Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Systematic Review Article

Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies

Author(s): Xiao-Ying Li , Min Zhang*, Wei Xu, Jie-Qiong Li, Xi-Peng Cao , Jin-Tai Yu * and Lan Tan*

Volume 16, Issue 14, 2019

Page: [1254 - 1268] Pages: 15

DOI: 10.2174/1567205017666200103111253

Price: $65

conference banner
Abstract

Objective: The aim of this study is to assess the association between midlife risk factors and dementia.

Methods: PubMed and Cochrane library were systematically searched on May 24, 2018, to retrieve prospective cohort studies. The summary Relative Risk (RR) and 95% Confidence Interval (CI) were calculated by the random-effect model to explore the association between midlife risk factors and dementia. Sensitivity analysis and meta-regression were conducted to explore the source of heterogeneity. Publication bias was examined using Begg's and Egger's tests.

Results: Thirty-four prospective cohort studies were included, among which 24 were eligible for metaanalysis. A total of 159,594 non-demented adults were enrolled at baseline before 65 years and 13,540 people were diagnosed with dementia after follow-up. The pooled results revealed that five factors could significantly increase the dementia risk by 41 to 78%, including obesity (RR, 1.78; 95% CI: 1.31-2.41), diabetes mellitus (RR, 1.69; 95% CI: 1.38-2.07), current smoking (RR, 1.61; 95%, CI: 1.32-1.95), hypercholesterolemia (RR, 1.57; 95% CI: 1.19-2.07), and hypertension (borderline blood pressure RR, 1.41; 95% CI: 1.23-1.62 and high Systolic Blood Pressure (SBP) RR, 1.72; 95% CI: 1.25-2.37). However, the sensitivity analyses found that the results of hypercholesterolemia and high SBP were not reliable, which need to be confirmed by more high-quality studies. No influences due to publication bias were revealed. In the systematic review, another three factors (hyperhomocysteinemia, psychological stress, and heavy drinking) were found to be associated with elevated dementia risk. In addition, physical exercise, a healthy diet, and hormone therapy in middle age were associated with the reduction of dementia risk.

Conclusions: Middle-aged people with obesity, diabetes, hypertension, or hypercholesterolemia, and current smokers in midlife are at higher risk of developing dementia later in life.

Keywords: Dementia, meta-analysis, midlife risk factors, systematic review, prospective cohort studies, subgroup analyses.

[1]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer Report 2016: Improving healthcare for people with dementia Coverage, quality and costs now and in the future. Alzheimer’s Disease International 2016.
[2]
Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer report 2015: the global impact of dementia An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International 2015.
[3]
Nakamura AE, Opaleye D, Tani G, Ferri CP. Dementia underdiagnosis in Brazil. Lancet 385(9966): 418-9. (2015)
[http://dx.doi.org/10.1016/S0140-6736(15)60153-2] [PMID: 25706975]
[4]
Dias A, Patel V. Closing the treatment gap for dementia in India. Indian J Psychiatry 51(1): S93-7. (2009)
[PMID: 21416026]
[5]
Jitapunkul S, Chansirikanjana S, Thamarpirat J. Undiagnosed dementia and value of serial cognitive impairment screening in developing countries: a population-based study. Geriatr Gerontol Int 9(1): 47-53. (2009)
[http://dx.doi.org/10.1111/j.1447-0594.2008.00501.x] [PMID: 19260979]
[6]
Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) Cohort. JAMA Neurol 74(10): 1246-54. (2017)
[http://dx.doi.org/10.1001/jamaneurol.2017.1658] [PMID: 28783817]
[7]
Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY. Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology 38(4): 237-44. (2012)
[http://dx.doi.org/10.1159/000337428] [PMID: 22572745]
[8]
Alonso A, Mosley TH Jr, Gottesman RF, Catellier D, Sharrett AR, Coresh J. Risk of dementia hospitalisation associated with cardiovascular risk factors in midlife and older age: the Atherosclerosis Risk in Communities (ARIC) study. J Neurol Neurosurg Psychiatry 80(11): 1194-201. (2009)
[http://dx.doi.org/10.1136/jnnp.2009.176818] [PMID: 19692426]
[9]
Rosengren A, Skoog I, Gustafson D, Wilhelmsen L. Body mass index, other cardiovascular risk factors, and hospitalization for dementia. Arch Intern Med 165(3): 321-6. (2005)
[http://dx.doi.org/10.1001/archinte.165.3.321] [PMID: 15710796]
[10]
Schnaider Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R, et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology 63(10): 1902-7. (2004)
[http://dx.doi.org/10.1212/01.WNL.0000144278.79488.DD] [PMID: 15557509]
[11]
Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322(7300): 1447-51. (2001)
[http://dx.doi.org/10.1136/bmj.322.7300.1447] [PMID: 11408299]
[12]
Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 21(1): 49-55. (2000)
[http://dx.doi.org/10.1016/S0197-4580(00)00096-8] [PMID: 10794848]
[13]
Ninomiya T, Ohara T, Hirakawa Y, Yoshida D, Doi Y, Hata J, et al. Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study. Hypertension 58(1): 22-8. (2011)
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.163055]
[14]
Alonso A, Jacobs DR Jr, Menotti A, Nissinen A, Dontas A, Kafatos A, et al. Cardiovascular risk factors and dementia mortality: 40 years of follow-up in the Seven Countries Study. J Neurol Sci 280(1-2): 79-83. (2009)
[http://dx.doi.org/10.1016/j.jns.2009.02.004] [PMID: 19251275]
[15]
Ohara T, Ninomiya T, Hata J, Ozawa M, Yoshida D, Mukai N, et al. Midlife and late-life smoking and risk of dementia in the community: the hisayama study. J Am Geriatr Soc 63(11): 2332-9. (2015)
[http://dx.doi.org/10.1111/jgs.13794] [PMID: 26503243]
[16]
Rusanen M, Kivipelto M, Quesenberry CP Jr, Zhou J, Whitmer RA. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171(4): 333-9. (2011)
[http://dx.doi.org/10.1001/archinternmed.2010.393] [PMID: 20975015]
[17]
Rusanen M, Rovio S, Ngandu T, Nissinen A, Tuomilehto J, Soininen H, et al. Midlife smoking, apolipoprotein E and risk of dementia and Alzheimer’s disease: a population-based cardiovascular risk factors, aging and dementia study. Dement Geriatr Cogn Disord 30(3): 277-84. (2010)
[http://dx.doi.org/10.1159/000320484] [PMID: 20847559]
[18]
Tyas SL, White LR, Petrovitch H, Webster Ross G, Foley DJ, et al. Mid-life smoking and late-life dementia: the Honolulu-Asia Aging Study. Neurobiol Aging 24(4): 589-96. (2003)
[http://dx.doi.org/10.1016/S0197-4580(02)00156-2] [PMID: 12714116]
[19]
Zylberstein DE, Lissner L, Björkelund C, Mehlig K, Thelle DS, Gustafson D, et al. Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol Aging 32(3): 380-6. (2011)
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.02.024] [PMID: 19342123]
[20]
Albanese E, Davis B, Jonsson PV, Chang M, Aspelund T, Garcia M. Overweight and obesity in midlife and brain structure and dementia 26 years later: the AGES-reykjavik study. Am J Epidemiol 181(9): 672-9. (2015)
[http://dx.doi.org/10.1093/aje/kwu331] [PMID: 25810457]
[21]
Tolppanen AM, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis 38(1): 201-9. (2014)
[http://dx.doi.org/10.3233/JAD-130698] [PMID: 23948937]
[22]
Mehlig K, Skoog I, Waern M, Miao Jonasson J, Lapidus L, Björkelund C, et al. Physical activity, weight status, diabetes and dementia: a 34-year follow-up of the population study of women in Gothenburg. Neuroepidemiology 42(4): 252-9. (2014)
[http://dx.doi.org/10.1159/000362201] [PMID: 24923622]
[23]
Ravona-Springer R, Schnaider-Beeri M, Goldbourt U. Body weight variability in midlife and risk for dementia in old age. Neurology 80(18): 1677-83. (2013)
[http://dx.doi.org/10.1212/WNL.0b013e3182904cee] [PMID: 23576627]
[24]
Hassing LB, Dahl AK, Thorvaldsson V, Berg S, Gatz M, Pedersen NL, et al. Overweight in midlife and risk of dementia: a 40-year follow-up study. Int J Obes (Lond) 33(8): 893-8. (2009)
[25]
Gustafson DR, Bäckman K, Waern M, Ostling S, Guo X, Zandi P, et al. Adiposity indicators and dementia over 32 years in Sweden. Neurology 73(19): 1559-66. (2009)
[http://dx.doi.org/10.1212/WNL.0b013e3181c0d4b6] [PMID: 19901247]
[26]
Fitzpatrick AL, Kuller LH, Lopez OL, Diehr P, O’Meara ES, Longstreth WT Jr, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol 66(3): 336-42. (2009)
[http://dx.doi.org/10.1001/archneurol.2008.582] [PMID: 19273752]
[27]
Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology 71(14): 1057-64. (2008)
[http://dx.doi.org/10.1212/01.wnl.0000306313.89165.ef] [PMID: 18367704]
[28]
Whitmer RA, Gunderson EP, Quesenberry CP Jr, Zhou J, Yaffe K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res 4(2): 103-9. (2007)
[http://dx.doi.org/10.2174/156720507780362047] [PMID: 17430231]
[29]
Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP Jr, Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330(7504): 1360. (2005)
[http://dx.doi.org/10.1136/bmj.38446.466238.E0] [PMID: 15863436]
[30]
Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62(10): 1556-60. (2005)
[http://dx.doi.org/10.1001/archneur.62.10.1556] [PMID: 16216938]
[31]
Xu W, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(12): 1299-306. (2015)
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[32]
Meng XF, Yu JT, Wang HF, Tan MS, Wang C, Tan CC, et al. Midlife vascular risk factors and the risk of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 42(4): 1295-310. (2014)
[http://dx.doi.org/10.3233/JAD-140954] [PMID: 25024338]
[33]
Albanese E, Launer LJ, Egger M, Prince MJ, Giannakopoulos P, Wolters FJ, et al. Body mass index in midlife and dementia: Systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimer's dementia (Amsterdam, Netherlands) 8: 165-78. (2017)
[34]
LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA 285(11): 1489-99. (2001)
[http://dx.doi.org/10.1001/jama.285.11.1489] [PMID: 11255426]
[35]
Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15): 2008-12. (2000)
[http://dx.doi.org/10.1001/jama.283.15.2008] [PMID: 10789670]
[36]
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. journal of surgery (London, England) 8(5): 336-41. (2010)
[http://dx.doi.org/10.1016/j.ijsu.2010.02.007]
[37]
Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 137(3): 149-55. (2002)
[http://dx.doi.org/10.7326/0003-4819-137-3-200208060-00006] [PMID: 12160362]
[38]
Xu W, Tan L, Wang HF, Tan MS, Tan L, Li JQ, et al. Education and risk of dementia: dose-response meta-analysis of prospective cohort studies. Mol Neurobiol 53(5): 3113-23. (2016)
[http://dx.doi.org/10.1007/s12035-015-9211-5] [PMID: 25983035]
[39]
de Lemos ML. How to survive the survival plots. Lancet 360(9337): 954. (2002)
[http://dx.doi.org/10.1016/S0140-6736(02)11063-4] [PMID: 12354506]
[40]
Spruance SL, Reid JE, Grace M, Samore M. Hazard ratio in clinical trials. Antimicrob Agents Chemother 48(8): 2787-92. (2004)
[http://dx.doi.org/10.1128/AAC.48.8.2787-2792.2004] [PMID: 15273082]
[41]
Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280(19): 1690-1. (1998)
[http://dx.doi.org/10.1001/jama.280.19.1690] [PMID: 9832001]
[42]
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 21(11): 1539-58. (2002)
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[43]
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 327(7414): 557-60. (2003)
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[44]
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 7(3): 177-88. (1986)
[http://dx.doi.org/10.1016/0197-2456(86)90046-2] [PMID: 3802833]
[45]
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4): 1088-101. (1994)
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[46]
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109): 629-34. (1997)
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[47]
Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2): 455-63. (2000)
[http://dx.doi.org/10.1111/j.0006-341X.2000.00455.x] [PMID: 10877304]
[48]
Johansson L, Guo X, Waern M, Ostling S, Gustafson D, Bengtsson C, et al. Midlife psychological stress and risk of dementia: a 35-year longitudinal population study. Brain 133(Pt 8): 2217-24. (2010)
[http://dx.doi.org/10.1093/brain/awq116] [PMID: 20488887]
[49]
Handing EP, Andel R, Kadlecova P, Gatz M, Pedersen NL. Midlife alcohol consumption and risk of dementia over 43 years of follow-up: a population-based study from the swedish twin registry. J Gerontol A Biol Sci Med Sci 70(10): 1248-54. (2015)
[http://dx.doi.org/10.1093/gerona/glv038] [PMID: 25881581]
[50]
Järvenpää T, Rinne JO, Koskenvuo M, Räihä I, Kaprio J. Binge drinking in midlife and dementia risk. Epidemiology 16(6): 766-71. (2005)
[http://dx.doi.org/10.1097/01.ede.0000181307.30826.6c] [PMID: 16222166]
[51]
Defina LF, Willis BL, Radford NB, Gao A, Leonard D, Haskell WL, et al. The association between midlife cardiorespiratory fitness levels and later-life dementia: a cohort study. Ann Intern Med 158(3): 162-8. (2013)
[http://dx.doi.org/10.7326/0003-4819-158-3-201302050-00005] [PMID: 23381040]
[52]
Elwood P, Galante J, Pickering J, Palmer S, Bayer A, Ben-Shlomo Y, et al. Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the Caerphilly cohort study. PLoS One 8(12) e81877 (2013)
[http://dx.doi.org/10.1371/journal.pone.0081877] [PMID: 24349147]
[53]
Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife healthy-diet index and late-life dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 1(1): 103-12. (2011)
[http://dx.doi.org/10.1159/000327518] [PMID: 22163237]
[54]
Laitinen MH, Ngandu T, Rovio S, Helkala EL, Uusitalo U, Viitanen M, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord 22(1): 99-107. (2006)
[http://dx.doi.org/10.1159/000093478] [PMID: 16710090]
[55]
Rovio S, Kåreholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4(11): 705-11. (2005)
[http://dx.doi.org/10.1016/S1474-4422(05)70198-8] [PMID: 16239176]
[56]
Whitmer RA, Quesenberry CP, Zhou J, Yaffe K. Timing of hormone therapy and dementia: the critical window theory revisited. Ann Neurol 69(1): 163-9. (2011)
[http://dx.doi.org/10.1002/ana.22239] [PMID: 21280086]
[57]
Kharabian Masouleh S, Arélin K, Horstmann A, Lampe L, Kipping JA, Luck T, et al. Higher body mass index in older adults is associated with lower gray matter volume: implications for memory performance. Neurobiol Aging 40: 1-10. (2016)
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.12.020] [PMID: 26973099]
[58]
Mazon JN, de Mello AH, Ferreira GK, Rezin GT. The impact of obesity on neurodegenerative diseases. Life Sci 182: 22-8. (2017)
[http://dx.doi.org/10.1016/j.lfs.2017.06.002] [PMID: 28583368]
[59]
Hsu DC, Mormino EC, Schultz AP, Amariglio RE, Donovan NJ, Rentz DM, et al. Harvard aging brain study. Lower late-life body-mass index is associated with higher cortical amyloid burden in clinically normal elderly. J Alzheimers Dis 53(3): 1097-105. (2016)
[http://dx.doi.org/10.3233/JAD-150987] [PMID: 27340843]
[60]
Horie NC, Serrao VT, Simon SS, Gascon MR, Dos Santos AX, Zambone MA, et al. Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J Clin Endocrinol Metab 101(3): 1104-12. (2016)
[http://dx.doi.org/10.1210/jc.2015-2315] [PMID: 26713821]
[61]
Espeland MA, Luchsinger JA, Baker LD, Neiberg R, Kahn SE, Arnold SE, et al. Look AHEAD Study Group. Effect of a long-term intensive lifestyle intervention on prevalence of cognitive impairment. Neurology 88(21): 2026-35. (2017)
[http://dx.doi.org/10.1212/WNL.0000000000003955] [PMID: 28446656]
[62]
Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep 19(3): 24. (2017)
[http://dx.doi.org/10.1007/s11906-017-0724-3] [PMID: 28299725]
[63]
Tucsek Z, Noa Valcarcel-Ares M, Tarantini S, Yabluchanskiy A, Fülöp G, Gautam T, et al. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. Geroscience 39(4): 385-406. (2017)
[http://dx.doi.org/10.1007/s11357-017-9981-y] [PMID: 28664509]
[64]
Perrotta M, Lembo G, Carnevale D. Hypertension and dementia: epidemiological and experimental evidence revealing a detrimental relationship. Int J Mol Sci 17(3): 347. (2016)
[http://dx.doi.org/10.3390/ijms17030347] [PMID: 27005613]
[65]
Flores G, Flores-Gómez GD, de Jesús Gomez-Villalobos M. Neuronal changes after chronic high blood pressure in animal models and its implication for vascular dementia. Synapse 70(5): 198-205. (2016)
[http://dx.doi.org/10.1002/syn.21887] [PMID: 26789133]
[66]
Lu ZK, Li M, Yuan J, Wu J. The role of cerebrovascular disease and the association between diabetes mellitus and dementia among aged medicare beneficiaries. Int J Geriatr Psychiatry 31(1): 92-8. (2016)
[http://dx.doi.org/10.1002/gps.4293] [PMID: 25900428]
[67]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1): 64-74. (2006)
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[68]
Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63(4): 658-63. (2004)
[http://dx.doi.org/10.1212/01.WNL.0000134666.64593.BA] [PMID: 15326238]
[69]
Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 292(18): 2237-42. (2004)
[http://dx.doi.org/10.1001/jama.292.18.2237] [PMID: 15536110]
[70]
Xue-Shan Z, Juan P, Qi W, Zhong R, Li-Hong P, Zhi-Han T, et al. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica Chimica Acta Intern J Clin Chem 456: 107-4. (2016)
[http://dx.doi.org/10.1016/j.cca.2016.02.024]
[71]
Perna L, Mons U, Rujescu D, Kliegel M, Brenner H. Apolipoprotein E e4 and cognitive function: a modifiable association results from two independent cohort studies. Dement Geriatr Cogn Disord 41(1-2): 35-45. (2016)
[http://dx.doi.org/10.1159/000440697] [PMID: 26495840]
[72]
Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One 10(3) e0118333 (2015)
[http://dx.doi.org/10.1371/journal.pone.0118333] [PMID: 25763939]
[73]
Durazzo TC, Mattsson N, Weiner MW. Alzheimer’s Disease Neuroimaging Initiative. Interaction of cigarette smoking history with apoe genotype and age on amyloid level, glucose metabolism, and neurocognition in cognitively normal elders. Nicotine Tob Res 18(2): 204-11. (2016)
[74]
Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging initiative. association between smoking and cholinergic basal forebrain volume in healthy aging and prodromal and dementia stages of Alzheimer’s disease. J Alzheimers Dis 52(4): 1443-51. (2016)
[http://dx.doi.org/10.3233/JAD-151100] [PMID: 27079707]
[75]
Cho H, Kim C, Kim HJ, Ye BS, Kim YJ, Jung NY, et al. Impact of smoking on neurodegeneration and cerebrovascular disease markers in cognitively normal men. Eur J Neurol 23(1): 110-9. (2016)
[http://dx.doi.org/10.1111/ene.12816] [PMID: 26264353]
[76]
Weng PH, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, et al. CHRNA7 polymorphisms and dementia risk: interactions with apolipoprotein ε4 and cigarette smoking. Sci Rep 6: 27231. (2016)
[http://dx.doi.org/10.1038/srep27231] [PMID: 27249957]
[77]
Xue M, Zhu L, Zhang J, Qiu J, Du G, Qiao Z, et al. Low dose nicotine attenuates Aβ neurotoxicity through activation early growth response gene 1 pathway. PLoS One 10(3) e0120267 (2015)
[http://dx.doi.org/10.1371/journal.pone.0120267] [PMID: 25815723]
[78]
Toda N, Okamura T. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide. Pflugers Arch 468(9): 1517-25. (2016)
[http://dx.doi.org/10.1007/s00424-016-1849-y] [PMID: 27417104]
[79]
Kang S, Lee YH, Lee JE. Metabolism-centric overview of the pathogenesis of Alzheimer’s disease. Yonsei Med J 58(3): 479-88. (2017)
[http://dx.doi.org/10.3349/ymj.2017.58.3.479] [PMID: 28332351]
[80]
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1863(5): 1037-45. (2017)
[http://dx.doi.org/10.1016/j.bbadis.2016.04.017] [PMID: 27156888]
[81]
Yin F, Sancheti H, Liu Z, Cadenas E. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol 594(8): 2025-42. (2016)
[http://dx.doi.org/10.1113/JP270541] [PMID: 26293414]
[82]
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp Biol Med (Maywood) 241(12): 1351-63. (2016)
[http://dx.doi.org/10.1177/1535370216649060] [PMID: 27190276]
[83]
Pugazhenthi S. Metabolic syndrome and the cellular phase of Alzheimer’s disease. Prog Mol Biol Transl Sci 146: 243-58. (2017)
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.016] [PMID: 28253987]
[84]
McKenzie JA, Spielman LJ, Pointer CB, Lowry JR, Bajwa E, Lee CW, et al. Neuroinflammation as a common mechanism associated with the modifiable risk factors for Alzheimer’s and Parkinson’s diseases. Curr Aging Sci 10(3): 158-76. (2017)
[PMID: 28302047]
[85]
Xu W, Wang H, Wan Y, Tan C, Li J, Tan L, et al. Alcohol consumption and dementia risk: a dose-response meta-analysis of prospective studies. Eur J Epidemiol 32(1): 31-42. (2017)
[http://dx.doi.org/10.1007/s10654-017-0225-3] [PMID: 28097521]
[86]
Johansson L, Guo X, Hällström T, Norton MC, Waern M, Ostling S, et al. Common psychosocial stressors in middle-aged women related to longstanding distress and increased risk of Alzheimer’s disease: a 38-year longitudinal population study. BMJ Open 3(9) e003142 (2013)
[http://dx.doi.org/10.1136/bmjopen-2013-003142] [PMID: 24080094]
[87]
Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277(10): 813-7. (1997)
[http://dx.doi.org/10.1001/jama.1997.03540340047031] [PMID: 9052711]
[88]
Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348(13): 1215-22. (2003)
[http://dx.doi.org/10.1056/NEJMoa022066] [PMID: 12660385]
[89]
Iso-Markku P, Waller K, Kujala UM, Kaprio J. Physical activity and dementia: long-term follow-up study of adult twins. Ann Med 47(2): 81-7. (2015)
[http://dx.doi.org/10.3109/07853890.2014.994675] [PMID: 25613168]
[90]
Berchtold NC, Kesslak JP, Cotman CW. Hippocampal brain-derived neurotrophic factor gene regulation by exercise and the medial septum. J Neurosci Res 68(5): 511-21. (2002)
[http://dx.doi.org/10.1002/jnr.10256] [PMID: 12111841]
[91]
Tong L, Shen H, Perreau VM, Balazs R, Cotman CW. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 8(6): 1046-56. (2001)
[http://dx.doi.org/10.1006/nbdi.2001.0427] [PMID: 11741400]
[92]
Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6): 295-301. (2002)
[http://dx.doi.org/10.1016/S0166-2236(02)02143-4] [PMID: 12086747]
[93]
Sato K, Saito H, Katsuki H. Synergism of tocopherol and ascorbate on the survival of cultured brain neurones. Neuroreport 4(10): 1179-82. (1993)
[PMID: 8219012]
[94]
Das UN. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease--but how and why? Prostaglandins Leukot Essent Fatty Acids 78(1): 11-9. (2008)
[http://dx.doi.org/10.1016/j.plefa.2007.10.006] [PMID: 18054217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy