muñoz-García, C.; Ezquerra, M.; Fernández-Santiago, R.; Lleó, A.; Lladó, A.; Antonell, A. CSF microRNA profiling in Alzheimer’s disease: a screening and validation study. Mol. Neurobiol., 2017, 54(9), 6647-6654.
[http://dx.doi.org/10.1007/s12035-016-0106-x] [PMID: 27738874]
[77]
Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 2015, 6(35), 37043-37053.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[78]
Burgos, K.; Malenica, I.; Metpally, R.; Courtright, A.; Rakela, B.; Beach, T.; Shill, H.; Adler, C.; Sabbagh, M.; Villa, S.; Tembe, W.; Craig, D.; Van Keuren-Jensen, K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One, 2014, 9(5)e94839
[http://dx.doi.org/10.1371/journal.pone.0094839] [PMID: 24797360]
[79]
Saika, R.; Sakuma, H.; Noto, D.; Yamaguchi, S.; Yamamura, T.; Miyake, S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinflammation, 2017, 14(1), 109.
[http://dx.doi.org/10.1186/s12974-017-0884-8] [PMID: 28558818]
[80]
Kessler, R.C.; McGonagle, K.A.; Zhao, S.; Nelson, C.B.; Hughes, M.; Eshleman, S.; Wittchen, H.U.; Kendler, K.S. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry, 1994, 51(1), 8-19.
[http://dx.doi.org/10.1001/archpsyc.1994.03950010008002] [PMID: 8279933]
[81]
Soloff, P.H.; Lynch, K.G.; Kelly, T.M.; Malone, K.M.; Mann, J.J. Characteristics of suicide attempts of patients with major depressive episode and borderline personality disorder: a comparative study. Am. J. Psychiatry, 2000, 157(4), 601-608.
[http://dx.doi.org/10.1176/appi.ajp.157.4.601] [PMID: 10739420]
[82]
Dwivedi, Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin. Neurosci., 2014, 16(1), 43-61.
[http://dx.doi.org/10.31887/DCNS.2014.16.1/ydwivedi] [PMID: 24733970]
[83]
Dwivedi, Y. microRNA-124: a putative therapeutic target and biomarker for major depression. Expert Opin. Ther. Targets, 2017, 21(7), 653-656.
[http://dx.doi.org/10.1080/14728222.2017.1328501] [PMID: 28490207]
[84]
Hu, Z.; Jiang, Y.; Huo, X.; Yang, Y.; Davies, H.; Botchway, B.O.A.; Fang, M. Prospective role of micrornas in depression. Curr. Med. Chem., 2017, 24(32), 3508-3521.
[http://dx.doi.org/10.2174/0929867324666170714112620] [PMID: 28714388]
[85]
Lopez, J.P.; Fiori, L.M.; Cruceanu, C.; Lin, R.; Labonte, B.; Cates, H.M.; Heller, H.M.; Vialou, V.; Ku, S.M.; Gerald, C.; Han, M.H.; Foster, J. Frey, B. N.; Soares, C. N.; Muller, D. J.; Farzan, F.; Leri, F.; MacQueen, G. M.; Feilotter, H.; Tyryshkin, K.; Evans,K. R.; Gaicobbe, P.; Blier, P.; Lam, R. W.; Milev, R.; Parikh, S. V.; Rotzinger, S.; Strother, S. C.; Lewis, C. M.; Aitchison, K. J.; Wittenberg, G. M.; Mechawar, N.; Nestler, E. J.; Uher, R.; Kennedy, S.H; Turecki, G. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat. Commun., 2017, 8(15497)
[http://dx.doi.org/10.1038/ncomms15497]] [PMID: 28530238]
[86]
Lopez, J.P.; Kos, A.; Turecki, G. Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response. Curr. Opin. Psychiatry, 2018, 31(1), 7-16.
[http://dx.doi.org/10.1097/YCO.0000000000000379] [PMID: 29076893]
[87]
Lopez, J.P.; Pereira, F.; Richard-Devantoy, S.; Berlim, M.; Chachamovich, E.; Fiori, L.M.; Niola, P.; Turecki, G.; Jollant, F. Co-variation of peripheral levels of miR-1202 and brain activity and connectivity during antidepressant treatment. Neuropsychopharmacology, 2017, 42(10), 2043-2051.
[http://dx.doi.org/10.1038/npp.2017.9] [PMID: 28079059]
[88]
Narahari, A.; Hussain, M.; Sreeram, V. MicroRNAs as biomarkers for psychiatric conditions: A review of current research. Innov. Clin. Neurosci., 2017, 14(1-2), 53-55.
[PMID: 28386521]
[89]
Roy, B.; Wang, Q.; Palkovits, M.; Faludi, G.; Dwivedi, Y. Altered miRNA expression network in locus coeruleus of depressed suicide subjects. Sci. Rep., 2017, 7(1), 4387.
[http://dx.doi.org/10.1038/s41598-017-04300-9] [PMID: 28663595]
[90]
Wan, Y.; Liu, Y.; Wang, X.; Wu, J.; Liu, K.; Zhou, J.; Liu, L.; Zhang, C. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One, 2015, 10(3)e0121975
[http://dx.doi.org/10.1371/journal.pone.0121975] [PMID: 25763923]
[91]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; Mokhtari, R.; Mirzaei, H. MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[92]
Xu, J.; Wang, R.; Liu, Y.; Wang, W.; Liu, D.; Jiang, H.; Pan, F. Short- and long-term alterations of FKBP5-GR and specific microRNAs in the prefrontal cortex and hippocampus of male rats induced by adolescent stress contribute to depression susceptibility. Psychoneuroendocrinology, 2019, 101, 204-215.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.008] [PMID: 30469088]
[93]
Vreugdenhil, E.; Verissimo, C.S.; Mariman, R.; Kamphorst, J.T.; Barbosa, J.S.; Zweers, T.; Champagne, D.L.; Schouten, T.; Meijer, O.C.; de Kloet, E.R.; Fitzsimons, C.P. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology, 2009, 150(5), 2220-2228.
[http://dx.doi.org/10.1210/en.2008-1335] [PMID: 19131573]
[94]
Miguel-Hidalgo, J. J.; Hall, K. O.; Bonner, H.; Roller, A. M.; Syed, M.; Park, C. J.; Ball, J. P.; Rothenberg, M. E.; Stockmeier, C. A.; Romero, D. G. MicroRNA-21: expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism.Prog. Neuro. Psychopharmacol Biol. Psychiatry, 2017, 79(B), 503-514.
[http://dx.doi.org/10.1016/j.pnpbp.2017.08.009] [PMID: 28802862]
[95]
Baudry, A.; Mouillet-Richard, S.; Schneider, B.; Launay, J.M.; Kellermann, O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science, 2010, 329(5998), 1537-1541.
[http://dx.doi.org/10.1126/science.1193692] [PMID: 20847275]
[96]
Smalheiser, N.R.; Lugli, G.; Rizavi, H.S.; Torvik, V.I.; Turecki, G.; Dwivedi, Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One, 2012, 7(3)e33201
[http://dx.doi.org/10.1371/journal.pone.0033201] [PMID: 22427989]
[97]
Lopez, J.P.; Fiori, L.M.; Gross, J.A.; Labonte, B.; Yerko, V.; Mechawar, N.; Turecki, G. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int. J. Neuropsychopharmacol., 2014, 17(1), 23-32.
[http://dx.doi.org/10.1017/S1461145713000941] [PMID: 24025154]
[98]
Torres-Berrío, A.; Lopez, J.P.; Bagot, R.C.; Nouel, D.; Dal Bo, G.; Cuesta, S.; Zhu, L.; Manitt, C.; Eng, C.; Cooper, H.M.; Storch, K.F.; Turecki, G.; Nestler, E.J.; Flores, C. DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol. Psychiatry, 2017, 81(4), 306-315.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.017] [PMID: 27773352]
[99]
Issler, O.; Haramati, S.; Paul, E.D.; Maeno, H.; Navon, I.; Zwang, R.; Gil, S.; Mayberg, H.S.; Dunlop, B.W.; Menke, A.; Awatramani, R.; Binder, E.B.; Deneris, E.S.; Lowry, C.A.; Chen, A. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron, 2014, 83(2), 344-360.
[http://dx.doi.org/10.1016/j.neuron.2014.05.042] [PMID: 24952960]
[100]
Jin, J.; Kim, S.N.; Liu, X.; Zhang, H.; Zhang, C.; Seo, J.S.; Kim, Y.; Sun, T. miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety and depression. Cell Rep., 2016, 16(6), 1653-1663.
[http://dx.doi.org/10.1016/j.celrep.2016.06.101] [PMID: 27477270]
[101]
Forero, D.A.; Guio-Vega, G.P.; González-Giraldo, Y. A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J. Affect. Disord., 2017, 218, 86-92.
[http://dx.doi.org/10.1016/j.jad.2017.04.061] [PMID: 28460316]
[102]
Sun, X.; Song, Z.; Si, Y.; Wang, J.H. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 150-165.
[http://dx.doi.org/10.1016/j.pnpbp.2018.05.023] [PMID: 29864451]
[103]
Belzeaux, R.; Bergon, A.; Jeanjean, V.; Loriod, B.; Formisano-Tréziny, C.; Verrier, L.; Loundou, A.; Baumstarck-Barrau, K.; Boyer, L.; Gall, V.; Gabert, J.; Nguyen, C.; Azorin, J.M.; Naudin, J.; Ibrahim, E.C. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl. Psychiatry, 2012, 2(11)e185
[http://dx.doi.org/10.1038/tp.2012.112] [PMID: 23149449]
[104]
Li, Y.J.; Xu, M.; Gao, Z.H.; Wang, Y.Q.; Yue, Z.; Zhang, Y.X.; Li, X.X.; Zhang, C.; Xie, S.Y.; Wang, P.Y. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One, 2013, 8(5)e63648
[http://dx.doi.org/10.1371/journal.pone.0063648] [PMID: 23704927]
[105]
He, S.; Liu, X.; Jiang, K.; Peng, D.; Hong, W.; Fang, Y.; Qian, Y.; Yu, S.; Li, H. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J. Psychiatr. Res., 2016, 78, 65-71.
[http://dx.doi.org/10.1016/j.jpsychires.2016.03.015] [PMID: 27078210]
[106]
Zurawek, D.; Kusmider, M.; Faron-Gorecka, A.; Gruca, P.; Pabian, P.; Kolasa, M.; Solich, J.; Szafran-Pilch, K.; Papp, M.; Dziedzicka-Wasylewska, M. Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression. Eur. Neuropsychopharmacol., 2016, 26(1), 23-36.
[http://dx.doi.org/10.1016/j.euroneuro.2015.11.013] [PMID: 26628105]
[107]
Maffioletti, E.; Cattaneo, A.; Rosso, G.; Maina, G.; Maj, C.; Gennarelli, M.; Tardito, D.; Bocchio-Chiavetto, L. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J. Affect. Disord., 2016, 200, 250-258.
[http://dx.doi.org/10.1016/j.jad.2016.04.021] [PMID: 27152760]
[108]
Gururajan, A.; Naughton, M.E.; Scott, K.A.; O’Connor, R.M.; Moloney, G.; Clarke, G.; Dowling, J.; Walsh, A.; Ismail, F.; Shorten, G.; Scott, L.; McLoughlin, D.M.; Cryan, J.F.; Dinan, T.G. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl. Psychiatry, 2016, 6(8)e862
[http://dx.doi.org/10.1038/tp.2016.131] [PMID: 27483380]
[109]
Wang, S.S.; Mu, R.H.; Li, C.F.; Dong, S.Q.; Geng, D.; Liu, Q.; Yi, L.T. .microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79(B), 417-425.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.024] [PMID: 28764913]
[110]
Yuan, H.; Mischoulon, D.; Fava, M.; Otto, M.W. Circulating microRNAs as biomarkers for depression: many candidates, few finalists. J. Affect. Disord., 2018, 233, 68-78.
[http://dx.doi.org/10.1016/j.jad.2017.06.058 ] [PMID: 28673667]
[111]
Shao, Q.Y.; You, F.; Zhang, Y.H.; Hu, L.L.; Liu, W.J.; Liu, Y.; Li, J.; Wang, S.D.; Song, M.F. CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J. Affect. Disord., 2018, 238, 609-614.
[http://dx.doi.org/10.1016/j.jad.2018.06.034] [PMID: 29957478]
[112]
Derkow, K.; Rössling, R.; Schipke, C.; Krüger, C.; Bauer, J.; Fähling, M.; Stroux, A.; Schott, E.; Ruprecht, K.; Peters, O.; Lehnardt, S. Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One, 2018, 13(7)e0200602
[http://dx.doi.org/10.1371/journal.pone.0200602] [PMID: 30011310]
[113]
Cao, T.; Zhen, X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther., 2018, 24(7), 586-597.
[http://dx.doi.org/10.1111/cns.12840] [PMID: 29529357]
[114]
Caputo, V.; Ciolfi, A.; Macri, S.; Pizzuti, A. The emerging role of MicroRNA in schizophrenia. CNS Neurol. Disord. Drug Targets, 2015, 14(2), 208-221.
[http://dx.doi.org/10.2174/1871527314666150116124253] [PMID: 25613509]
[115]
He, K.; Guo, C.; He, L.; Shi, Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas, 2017, 155(9), 9.
[http://dx.doi.org/10.1186/s41065-017-0044-2]] [PMID: 28860957]
[116]
Wang, J.; Wang, Y.; Yang, J.; Huang, Y. microRNAs as novel biomarkers of schizophrenia. Exp. Ther. Med., 2014, 8(6), 1671-1676.
[http://dx.doi.org/10.3892/etm.2014.2014]] [PMID: 25371713]
[117]
Beveridge, N.J.; Gardiner, E.; Carroll, A.P.; Tooney, P.A.; Cairns, M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry, 2010, 15(12), 1176-1189.
[http://dx.doi.org/10.1038/mp.2009.84] [PMID: 19721432]
[118]
Kim, A.H.; Reimers, M.; Maher, B.; Williamson, V.; McMichael, O.; McClay, J.L.; van den Oord, E.J.; Riley, B.P.; Kendler, K.S.; Vladimirov, V.I. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr. Res., 2010, 124(1-3), 183-191.
[http://dx.doi.org/10.1016/j.schres.2010.07.002] [PMID: 20675101]
[119]
Moreau, M.P.; Bruse, S.E.; David-Rus, R.; Buyske, S.; Brzustowicz, L.M. Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol. Psychiatry, 2011, 69(2), 188-193.
[http://dx.doi.org/10.1016/j.biopsych.2010.09.039] [PMID: 21183010]
[120]
Perkins, D.O.; Jeffries, C.D.; Jarskog, L.F.; Thomson, J.M.; Woods, K.; Newman, M.A.; Parker, J.S.; Jin, J.; Hammond, S.M. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol., 2007, 8(2), R27.
[http://dx.doi.org/10.1186/gb-2007-8-2-r27] [PMID: 17326821]
[121]
Santarelli, D.M.; Beveridge, N.J.; Tooney, P.A.; Cairns, M.J. Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex brodmann area 46 in schizophrenia. Biol. Psychiatry, 2011, 69(2), 180-187.
[http://dx.doi.org/10.1016/j.biopsych.2010.09.030] [PMID: 21111402]
[122]
Gardiner, E.; Beveridge, N.J.; Wu, J.Q.; Carr, V.; Scott, R.J.; Tooney, P.A.; Cairns, M.J. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol. Psychiatry, 2012, 17(8), 827-840.
[http://dx.doi.org/10.1038/mp.2011.78] [PMID: 21727898]
[123]
Hansen, T.; Olsen, L.; Lindow, M.; Jakobsen, K.D.; Ullum, H.; Jonsson, E.; Andreassen, O.A.; Djurovic, S.; Melle, I.; Agartz, I.; Hall, H.; Timm, S.; Wang, A.G.; Werge, T. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One, 2007, 2(9)e873
[http://dx.doi.org/10.1371/journal.pone.0000873] [PMID: 17849003]
[124]
Mellios, N.; Galdzicka, M.; Ginns, E.; Baker, S.P.; Rogaev, E.; Xu, J.; Akbarian, S. Gender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophrenia. Schizophr. Bull., 2012, 38(3), 433-443.
[http://dx.doi.org/10.1093/schbul/sbq091] [PMID: 20732949]
[125]
Mellios, N.; Huang, H.S.; Baker, S.P.; Galdzicka, M.; Ginns, E.; Akbarian, S. Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol. Psychiatry, 2009, 65(12), 1006-1014.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.019] [PMID: 19121517]
[126]
Banigan, M.G.; Kao, P.F.; Kozubek, J.A.; Winslow, A.R.; Medina, J.; Costa, J.; Schmitt, A.; Schneider, A.; Cabral, H.; Cagsal-Getkin, O.; Vanderburg, C.R.; Delalle, I. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One, 2013, 8(1)e48814
[http://dx.doi.org/10.1371/journal.pone.0048814] [PMID: 23382797]
[127]
Zhao, D.; Lin, M.; Chen, J.; Pedrosa, E.; Hrabovsky, A.; Fourcade, H.M.; Zheng, D.; Lachman, H.M. MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 Del. PLoS One, 2015, 10(7)e0132387
[http://dx.doi.org/10.1371/journal.pone.0132387] [PMID: 26173148]
[128]
Forstner, A.J.; Basmanav, F.B.; Mattheisen, M.; Böhmer, A.C.; Hollegaard, M.V.; Janson, E.; Strengman, E.; Priebe, L.; Degenhardt, F.; Hoffmann, P.; Herms, S.; Maier, W.; Mössner, R.; Rujescu, D.; Ophoff, R.A.; Moebus, S.; Mortensen, P.B.; Børglum, A.D.; Hougaard, D.M.; Frank, J.; Witt, S.H.; Rietschel, M.; Zimmer, A.; Nöthen, M.M.; Miró, X.; Cichon, S. Investigation of the involvement of MIR185 and its target genes in the development of schizophrenia. J. Psychiatry Neurosci., 2014, 39(6), 386-396.
[http://dx.doi.org/10.1503/jpn.130189] [PMID: 24936775]
[129]
Wright, C.; Calhoun, V.D.; Ehrlich, S.; Wang, L.; Turner, J.A. Perrone- Bizzozero, N. I. Meta gene set enrichment analyses link miR-137-regulated pathways with schizophrenia risk. Front. Genet., 2015, 6(147)
[http://dx.doi.org/10.3389/fgene.2015.00147]] [PMID: 25941532]
[130]
Alural, B.; Genc, S.; Haggarty, S.J. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present, and future. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 73, 87-103.
[http://dx.doi.org/10.1016/j.pnpbp.2016.03.010] [PMID: 27072377]
[131]
Giacomotto, J.; Carroll, A.P.; Rinkwitz, S.; Mowry, B.; Cairns, M.J.; Becker, T.S. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Transl. Psychiatry, 2016, 6-818.
[http://dx.doi.org/10.1038/tp.2016.88] [PMID: 27219344]
[132]
Kuswanto, C.N.; Sum, M.Y.; Qiu, A.; Sitoh, Y.Y.; Liu, J.; Sim, K. The impact of genome wide supported microRNA-137 (MIR137) risk variants on frontal and striatal white matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2015, 168B(5), 317-326.
[http://dx.doi.org/10.1002/ajmg.b.32314] [PMID: 25921703]
[133]
Nadim, W.D.; Simion, V.; Bénédetti, H.; Pichon, C.; Baril, P.; Morisset-Lopez, S. MicroRNAs in neurocognitive dysfunctions: New molecular targets for pharmacological treatments? Curr. Neuropharmacol., 2017, 15(2), 260-275.
[http://dx.doi.org/10.2174/1570159X14666160709001441] [PMID: 27396304]
[134]
Olde Loohuis, N.F.; Nadif Kasri, N.; Glennon, J.C.; van Bokhoven, H.; Hébert, S.S.; Kaplan, B.B.; Martens, G.J.; Aschrafi, A. The schizophrenia risk gene MIR137 acts as a hippocampal gene network node orchestrating the expression of genes relevant to nervous system development and function. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 73, 109-118.
[http://dx.doi.org/10.1016/j.pnpbp.2016.02.009] [PMID: 26925706]
[135]
Wu, S.; Zhang, R.; Nie, F.; Wang, X.; Jiang, C.; Liu, M.; Valenzuela, R.K.; Liu, W.; Shi, Y.; Ma, J. MicroRNA-137 inhibits efnb2 expression affected by a genetic variant and is expressed aberrantly in peripheral blood of schizophrenia patients. EBioMedicine, 2016, 12, 133-142.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.012] [PMID: 27650867]
[136]
Hauberg, M.E.; Roussos, P.; Grove, J.; Børglum, A.D.; Mattheisen, M. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry, 2016, 73(4), 369-377.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.3018] [PMID: 26963595]
[137]
Cairns, M.J. Circulating miRNA biomarkers for schizophrenia? Am. J. Psychiatry, 2015, 172(11), 1059-1061.
[http://dx.doi.org/10.1176/appi.ajp.2015.15081060] [PMID: 26575446]
[138]
Lai, C-Y.; Lee, S-Y.; Scarr, E.; Yu, Y-H.; Lin, Y-T.; Liu, C-M.; Hwang, T-J.; Hsieh, M-H.; Liu, C-C.; Chien, Y-L.; Udawela, M.; Gibbons, A-S.; Everall, I-P.; Hwu, H-G.; Dean, B.; Chen, W.J. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl. Psychiatry, 2016, 6-717.
[http://dx.doi.org/10.1038/tp.2015.213] [PMID: 26784971]
[139]
Lai, C.Y.; Yu, S.L.; Hsieh, M.H.; Chen, C.H.; Chen, H.Y.; Wen, C.C.; Huang, Y.H.; Hsiao, P.C.; Hsiao, C.K.; Liu, C.M.; Yang, P.C.; Hwu, H.G.; Chen, W.J. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One, 2011, 6(6)e21635
[http://dx.doi.org/10.1371/journal.pone.0021635] [PMID: 21738743]
[140]
Liu, Y.; Chang, X.; Hahn, C-G.; Gur, R.E.; Sleiman, P.A.M.; Hakonarson, H. Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl. Psychiatry, 2018, 8(1), 44.
[http://dx.doi.org/10.1038/s41398-017-0030-5] [PMID: 29391398]
[141]
Ma, J.; Shang, S.; Wang, J.; Zhang, T.; Nie, F.; Song, X.; Heping Zhao, Zhu, C.; Zhang, R.; Hao, D. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Res., 2018, 265, 70-76.
[http://dx.doi.org/10.1016/j.psychres.2018.03.080] [PMID: 29684772]
[142]
Ragan, C.; Patel, K.; Edson, J.; Zhang, Z-H.; Gratten, J.; Mowry, B. Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation. Schizophr. Res., 2017, 183, 82-87.
[http://dx.doi.org/10.1016/j.schres.2016.11.024] [PMID: 27916288]
[143]
Shi, W.; Du, J.; Qi, Y.; Liang, G.; Wang, T.; Li, S.; Xie, S.; Zeshan, B.; Xiao, Z. Aberrant expression of serum miRNAs in schizophrenia. J. Psychiatr. Res., 2012, 46(2), 198-204.
[http://dx.doi.org/10.1016/j.jpsychires.2011.09.010] [PMID: 22094284]
[144]
Sun, X.Y.; Lu, J.; Zhang, L.; Song, H.T.; Zhao, L.; Fan, H.M.; Zhong, A.F.; Niu, W.; Guo, Z.M.; Dai, Y.H.; Chen, C.; Ding, Y.F.; Zhang, L.Y. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J. Clin. Neurosci., 2015, 22(3), 570-574.
[http://dx.doi.org/10.1016/j.jocn.2014.08.018] [PMID: 25487174]
[145]
Sun, X.Y.; Zhang, J.; Niu, W.; Guo, W.; Song, H.T.; Li, H.Y.; Fan, H.M.; Zhao, L.; Zhong, A.F.; Dai, Y.H.; Guo, Z.M.; Zhang, L.Y.; Lu, J.; Zhang, Q.L. A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2015, 168B(3), 170-178.
[http://dx.doi.org/10.1002/ajmg.b.32292] [PMID: 25656957]
[146]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[147]
Wei, H.; Yuan, Y.; Liu, S.; Wang, C.; Yang, F.; Lu, Z.; Wang, C.; Deng, H.; Zhao, J.; Shen, Y.; Zhang, C.; Yu, X.; Xu, Q. Detection of circulating miRNA levels in schizophrenia. Am. J. Psychiatry, 2015, 172(11), 1141-1147.
[http://dx.doi.org/10.1176/appi.ajp.2015.14030273] [PMID: 26183697]
[148]
Gallego, J.A.; Gordon, M.L.; Claycomb, K.; Bhatt, M.; Lencz, T.; Malhotra, A.K. In vivo microRNA detection and quantitation in cerebrospinal fluid. J. Mol. Neurosci., 2012, 47(2), 243-248.
[http://dx.doi.org/10.1007/s12031-012-9731-7] [PMID: 22402993]
[149]
Tang, F.R.; Loganovsky, K. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ. Radioact., 2018, 192, 32-47.
[http://dx.doi.org/10.1016/j.jenvrad.2018.05.018] [PMID: 29883875]
[150]
Tang, F.R.; Loke, W.K.; Khoo, B.C. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J. Radiat. Res. (Tokyo), 2017, 58(2), 165-182.
[http://dx.doi.org/10.1093/jrr/rrw120] [PMID: 28077626]
[151]
Tang, F.R.; Wang, H.; Shen, H.Y.; Sethi, G. In: Neuropyschological changes and relevant neurocytoarchitectonic abnormality of the dentate gyrus after early life acute radiation exposure to mice. Proceedings of the 43rd Annual Meeting of the European Radiation Research Society and 20th Annual Meeting of the Society for Biological Radiation Research, Essen, GermanySeptember 17-21, 2017 2017.Program and Abstract Book; ERRS GBS,, p. 392.
[152]
Setkowicz, Z.; Gzieło-Jurek, K.; Uram, Ł.; Janicka, D.; Janeczko, K. Brain dysplasia evoked by gamma irradiation at different stages of prenatal development leads to different tonic and clonic seizure reactivity. Epilepsy Res., 2014, 108(1), 66-80.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.010] [PMID: 24239322]
[153]
Schulte, P.A.; Burnett, C.A.; Boeniger, M.F.; Johnson, J. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1982 through 1991. Am. J. Public Health, 1996, 86(9), 1281-1288.
[http://dx.doi.org/10.2105/AJPH.86.9.1281] [PMID: 8806381]
[154]
Sibley, R.F.; Moscato, B.S.; Wilkinson, G.S.; Natarajan, N. Nested case-control study of external ionizing radiation dose and mortality from dementia within a pooled cohort of female nuclear weapons workers. Am. J. Ind. Med., 2003, 44(4), 351-358.
[http://dx.doi.org/10.1002/ajim.10288] [PMID: 14502762]
[155]
Nakane, Y.; Ohta, Y. An example from the Japanese Register: Some long-term consequences of the A-bomb for its survivors in Nagasaki. Psychiatric Case Registers in Public Health; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 1986, pp. 26-27.
[156]
Shore, D. Schizophrenia Questions & Answers.Available at:, https://emedicine.medscape.com/article/288259-ques-tions-and-answers (Accessed date: 28 August,2007.
[157]
Torrey, E.F. Prevalence of psychosis among the Hutterites: a reanalysis of the 1950-53 study. Schizophr. Res., 1995, 16(2), 167-170.
[http://dx.doi.org/10.1016/0920-9964(95)00042-K] [PMID: 7577770]
[158]
Chaudhry, M.A.; Omaruddin, R.A.; Brumbaugh, C.D.; Tariq, M.A.; Pourmand, N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. J. Radiat. Res. (Tokyo), 2013, 54(5), 808-822.
[http://dx.doi.org/10.1093/jrr/rrt014] [PMID: 23447695]
[159]
Cai, S.; Shi, G-S.; Cheng, H-Y.; Zeng, Y-N.; Li, G.; Zhang, M.; Song, M.; Zhou, P.K.; Tian, Y.; Cui, F.M.; Chen, Q. Zhou, P. K.; Tian, Y; Cui, F. M.; Chen, Q. Exosomal miR-7 mediates bystander autophagy in lung after focal brain irradiation in mice. Int. J. Biol. Sci., 2017, 13(10), 1287-1296.
[http://dx.doi.org/10.7150/ijbs.18890] [PMID: 29104495]
[160]
Kempf, S.J.; Buratovic, S.; von Toerne, C.; Moertl, S.; Stenerlöw, B.; Hauck, S.M.; Atkinson, M.J.; Eriksson, P.; Tapio, S. Ionising radiation immediately impairs synaptic plasticity-associated cytoskeletal signalling pathways in HT22 cells and in mouse brain: an in vitro/in vivo comparison study. PLoS One, 2014, 9(10)e110464
[http://dx.doi.org/10.1371/journal.pone.0110464] [PMID: 25329592]
[161]
Cui, W.; Ma, J.; Wang, Y.; Biswal, S. Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry. PLoS One, 2011, 6(8)e22988
[http://dx.doi.org/10.1371/journal.pone.0022988] [PMID: 21857976]
[162]
Gupta, S.K.; Bang, C.; Thum, T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet, 2010, 3(5), 484-488.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958363] [PMID: 20959591]
[163]
Loganovsky, K.N.; Vasilenko, Z.L. Depression and ionizing radiation. Probl. Radiac. Med. Radiobiol., 2013, (18), 200-219.
[PMID: 25191725]
[164]
Jia, M.; Wang, X.; Zhang, H.; Ye, C.; Ma, H.; Yang, M.; Li, Y.; Cui, C. MicroRNA-132 in the adult dentate gyrus is involved in opioid addiction via modifying the differentiation of neural stem cells. Neurosci. Bull., 2019, 35(3), 486-496.
[http://dx.doi.org/10.1007/s12264-019-00338-z] [PMID: 30721395]
[165]
Xia, X.; Teotia, P.; Ahmad, I. miR-29c regulates neurogliogenesis in the mammalian retina through REST. Dev. Biol., 2019, 450(2), 90-100.
[http://dx.doi.org/10.1016/j.ydbio.2019.03.013] [PMID: 30914322]
[166]
Ouyang, Y.B.; Giffard, R.G. MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem. Int., 2014, 77, 2-8.
[http://dx.doi.org/10.1016/j.neuint.2013.12.006] [PMID: 24373752]
[167]
Roshan, R.; Shridhar, S.; Sarangdhar, M.A.; Banik, A.; Chawla, M.; Garg, M.; Singh, V.P.; Pillai, B. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA, 2014, 20(8), 1287-1297.
[http://dx.doi.org/10.1261/rna.044008.113] [PMID: 24958907]
[168]
Yang, G.; Song, Y.; Zhou, X.; Deng, Y.; Liu, T.; Weng, G.; Yu, D.; Pan, S. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol. Med. Rep., 2015, 12(2), 3081-3088.
[http://dx.doi.org/10.3892/mmr.2015.3728] [PMID: 25955795]
[169]
Roshan, R.; Ghosh, T.; Scaria, V.; Pillai, B. MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov. Today, 2009, 14(23-24), 1123-1129.
[http://dx.doi.org/10.1016/j.drudis.2009.09.009] [PMID: 19822222]
[170]
Zong, Y.; Yu, P.; Cheng, H.; Wang, H.; Wang, X.; Liang, C.; Zhu, H.; Qin, Y.; Qin, C. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Res., 2015, 1624, 95-102.
[http://dx.doi.org/10.1016/j.brainres.2015.07.022] [PMID: 26212654]
[171]
Lippi, G.; Steinert, J.R.; Marczylo, E.L.; D’Oro, S.; Fiore, R.; Forsythe, I.D.; Schratt, G.; Zoli, M.; Nicotera, P.; Young, K.W. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J. Cell Biol., 2011, 194(6), 889-904.
[http://dx.doi.org/10.1083/jcb.201103006] [PMID: 21930776]
[172]
Magri, C.; Gardella, R.; Valsecchi, P.; Barlati, S.D.; Guizzetti, L.; Imperadori, L.; Bonvicini, C.; Tura, G.B.; Gennarelli, M.; Sacchetti, E.; Barlati, S. Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(6), 745-753.
[http://dx.doi.org/10.1002/ajmg.b.30674] [PMID: 18163426]
[173]
Xu, Y.; Chen, P.; Wang, X.; Yao, J.; Zhuang, S. miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neurosci. Lett., 2018, 670, 94-104.
[http://dx.doi.org/10.1016/j.neulet.2018.01.045] [PMID: 29378298]
[174]
Wang, X.; Liu, P.; Zhu, H.; Xu, Y.; Ma, C.; Dai, X.; Huang, L.; Liu, Y.; Zhang, L.; Qin, C. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res. Bull., 2009, 80(4-5), 268-273.
[http://dx.doi.org/10.1016/j.brainresbull.2009.08.006] [PMID: 19683563]
[175]
Dias, B.G.; Goodman, J.V.; Ahluwalia, R.; Easton, A.E.; Andero, R.; Ressler, K.J. Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling. Neuron, 2014, 83(4), 906-918.
[http://dx.doi.org/10.1016/j.neuron.2014.07.019] [PMID: 25123309]
[176]
Yamakuchi, M.; Lowenstein, C.J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle, 2009, 8(5), 712-715.
[http://dx.doi.org/10.4161/cc.8.5.7753] [PMID: 19221490]
[177]
He, L.; Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5(7), 522-531.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[178]
He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; Jackson, A.L.; Linsley, P.S.; Chen, C.; Lowe, S.W.; Cleary, M.A.; Hannon, G.J. A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148), 1130-1134.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
[179]
Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15472-15477.
[http://dx.doi.org/10.1073/pnas.0707351104] [PMID: 17875987]
[180]
Yamamura, S.; Saini, S.; Majid, S.; Hirata, H.; Ueno, K.; Chang, I.; Tanaka, Y.; Gupta, A.; Dahiya, R. MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis, 2012, 33(2), 294-300.
[http://dx.doi.org/10.1093/carcin/bgr286] [PMID: 22159222]
[181]
Thor, T.; Künkele, A.; Pajtler, K.W.; Wefers, A.K.; Stephan, H.; Mestdagh, P.; Heukamp, L.; Hartmann, W.; Vandesompele, J.; Sadowski, N.; Becker, L.; Garrett, L.; Hölter, S.M.; Horsch, M.; Calzada-Wack, J.; Klein-Rodewald, T.; Racz, I.; Zimmer, A.; Beckers, J.; Neff, F.; Klopstock, T.; De Antonellis, P.; Zollo, M.; Wurst, W.; Fuchs, H.; Gailus-Durner, V.; Schüller, U.; de Angelis, M.H.; Eggert, A.; Schramm, A.; Schulte, J.H. MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int. J. Cancer, 2015, 136(10), 2293-2303.
[http://dx.doi.org/10.1002/ijc.29294] [PMID: 25348795]
[182]
Di Bari, M.; Bevilacqua, V.; De Jaco, A.; Laneve, P.; Piovesana, R.; Trobiani, L.; Talora, C.; Caffarelli, E.; Tata, A.M. Mir-34a-5p mediates crosstalk between M2muscarinic receptors and Notch-1/EGFR pathways in U87MG glioblastoma cells: implication in cell proliferation. Int. J. Mol. Sci., 2018, 19(6)E1631
[http://dx.doi.org/10.3390/ijms19061631] [PMID: 29857516]
[183]
Cheng, H.; Zhou, L.; Li, B.; Zhu, M.; Too, H-P.; Choi, W.K. Nano-topology guided neurite outgrowth in PC12 cells is mediated by miRNAs. Nanomedicine (Lond.), 2014, 10(8), 1871-1875.
[http://dx.doi.org/10.1016/j.nano.2014.07.011] [PMID: 25101881]
[184]
Choy, F.C.; Klarić, T.S.; Koblar, S.A.; Lewis, M.D. miR-744 and miR-224 downregulate Npas4 and affect lineage differentiation potential and neurite development during neural differentiation of mouse embryonic stem cells. Mol. Neurobiol., 2017, 54(5), 3528-3541.
[http://dx.doi.org/10.1007/s12035-016-9912-4] [PMID: 27189618]
[185]
Constantin, L. The role of microRNAs in cerebellar development and autism spectrum disorder during embryogenesis. Mol. Neurobiol., 2017, 54(9), 6944-6959.
[http://dx.doi.org/10.1007/s12035-016-0220-9] [PMID: 27774573]
[186]
Das, E.; Bhattacharyya, N.P. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Lett., 2014, 588(9), 1706-1714.
[http://dx.doi.org/10.1016/j.febslet.2014.03.015] [PMID: 24657437]
[187]
Gaughwin, P.M.; Ciesla, M.; Lahiri, N.; Tabrizi, S.J.; Brundin, P.; Björkqvist, M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum. Mol. Genet., 2011, 20(11), 2225-2237.
[http://dx.doi.org/10.1093/hmg/ddr111] [PMID: 21421997]
[188]
Gu, X.; Li, A.; Liu, S.; Lin, L.; Xu, S.; Zhang, P.; Li, S.; Li, X.; Tian, B.; Zhu, X.; Wang, X. MicroRNA124 regulated neurite elongation by targeting OSBP. Mol. Neurobiol., 2016, 53(9), 6388-6396.
[http://dx.doi.org/10.1007/s12035-015-9540-4] [PMID: 26576957]
[189]
Gu, X.; Meng, S.; Liu, S.; Jia, C.; Fang, Y.; Li, S.; Fu, C.; Song, Q.; Lin, L.; Wang, X. miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J. Mol. Neurosci., 2014, 52(1), 156-165.
[http://dx.doi.org/10.1007/s12031-013-0190-6] [PMID: 24338057]
[190]
Jiao, S.; Liu, Y.; Yao, Y.; Teng, J. miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways. Mol. Cell. Biochem., 2018, 449(1-2), 305-314.
[http://dx.doi.org/10.1007/s11010-018-3367-z] [PMID: 29786763]
[191]
Jiang, D.; Du, J.; Zhang, X.; Zhou, W.; Zong, L.; Dong, C.; Chen, K.; Chen, Y.; Chen, X.; Jiang, H. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int. J. Mol. Med., 2016, 38(5), 1367-1376.
[http://dx.doi.org/10.3892/ijmm.2016.2751] [PMID: 28025992]
[192]
Langfelder, P.; Gao, F.; Wang, N.; Howland, D.; Kwak, S.; Vogt, T.F.; Aaronson, J.S.; Rosinski, J.; Coppola, G.; Horvath, S.; Yang, X.W. MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice. PLoS One, 2018, 13(1)e0190550
[http://dx.doi.org/10.1371/journal.pone.0190550] [PMID: 29324753]
[193]
Le, M.T.; Xie, H.; Zhou, B.; Chia, P.H.; Rizk, P.; Um, M.; Udolph, G.; Yang, H.; Lim, B.; Lodish, H.F. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol., 2009, 29(19), 5290-5305.
[http://dx.doi.org/10.1128/MCB.01694-08] [PMID: 19635812]
[194]
Li, B.; Sun, H. MiR-26a promotes neurite outgrowth by repressing PTEN expression. Mol. Med. Rep., 2013, 8(2), 676-680.
[http://dx.doi.org/10.3892/mmr.2013.1534] [PMID: 23783805]
[195]
Mokabber, H.; Najafzadeh, N.; Mohammadzadeh Vardin, M. miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9. J. Cell. Physiol., 2019, 234(6), 8941-8950.
[http://dx.doi.org/10.1002/jcp.27563] [PMID: 30417370]
[196]
Pieczora, L.; Stracke, L.; Vorgerd, M.; Hahn, S.; Theiss, C.; Theis, V. Unveiling of miRNA expression patterns in purkinje cells during development. Cerebellum, 2017, 16(2), 376-387.
[http://dx.doi.org/10.1007/s12311-016-0814-9] [PMID: 27387430]
[197]
Schlüter, T.; Berger, C.; Rosengauer, E.; Fieth, P.; Krohs, C.; Ushakov, K.; Steel, K.P.; Avraham, K.B.; Hartmann, A.K.; Felmy, F.; Nothwang, H.G. miR-96 is required for normal development of the auditory hindbrain. Hum. Mol. Genet., 2018, 27(5), 860-874.
[http://dx.doi.org/10.1093/hmg/ddy007] [PMID: 29325119]
[198]
Venkatesh, K.; Kumari, A.; Sen, D. MicroRNA signature changes during induction of neural stem cells from human mesenchymal stem cells. Nanomedicine (Lond.), 2019, 17, 94-105.
[http://dx.doi.org/10.1016/j.nano.2019.01.003] [PMID: 30664947]
[199]
Yu, J-Y.; Chung, K-H.; Deo, M.; Thompson, R.C.; Turner, D.L. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res., 2008, 314(14), 2618-2633.
[http://dx.doi.org/10.1016/j.yexcr.2008.06.002] [PMID: 18619591]
[200]
Zhang, H.; Zhang, L.; Sun, T. Cohesive regulation of neural progenitor development by microrna mir-26, its host gene ctdsp and target gene emx2 in the mouse embryonic cerebral cortex. Front. Mol. Neurosci., 2018, 11(44), 44.
[http://dx.doi.org/10.3389/fnmol.2018.00044] [PMID: 29515367]
[201]
Zheng, J.; Yi, D.; Shi, X.; Shi, H. miR-1297 regulates neural stem cell differentiation and viability through controlling Hes1 expression. Cell Prolif., 2017, 50(4)e12347
[http://dx.doi.org/10.1111/cpr.12347] [PMID: 28464358]
[202]
Agostini, M.; Tucci, P.; Killick, R.; Candi, E.; Sayan, B.S.; Rivetti di Val Cervo, P.; Nicotera, P.; McKeon, F.; Knight, R.A.; Mak, T.W.; Melino, G. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21093-21098.
[http://dx.doi.org/10.1073/pnas.1112061109] [PMID: 22160687]
[203]
Agostini, M.; Tucci, P.; Steinert, J.R.; Shalom-Feuerstein, R.; Rouleau, M.; Aberdam, D.; Forsythe, I.D.; Young, K.W.; Ventura, A.; Concepcion, C.P.; Han, Y.C.; Candi, E.; Knight, R.A.; Mak, T.W.; Melino, G. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21099-21104.
[http://dx.doi.org/10.1073/pnas.1112063108] [PMID: 22160706]
[204]
Lin, L.F.; Chiu, S.P.; Wu, M.J.; Chen, P.Y.; Yen, J.H. Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS One, 2012, 7(8)e43304
[http://dx.doi.org/10.1371/journal.pone.0043304] [PMID: 22916239]
[205]
Madelaine, R.; Sloan, S.A.; Huber, N.; Notwell, J.H.; Leung, L.C.; Skariah, G.; Halluin, C.; Paşca, S.P.; Bejerano, G.; Krasnow, M.A.; Barres, B.A.; Mourrain, P. microRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep., 2017, 20(7), 1533-1542.
[http://dx.doi.org/10.1016/j.celrep.2017.07.051] [PMID: 28813666]
[206]
Morgado, A.L.; Xavier, J.M.; Dionísio, P.A.; Ribeiro, M.F.; Dias, R.B.; Sebastião, A.M.; Solá, S.; Rodrigues, C.M. MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Mol. Neurobiol., 2015, 51(3), 1168-1183.
[http://dx.doi.org/10.1007/s12035-014-8794-6] [PMID: 24973144]
[207]
Yoshimura, A.; Numakawa, T.; Odaka, H.; Adachi, N.; Tamai, Y.; Kunugi, H. Negative regulation of microRNA-132 in expression of synaptic proteins in neuronal differentiation of embryonic neural stem cells. Neurochem. Int., 2016, 97, 26-33.
[http://dx.doi.org/10.1016/j.neuint.2016.04.013] [PMID: 27131735]
[208]
Zhang, C.; Hou, D.; Feng, X. Mir-181b Functions as anti-apoptotic gene in post-status epilepticus via modulation of nrarp and notch signaling pathway. Ann. Clin. Lab. Sci., 2015, 45(5), 550-555.
[PMID: 26586707]
[209]
Cui, C.; Xu, G.; Qiu, J.; Fan, X. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia. Cell Biol. Int., 2015, 39(8), 933-942.
[http://dx.doi.org/10.1002/cbin.10461] [PMID: 25808510]
[210]
Fu, M.H.; Li, C.L.; Lin, H.L.; Tsai, S.J.; Lai, Y.Y.; Chang, Y.F.; Cheng, P.H.; Chen, C.M.; Yang, S.H. The potential regulatory mechanisms of miR-196a in Huntington’s disease through bioinformatic analyses. PLoS One, 2015, 10(9)e0137637
[http://dx.doi.org/10.1371/journal.pone.0137637] [PMID: 26376480]
[211]
Hartmann, H.; Hoehne, K.; Rist, E.; Louw, A.M.; Schlosshauer, B. miR-124 disinhibits neurite outgrowth in an inflammatory environment. Cell Tissue Res., 2015, 362(1), 9-20.
[http://dx.doi.org/10.1007/s00441-015-2183-y] [PMID: 25920589]
[212]
Khudayberdiev, S.; Fiore, R.; Schratt, G. MicroRNA as modulators of neuronal responses. Commun. Integr. Biol., 2009, 2(5), 411-413.
[http://dx.doi.org/10.4161/cib.2.5.8834] [PMID: 19907703]
[213]
Lu, X.C.; Zheng, J.Y.; Tang, L.J.; Huang, B.S.; Li, K.; Tao, Y.; Yu, W.; Zhu, R.L.; Li, S.; Li, L.X. MiR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell. Physiol. Biochem., 2015, 35(1), 246-258.
[http://dx.doi.org/10.1159/000369692] [PMID: 25591767]
[214]
Li, G.; Ling, S. miR-124 promotes newborn olfactory bulb neuron dendritic morphogenesis and spine density. J. Mol. Neurosci., 2017, 61(2), 159-168.
[http://dx.doi.org/10.1007/s12031-016-0873-x] [PMID: 27924451]
[215]
Niu, M.; Xu, R.; Wang, J.; Hou, B.; Xie, A. MiR-133b ameliorates axon degeneration induced by MPP(+) via targeting RhoA. Neuroscience, 2016, 325, 39-49.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.042] [PMID: 27012608]
[216]
Nesler, K.R.; Sand, R.I.; Symmes, B.A.; Pradhan, S.J.; Boin, N.G.; Laun, A.E.; Barbee, S.A. The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PLoS One, 2013, 8(7)e68385
[http://dx.doi.org/10.1371/journal.pone.0068385] [PMID: 23844193]
[217]
Schumacher, S.; Franke, K. miR-124-regulated RhoG: A conductor of neuronal process complexity. Small GTPases, 2013, 4(1), 42-46.
[http://dx.doi.org/10.4161/sgtp.22922] [PMID: 23303397]
[218]
Shen, L-M.; Song, Z-W.; Hua, Y.; Chao, X.; Liu, J-B. miR-181d-5p promotes neurite outgrowth in PC12 Cells via PI3K/Akt pathway. CNS Neurosci. Ther., 2017, 23(11), 894-906.
[http://dx.doi.org/10.1111/cns.12761] [PMID: 28961370]
[219]
Shtukmaster, S.; Narasimhan, P.; El Faitwri, T.; Stubbusch, J.; Ernsberger, U.; Rohrer, H.; Unsicker, K.; Huber, K. MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells. Cell Tissue Res., 2016, 365(2), 225-232.
[http://dx.doi.org/10.1007/s00441-016-2395-9] [PMID: 27094431]
[220]
Strickland, I.T.; Richards, L.; Holmes, F.E.; Wynick, D.; Uney, J.B.; Wong, L-F. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One, 2011, 6(8)e23423
[http://dx.doi.org/10.1371/journal.pone.0023423] [PMID: 21853131]
[221]
Wang, W.M.; Lu, G.; Su, X.W.; Lyu, H.; Poon, W.S. MicroRNA-182 regulates neurite outgrowth involving the PTEN/AKT pathway. Front. Cell. Neurosci., 2017, 11(96), 96.
[http://dx.doi.org/10.3389/fncel.2017.00096] [PMID: 28442995]
[222]
White, R.E.; Giffard, R.G. MicroRNA-320 induces neurite outgrowth by targeting ARPP-19. Neuroreport, 2012, 23(10), 590-595.
[http://dx.doi.org/10.1097/00001756-201207110-00003] [PMID: 22617447]
[223]
Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7), 1556-1564.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[224]
Ye, Y.; Xu, H.; Su, X.; He, X. Role of microrna in governing synaptic plasticity. Neural Plast., 2016, 20164959523
[http://dx.doi.org/10.1155/2016/4959523] [PMID: 27034846]
[225]
Zhou, S.; Shen, D.; Wang, Y.; Gong, L.; Tang, X.; Yu, B.; Gu, X.; Ding, F. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One, 2012, 7(9)e44768
[http://dx.doi.org/10.1371/journal.pone.0044768] [PMID: 23028614]
[226]
Zou, H.; Ding, Y.; Shi, W.; Xu, X.; Gong, A.; Zhang, Z.; Liu, J. MicroRNA-29c/PTEN pathway is involved in mice brain development and modulates neurite outgrowth in PC12 cells. Cell. Mol. Neurobiol., 2015, 35(3), 313-322.
[http://dx.doi.org/10.1007/s10571-014-0126-x] [PMID: 25352418]
[227]
Abdelmohsen, K.; Hutchison, E.R.; Lee, E.K.; Kuwano, Y.; Kim, M.M.; Masuda, K.; Srikantan, S.; Subaran, S.S.; Marasa, B.S.; Mattson, M.P.; Gorospe, M. miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol. Cell. Biol., 2010, 30(17), 4197-4210.
[http://dx.doi.org/10.1128/MCB.00316-10] [PMID: 20584986]
[228]
Chen, H.; Shalom-Feuerstein, R.; Riley, J.; Zhang, S-D.; Tucci, P.; Agostini, M.; Aberdam, D.; Knight, R.A.; Genchi, G.; Nicotera, P.; Melino, G.; Vasa-Nicotera, M. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem. Biophys. Res. Commun., 2010, 394(4), 921-927.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.076] [PMID: 20230785]
[229]
Chen, P-Y.; Wu, M-J.; Chang, H-Y.; Tai, M-H.; Ho, C-T.; Yen, J-H. Up-regulation of miR-34a expression in response to the luteolininduced neurite outgrowth of pc12 cells. J. Agric. Food Chem., 2015, 63(16), 4148-4159.
[http://dx.doi.org/10.1021/acs.jafc.5b01005] [PMID: 25865700]
[230]
Kao, Y-C.; Wang, I-F.; Tsai, K-J. miRNA-34c overexpression causes dendritic loss and memory decline. Int. J. Mol. Sci., 2018, 19(8), 1-14.
[http://dx.doi.org/10.3390/ijms19082323] [PMID: 30096777]
[231]
Kaur, P.; Tan, J.R.; Karolina, D.S.; Sepramaniam, S.; Armugam, A.; Wong, P.T-H.; Jeyaseelan, K. A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of neuronal growth regulator 1 (NEGR1) adhesion protein. Biochim. Biophys. Acta, 2016, 1863(4), 533-543.
[http://dx.doi.org/10.1016/j.bbamcr.2015.12.012] [PMID: 26723899]
[232]
Wertz, M.H.; Winden, K.; Neveu, P.; Ng, S-Y.; Ercan, E.; Sahin, M. Cell-type-specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy. Hum. Mol. Genet., 2016, 25(11), 2168-2181.
[http://dx.doi.org/10.1093/hmg/ddw084] [PMID: 27005422]
[233]
Zhang, J.; Zhang, J.; Liu, L.H.; Zhou, Y.; Li, Y.P.; Shao, Z.H.; Wu, Y.J.; Li, M.J.; Fan, Y.Y.; Shi, H.J. Effects of miR-541 on neurite outgrowth during neuronal differentiation. Cell Biochem. Funct., 2011, 29(4), 279-286.
[http://dx.doi.org/10.1002/cbf.1747] [PMID: 21452340]
[234]
Zhang, Y.; Chen, M.; Qiu, Z.; Hu, K.; McGee, W.; Chen, X.; Liu, J.; Zhu, L.; Wu, J.Y. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell, 2016, 7(7), 489-500.
[http://dx.doi.org/10.1007/s13238-016-0272-7] [PMID: 27245166]
[235]
Dajas-Bailador, F.; Bonev, B.; Garcez, P.; Stanley, P.; Guillemot, F.; Papalopulu, N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat. Neurosci., 2012, 15(5), 697-699.
[http://dx.doi.org/10.1038/nn.3082] [PMID: 22484572]
[236]
Jiang, J-J.; Liu, C-M.; Zhang, B-Y.; Wang, X-W.; Zhang, M. Saijilafu; Zhang, S.R.; Hall, P.; Hu, Y.W.; Zhou, F.Q. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression. Cell Death Dis., 2015, 6e1865
[http://dx.doi.org/10.1038/cddis.2015.239] [PMID: 26313916]
[237]
He, Q.Q.; Xiong, L.L.; Liu, F.; He, X.; Feng, G.Y.; Shang, F.F.; Xia, Q. J.; Wang, Y. C.; Qiu, D. L.; Luo, C. Z.; Liu, J.; Wang, T.H. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection.Nature Scient. Rep., 2016, 6(35205)
[http://dx.doi.org/10.1038/srep35205] [PMID: 27748416]
[238]
Kos, A.; Klein-Gunnewiek, T.; Meinhardt, J.; Loohuis, N.F.M.O.; van Bokhoven, H.; Kaplan, B.B.; Martens, G.J.; Kolk, S.M.; Aschrafi, A. MicroRNA-338 attenuates cortical neuronal outgrowth by modulating the expression of axon guidance genes. Mol. Neurobiol., 2017, 54(5), 3439-3452.
[http://dx.doi.org/10.1007/s12035-016-9925-z] [PMID: 27180071]
[239]
Kos, A.; Olde Loohuis, N.; Meinhardt, J.; van Bokhoven, H.; Kaplan, B.B.; Martens, G.J.; Aschrafi, A. MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell. Mol. Life Sci., 2016, 73(18), 3555-3567.
[http://dx.doi.org/10.1007/s00018-016-2179-0] [PMID: 27017280]
[240]
Liu, C.M.; Wang, R.Y. Saijilafu; Jiao, Z.X.; Zhang, B.Y.; Zhou, F.Q. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev., 2013, 27(13), 1473-1483.
[http://dx.doi.org/10.1101/gad.209619.112] [PMID: 23796896]
[241]
S Strazisar, M.; Cammaerts, S.;van der Ven, K.;Forero, D.A.; Lenaerts, A-S.; Nordin, A.;Almeida-Souza, L.; Genovese, G.; Timmerman, V.; Liekens, A.; De Rijk, P.; Adolfsson, R.; Callaerts, P.; Del-Favero, J. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Molecular Psychiatry, 2018, 20(4), 472-481.
[http://dx.doi.org/10.1038/mp.2014.53]] [PMID: 24888363 ]
[242]
Lesiak, A.; Zhu, M.; Chen, H.; Appleyard, S.M.; Impey, S.; Lein, P.J.; Wayman, G.A. The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J. Neurosci., 2014, 34(3), 717-725.
[http://dx.doi.org/10.1523/JNEUROSCI.2884-13.2014] [PMID: 24431430]
[243]
Strazisar, M.; Cammaerts, S.; van der Ven, K.; Forero, D.A.; Lenaerts, A.S.; Nordin, A.; Almeida-Souza, L.; Genovese, G.; Timmerman, V.; Liekens, A.; De Rijk, P.; Adolfsson, R.; Callaerts, P.; Del-Favero, J. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol. Psychiatry, 2015, 20(4), 472-481.
[http://dx.doi.org/10.1038/mp.2014.53] [PMID: 24888363]
[244]
Dhar, M.; Zhu, M.; Impey, S.; Lambert, T.J.; Bland, T.; Karatsoreos, I.N.; Nakazawa, T.; Appleyard, S.M.; Wayman, G.A. Leptin induces hippocampal synaptogenesis via CREB-regulated microRNA-132 suppression of p250GAP. Mol. Endocrinol., 2014, 28(7), 1073-1087.
[http://dx.doi.org/10.1210/me.2013-1332] [PMID: 24877561]
[245]
Wang, D.; Wang, X.; Liu, X.; Jiang, L.; Yang, G.; Shi, X.; Zhang, C.; Piao, F. Inhibition of mir-219 alleviates arsenic-induced learning and memory impairments and synaptic damage through up-regulating CaMKII in the hippocampus. Neurochem. Res., 2018, 43(4), 948-958.
[http://dx.doi.org/10.1007/s11064-018-2500-4] [PMID: 29478199]
[246]
Li, J.; Chen, W.; Yi, Y.; Tong, Q. miR-219-5p inhibits tau phosphorylation by targeting TTBK1 and GSK-3β in Alzheimer’s disease. J. Cell. Biochem., 2019, 120(6), 9936-9946.
[http://dx.doi.org/10.1002/jcb.28276] [PMID: 30556160]
[247]
Li, W.; Li, X.; Xin, X.; Kan, P-C.; Yan, Y. MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer’s disease. Biosci. Trends, 2016, 10(5), 372-377.
[http://dx.doi.org/10.5582/bst.2016.01127] [PMID: 27545218]
[248]
Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: implications in Alzheimer’s disease. Mol. Psychiatry, 2019, 24(3), 345-363.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[249]
Pichler, S.; Gu, W.; Hartl, D.; Gasparoni, G.; Leidinger, P.; Keller, A.; Meese, E.; Mayhaus, M.; Hampel, H.; Riemenschneider, M. The miRNome of Alzheimer’s disease: consistent downregulation of the miR-132/212 cluster. Neurobiol. Aging, 2017, 50(167), 167.e1-167.e10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.09.019] [PMID: 27816213]
[250]
Sarkar, S.; Jun, S.; Rellick, S.; Quintana, D.D.; Cavendish, J.Z.; Simpkins, J.W. Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res., 2016, 1646, 139-151.
[http://dx.doi.org/10.1016/j.brainres.2016.05.026] [PMID: 27235866]
[251]
Zhu, Q-B.; Unmehopa, U.; Bossers, K.; Hu, Y-T.; Verwer, R.; Balesar, R.; Zhao, J.; Bao, A.M.; Swaab, D. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain, 2016, 139(Pt 3), 908-921.
[http://dx.doi.org/10.1093/brain/awv383] [PMID: 26792551]
[252]
Denk, J.; Boelmans, K.; Siegismund, C.; Lassner, D.; Arlt, S.; Jahn, H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One, 2015, 10(5)e0126423
[http://dx.doi.org/10.1371/journal.pone.0126423] [PMID: 25992776]
[253]
Liu, C.G.; Song, J.; Zhang, Y.Q.; Wang, P.C. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol. Med. Rep., 2014, 10(5), 2395-2400.
[http://dx.doi.org/10.3892/mmr.2014.2484] [PMID: 25119742]
[254]
Galimberti, D.; Villa, C.; Fenoglio, C.; Serpente, M.; Ghezzi, L.; Cioffi, S.M.; Arighi, A.; Fumagalli, G.; Scarpini, E. Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(4), 1261-1267.
[http://dx.doi.org/10.3233/JAD-140756] [PMID: 25024331]
[255]
van Harten, A.C.; Mulders, J.; Scheltens, P.; van der Flier, W.M.; Oudejans, C.B. Differential expression of microrna in cerebrospinal fluid as a potential novel biomarker for Alzheimer’s disease. J. Alzheimers Dis., 2015, 47(1), 243-252.
[http://dx.doi.org/10.3233/JAD-140075] [PMID: 26402772]
[256]
Lusardi, T.A.; Phillips, J.I.; Wiedrick, J.T.; Harrington, C.A.; Lind, B.; Lapidus, J.A.; Quinn, J.F.; Saugstad, J.A. MicroRNAs in human cerebrospinal fluid as biomarkers for Alzheimer’s disease. J. Alzheimers Dis., 2017, 55(3), 1223-1233.
[http://dx.doi.org/10.3233/JAD-160835] [PMID: 27814298]
[257]
McKeever, P.M.; Schneider, R.; Taghdiri, F.; Weichert, A.; Multani, N.; Brown, R.A.; Boxer, A.L.; Karydas, A.; Miller, B.; Robertson, J.; Tartaglia, M.C. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol. Neurobiol., 2018, 55(12), 8826-8841.
[http://dx.doi.org/10.1007/s12035-018-1032-x] [PMID: 29603092]
[258]
Riancho, J.; Vázquez-Higuera, J.L.; Pozueta, A.; Lage, C.; Kazimierczak, M.; Bravo, M.; Calero, M.; Gonalezález, A.; Rodríguez, E.; Lleó, A.; Sánchez-Juan, P. MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J. Alzheimers Dis., 2017, 57(2), 483-491.
[http://dx.doi.org/10.3233/JAD-161179] [PMID: 28269782]
[259]
Cheng, L.; Doecke, J.D.; Sharples, R.A.; Villemagne, V.L.; Fowler, C.J.; Rembach, A.; Martins, R.N.; Rowe, C.C.; Macaulay, S.L.; Masters, C.L.; Hill, A.F. Australian imaging, biomarkers and lifestyle (AIBL) research group. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol. Psychiatry, 2015, 20(10), 1188-1196.
[http://dx.doi.org/10.1038/mp.2014.127] [PMID: 25349172]
[260]
Dong, H.; Li, J.; Huang, L.; Chen, X.; Li, D.; Wang, T.; Hu, C.; Xu, J.; Zhang, C.; Zen, K.; Xiao, S.; Yan, Q.; Wang, C.; Zhang, C-Y. Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis. Markers, 2015, 2015(625659)625659
[http://dx.doi.org/10.1155/2015/625659] [PMID: 26078483]
[261]
Higaki, S.; Muramatsu, M.; Matsuda, A.; Matsumoto, K.; Satoh, J.I.; Michikawa, M.; Niida, S. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS One, 2018, 13(5)e0196929
[http://dx.doi.org/10.1371/journal.pone.0196929] [PMID: 29738527]
[262]
Hong, H.; Li, Y.; Su, B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in app/ps1 transgenic mouse. J. Alzheimers Dis., 2017, 59(4), 1449-1458.
[http://dx.doi.org/10.3233/JAD-170156] [PMID: 28731435]
[263]
Tan, L.; Yu, J.T.; Tan, M.S.; Liu, Q.Y.; Wang, H.F.; Zhang, W.; Jiang, T.; Tan, L. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(4), 1017-1027.
[http://dx.doi.org/10.3233/JAD-132144] [PMID: 24577456]
[264]
Wu, Q.; Ye, X.; Xiong, Y.; Zhu, H.; Miao, J.; Zhang, W.; Wan, J. The protective role of microrna-200c in alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front. Mol. Neurosci., 2016, 9(140), 140.
[http://dx.doi.org/10.3389/fnmol.2016.00140] [PMID: 28008308]
[265]
Wu, Y.; Xu, J.; Xu, J.; Cheng, J.; Jiao, D.; Zhou, C.; Dai, Y.; Chen, Q. Lower Serum Levels of miR-29c-3p and miR-19b-3p as Biomarkers for Alzheimer’s Disease. Tohoku J. Exp. Med., 2017, 242(2), 129-136.
[http://dx.doi.org/10.1620/tjem.242.129] [PMID: 28626163]
[266]
Yılmaz, S.G.; Erdal, M.E.; Özge, A.A.; Sungur, M.A. Can peripheral microRNA expression data serve as epigenomic (upstream) biomarkers of Alzheimer’s disease? OMICS, 2016, 20(8), 456-461.
[http://dx.doi.org/10.1089/omi.2016.0099] [PMID: 27501295]
[267]
Moon, J.; Lee, S.-T.; Kong, I.; Byun, J.-I.; Sunwoo, J.-S.; Shin, J.-W.; Shim, J.-Y; Park, J.-H; Jeon, D; Jung, K.-H; Jung, K.-Y; Kim, D.-Y; Lee, S.-K; Kim, M; Chu, K. Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal miR-206 level.Nature Scientific Reports,, 2016, 6(20364)
[http://dx.doi.org/10.1038/srep20364] [PMID: 26842588]
[268]
Brites, D.; Fernandes, A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell. Neurosci., 2015, 9(476), 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[269]
Bahi, A.; Dreyer, J-L. Lentiviral-mediated let-7d microRNA overexpression induced anxiolytic- and anti-depressant-like behaviors and impaired dopamine D3 receptor expression. Eur. Neuropsychopharmacol., 2018, 28(12), 1394-1404.
[http://dx.doi.org/10.1016/j.euroneuro.2018.09.004] [PMID: 30244920]
[270]
Cui, J.; Gong, C.; Cao, B.; Li, L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp. Ther. Med., 2018, 15(5), 4349-4355.
[http://dx.doi.org/10.3892/etm.2018.5942] [PMID: 29731825]
[271]
Cui, M.; Xiao, H.; Li, Y.; Dong, J.; Luo, D.; Li, H.; Feng, G.; Wang, H.; Fan, S. Total abdominal irradiation exposure impairs cognitive function involving miR-34a-5p/BDNF axis. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(9), 2333-2341.
[http://dx.doi.org/10.1016/j.bbadis.2017.06.021] [PMID: 28668331]
[272]
Enatescu, V.R.; Papava, I.; Enatescu, I.; Antonescu, M.; Anghel, A.; Seclaman, E.; Sirbu, I.O.; Marian, C. Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a Pilot Study. Psychiatry Investig., 2016, 13(5), 549-557.
[http://dx.doi.org/10.4306/pi.2016.13.5.549] [PMID: 27757134]
[273]
Fan, C.; Zhu, X.; Song, Q.; Wang, P.; Liu, Z.; Yu, S.Y. MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology, 2018, 131, 364-376.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.009] [PMID: 29329879]
[274]
Kolshus, E.; Ryan, K.M.; Blackshields, G.; Smyth, P.; Sheils, O.; McLoughlin, D.M. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr. Scand., 2017, 136(6), 594-606.
[http://dx.doi.org/10.1111/acps.12821] [PMID: 28975998]
[275]
Li, J.; Meng, H.; Cao, W.; Qiu, T. MiR-335 is involved in major depression disorder and antidepressant treatment through targeting GRM4. Neurosci. Lett., 2015, 606, 167-172.
[http://dx.doi.org/10.1016/j.neulet.2015.08.038] [PMID: 26314506]
[276]
Ma, K.; Guo, L.; Xu, A.; Cui, S.; Wang, J-H. Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex. PLoS One, 2016, 11(7)e0159093
[http://dx.doi.org/10.1371/journal.pone.0159093] [PMID: 27427907]
[277]
Miao, N.; Jin, J.; Kim, S-N.; Sun, T. Hippocampal microRNAs respond to administration of antidepressant fluoxetine in adult mice. Int. J. Mol. Sci., 2018, 19(3)E671
[http://dx.doi.org/10.3390/ijms19030671] [PMID: 29495532]
[278]
Muñoz-Llanos, M.; García-Pérez, M.A.; Xu, X.; Tejos-Bravo, M.; Vidal, E.A.; Moyano, T.C.; Gutiérrez, R.A.; Aguayo, F.I.; Pacheco, A.; García-Rojo, G.; Aliaga, E.; Rojas, P.S.; Cidlowski, J.A.; Fiedler, J.L. MicroRNA profiling and bioinformatics target analysis in dorsal hippocampus of chronically stressed rats: relevance to depression pathophysiology. Front. Mol. Neurosci., 2018, 11(251), 251.
[http://dx.doi.org/10.3389/fnmol.2018.00251] [PMID: 30127715]
[279]
Pan, B.; Liu, Y. Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression. Int. J. Clin. Exp. Pathol., 2015, 8(11), 15454-15461.
[PMID: 26823914]
[280]
Si, Y.; Song, Z.; Sun, X.; Wang, J-H. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2018, 177(6), 563-579.
[http://dx.doi.org/10.1002/ajmg.b.32651] [PMID: 30105773]
[281]
Camkurt, M.A.; Acar, Ş.; Coşkun, S.; Güneş, M.; Güneş, S.; Yılmaz, M.F.; Görür, A.; Tamer, L. Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. J. Psychiatr. Res., 2015, 69, 67-71.
[http://dx.doi.org/10.1016/j.jpsychires.2015.07.023] [PMID: 26343596]
[282]
Fang, Y.; Qiu, Q.; Zhang, S.; Sun, L.; Li, G.; Xiao, S.; Li, X. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J. Affect. Disord., 2018, 227, 745-751.
[http://dx.doi.org/10.1016/j.jad.2017.11.090 ] [PMID: 29689690]
[283]
Fiori, L.M.; Lopez, J.P.; Richard-Devantoy, S.; Berlim, M.; Chachamovich, E.; Jollant, F.; Foster, J.; Rotzinger, S.; Kennedy, S.H.; Turecki, G. Investigation of miR-1202, miR-135a, and miR-16 in major depressive disorder and antidepressant response. Int. J. Neuropsychopharmacol., 2017, 20(8), 619-623.
[http://dx.doi.org/10.1093/ijnp/pyx034] [PMID: 28520926]
[284]
Gheysarzadeh, A.; Sadeghifard, N.; Afraidooni, L.; Pooyan, F.; Mofid, M.R.; Valadbeigi, H.; Bakhtiari, H.; Keikhavani, S. Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J. Res. Med. Sci., 2018, 23(69), 69.
[http://dx.doi.org/10.4103/jrms.JRMS_879_17] [PMID: 30181751]
[285]
Kuang, W-H.; Dong, Z-Q.; Tian, L-T.; Li, J. MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz. J. Med. Biol. Res., 2018, 51(7)e7212
[http://dx.doi.org/10.1590/1414-431x20187212] [PMID: 29791588]
[286]
Kim, H.K.; Tyryshkin, K.; Elmi, N.; Dharsee, M.; Evans, K.R.; Good, J.; Javadi, M.; McCormack, S.; Vaccarino, A.L.; Zhang, X.; Andreazza, A.C.; Feilotter, H. Plasma microRNA expression levels and their targeted pathways in patients with major depressive disorder who are responsive to duloxetine treatment. J. Psychiatr. Res., 2019, 110, 38-44.
[http://dx.doi.org/10.1016/j.jpsychires.2018.12.007] [PMID: 30580082]
[287]
Lin, C.C.; Tsai, M.C.; Lee, C.T.; Sun, M.H.; Huang, T.L. Antidepressant treatment increased serum miR-183 and miR-212 levels in patients with major depressive disorder. Psychiatry Res., 2018, 270, 232-237.
[http://dx.doi.org/10.1016/j.psychres.2018.09.025] [PMID: 30269040]
[288]
Mendes-Silva, A.P.; Fujimura, P.T.; Silva, J.R.D.C.; Teixeira, A.L.; Vieira, E.M.; Guedes, P.H.G.; Barroso, L.S.S.; Nicolau, M.S.; Ferreira, J.D.R.; Bertola, L.; Nicolau, E.S.; Tolentino-Araújo, G.T.; Berlezzi, C.M.S.F.; Rodrigues, T.S.; Borges, L.D.F.; Gomes, M.S.; Amaral, L.R.D.; Bonetti, A.M.; Ueira-Vieira, C.; Diniz, B.S. Brain-enriched MicroRNA-184 is downregulated in older adults with major depressive disorder: A translational study. J. Psychiatr. Res., 2019, 111, 110-120.
[http://dx.doi.org/10.1016/j.jpsychires.2019.01.019] [PMID: 30716647]
[289]
Wang, X.; Sundquist, K.; Hedelius, A.; Palmér, K.; Memon, A.A.; Sundquist, J. Circulating microRNA-144-5p is associated with depressive disorders. Clin. Epigenetics, 2015, 7(69), 69.
[http://dx.doi.org/10.1186/s13148-015-0099-8] [PMID: 26199675]
[290]
Song, M.F.; Dong, J.Z.; Wang, Y.W.; He, J.; Ju, X.; Zhang, L.; Zhang, Y.H.; Shi, J.F.; Lv, Y.Y. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J. Affect. Disord., 2015, 178, 25-31.
[http://dx.doi.org/10.1016/j.jad.2015.02.022] [PMID: 25779937]
[291]
Han, J.; Kim, H.J.; Schafer, S.T.; Paquola, A.; Clemenson, G.D.; Toda, T.; Oh, J.; Pankonin, A.R.; Lee, B.S.; Johnston, S.T.; Sarkar, A.; Denli, A.M.; Gage, F.H. Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron, 2016, 91(1), 79-89.
[http://dx.doi.org/10.1016/j.neuron.2016.05.034] [PMID: 27387650]
[292]
Murai, K.; Sun, G.; Ye, P.; Tian, E.; Yang, S.; Cui, Q.; Sun, G.; Trinh, D.; Sun, O.; Hong, T.; Wen, Z.; Kalkum, M.; Riggs, A.D.; Song, H.; Ming, G.L.; Shi, Y. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat. Commun., 2016, 7, 10965.
[http://dx.doi.org/10.1038/ncomms10965] [PMID: 26965827]
[293]
Topol, A.; Zhu, S.; Hartley, B.J.; English, J.; Hauberg, M.E.; Tran, N.; Rittenhouse, C.A.; Simone, A.; Ruderfer, D.M.; Johnson, J.; Readhead, B.; Hadas, Y.; Gochman, P.A.; Wang, Y.C.; Shah, H.; Cagney, G.; Rapoport, J.; Gage, F.H.; Dudley, J.T.; Sklar, P.; Mattheisen, M.; Cotter, D.; Fang, G.; Brennand, K.J. Dysregulation of miRNA-9 in a subset of schizophrenia patientderived neural progenitor cells. Cell Rep., 2016, 15(5), 1024-1036.
[http://dx.doi.org/10.1016/j.celrep.2016.03.090] [PMID: 27117414]
[294]
Sárközy, M.; Kahán, Z.; Csont, T. A myriad of roles of miR-25 in health and disease. Oncotarget, 2018, 9(30), 21580-21612.
[http://dx.doi.org/10.18632/oncotarget.24662] [PMID: 29765562]
[295]
Liu, Y.; He, X.; Li, Y.; Wang, T. Cerebrospinal fluid CD4+ T lymphocyte-derived miRNA-let-7b can enhances the diagnostic performance of Alzheimer’s disease biomarkers. Biochem. Biophys. Res. Commun., 2018, 495(1), 1144-1150.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.122] [PMID: 29170128]
[296]
Yu, H.C.; Wu, J.; Zhang, H.X.; Zhang, G.L.; Sui, J.; Tong, W.W.; Zhang, X.Y.; Nie, L.L.; Duan, J.H.; Zhang, L.R.; Lv, L.X. Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 63, 23-29.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.007] [PMID: 25985888]
[297]
Alacam, H.; Akgun, S.; Akca, H.; Ozturk, O.; Kabukcu, B.B.; Herken, H. miR-181b-5p, miR-195-5p and miR-301a-3p are related with treatment resistance in schizophrenia. Psychiatry Res., 2016, 245, 200-206.
[http://dx.doi.org/10.1016/j.psychres.2016.08.037] [PMID: 27552670]
[298]
Camkurt, M.A.; Karababa, F.; Erdal, M.E.; Bayazıt, H.; Kandemir, S.B.; Ay, M.E.; Kandemir, H.; Ay, Ö.İ.; Çiçek, E.; Selek, S.; Taşdelen, B. Investigation of dysregulation of several microRNAs in peripheral blood of schizophrenia patients. Clin. Psychopharmacol. Neurosci., 2016, 14(3), 256-260.
[http://dx.doi.org/10.9758/cpn.2016.14.3.256] [PMID: 27489379]
[299]
Chen, S-D.; Sun, X-Y.; Niu, W.; Kong, L-M.; He, M-J.; Fan, H-M.; Li, W-S.; Zhong, A-F.; Zhang, L-Y.; Lu, J. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia. Psychiatry Res., 2016, 244, 324-332.
[http://dx.doi.org/10.1016/j.psychres.2016.04.087] [PMID: 27512922]
[300]
Fan, H-M.; Sun, X-Y.; Niu, W.; Zhao, L.; Zhang, Q-L.; Li, W-S.; Zhong, A-F.; Zhang, L-Y.; Lu, J. Altered microRNA expression in peripheral blood mononuclear cells from young patients with schizophrenia. J. Mol. Neurosci., 2015, 56(3), 562-571.
[http://dx.doi.org/10.1007/s12031-015-0503-z] [PMID: 25665552]
[301]
Liu, S.; Zhang, F.; Shugart, Y.Y.; Yang, L.; Li, X.; Liu, Z.; Sun, N.; Yang, C.; Guo, X.; Shi, J.; Wang, L.; Cheng, L.; Zhang, K.; Yang, T.; Xu, Y. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl. Psychiatry, 2017, 7(1)e998
[http://dx.doi.org/10.1038/tp.2016.268] [PMID: 28072411]
[302]
Shi, Y.; Zhang, X.; Tang, X.; Wang, P.; Wang, H.; Wang, Y. MiR-21 is continually elevated long-term in the brain after exposure to ionizing radiation. Radiat. Res., 2012, 177(1), 124-128.
[http://dx.doi.org/10.1667/RR2764.1] [PMID: 22034847]
[303]
Zhang, F.; Xu, Y.; Shugart, Y.Y.; Yue, W.; Qi, G.; Yuan, G.; Cheng, Z.; Yao, J.; Wang, J.; Wang, G.; Cao, H.; Guo, W.; Zhou, Z.; Wang, Z.; Tian, L.; Jin, C.; Yuan, J.; Liu, C.; Zhang, D. Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr. Bull., 2015, 41(3), 728-735.
[http://dx.doi.org/10.1093/schbul/sbu148] [PMID: 25429046]
[304]
Gallego, J.A.; Blanco, E.A.; Husain-Krautter, S.; Madeline Fagen, E.; Moreno-Merino, P.; Del Ojo-Jiménez, J.A.; Ahmed, A.; Rothstein, T.L.; Lencz, T.; Malhotra, A.K. Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta-analysis. Schizophr. Res., 2018, 202, 64-71.
[http://dx.doi.org/10.1016/j.schres.2018.07.019] [PMID: 30025760]
[305]
Khan, S.Y.; Tariq, M.A.; Perrott, J.P.; Brumbaugh, C.D.; Kim, H.J.; Shabbir, M.I.; Ramesh, G.T.; Pourmand, N. Distinctive microRNA expression signatures in proton-irradiated mice. Mol. Cell. Biochem., 2013, 382(1-2), 225-235.
[http://dx.doi.org/10.1007/s11010-013-1738-z] [PMID: 23817773]
[306]
Tang, F.R.; Loke, W.K.; Wong, P.; Khoo, B.C. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 2017, 175, 37-46.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.027] [PMID: 28341234]
[307]
Acharya, S.S.; Fendler, W.; Watson, J.; Hamilton, A.; Pan, Y.; Gaudiano, E.; Moskwa, P.; Bhanja, P.; Saha, S.; Guha, C.; Parmar, K.; Chowdhury, D. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury. Sci. Transl. Med., 2015, 7(287)287ra69
[http://dx.doi.org/10.1126/scitranslmed.aaa6593] [PMID: 25972001]
[308]
Aryankalayil, M.J.; Chopra, S.; Makinde, A.; Eke, I.; Levin, J.; Shankavaram, U.; MacMillan, L.; Vanpouille-Box, C.; Demaria, S.; Coleman, C.N. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers, 2018, 23(7), 689-703.
[http://dx.doi.org/10.1080/1354750X.2018.1479771] [PMID: 29799276]
[309]
Fendler, W.; Malachowska, B.; Meghani, K.; Konstantinopoulos, P.A.; Guha, C.; Singh, V.K.; Chowdhury, D. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med., 2017, 9(379)eaal2408
[http://dx.doi.org/10.1126/scitranslmed.aal2408] [PMID: 28251902]
[310]
Jacob, N.K.; Cooley, J.V.; Yee, T.N.; Jacob, J.; Alder, H.; Wickramasinghe, P.; Maclean, K.H.; Chakravarti, A. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One, 2013, 8(2)e57603
[http://dx.doi.org/10.1371/journal.pone.0057603] [PMID: 23451251]
[311]
Templin, T.; Amundson, S.A.; Brenner, D.J.; Smilenov, L.B. Whole mouse blood microRNA as biomarkers for exposure to γ-rays and (56)Fe ion. Int. J. Radiat. Biol., 2011, 87(7), 653-662.
[http://dx.doi.org/10.3109/09553002.2010.549537] [PMID: 21271940]
[312]
Menon, N.; Rogers, C.J.; Lukaszewicz, A.I.; Axtelle, J.; Yadav, M.; Song, F.; Chakravarti, A.; Jacob, N.K. Detection of acute radiation sickness: a feasibility study in non-human primates circulating miRNAs for triage in radiological events. PLoS One, 2016, 11(12)e0167333
[http://dx.doi.org/10.1371/journal.pone.0167333] [PMID: 27907140]
[313]
Port, M.; Herodin, F.; Valente, M.; Drouet, M.; Ullmann, R.; Doucha-Senf, S.; Lamkowski, A.; Majewski, M.; Abend, M. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS One, 2016, 11(11)e0165307
[http://dx.doi.org/10.1371/journal.pone.0165307] [PMID: 27846229]
[314]
Beer, L.; Seemann, R.; Ristl, R.; Ellinger, A.; Kasiri, M.M.; Mitterbauer, A.; Zimmermann, M.; Gabriel, C.; Gyöngyösi, M.; Klepetko, W.; Mildner, M.; Ankersmit, H.J. High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells. BMC Genomics, 2014, 15(814), 814.
[http://dx.doi.org/10.1186/1471-2164-15-814] [PMID: 25257395]
[315]
Lee, K-F.; Chen, Y-C.; Hsu, P.W.; Liu, I.Y.; Wu, L.S. MicroRNA expression profiling altered by variant dosage of radiation exposure. BioMed Res. Int., 2014, 2014456323
[http://dx.doi.org/10.1155/2014/456323] [PMID: 25313363]
[316]
Li, X.H.; Ha, C.T.; Xiao, M. MicroRNA-30 inhibits antiapoptotic factor Mcl-1 in mouse and human hematopoietic cells after radiation exposure. Apoptosis, 2016, 21(6), 708-720.
[http://dx.doi.org/10.1007/s10495-016-1238-1] [PMID: 27032651]
[317]
Chiba, M.; Monzen, S.; Iwaya, C.; Kashiwagi, Y.; Yamada, S.; Hosokawa, Y.; Mariya, Y.; Nakamura, T.; Wojcik, A. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci. Rep., 2018, 8(1), 1302.
[http://dx.doi.org/10.1038/s41598-018-19763-7] [PMID: 29358747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy