Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biosynthesized Quantum Dots as Improved Biocompatible Tools for Biomedical Applications

Author(s): Keru Shi, Xinyi Xu, Hanrui Li, Hui Xie, Xueli Chen and Yonghua Zhan*

Volume 28 , Issue 3 , 2021

Published on: 02 January, 2020

Page: [496 - 513] Pages: 18

DOI: 10.2174/0929867327666200102122737

Price: $65

Abstract

Quantum Dots (QDs), whose diameters are often limited to 10 nm, have been of interest to researchers for their unique optical characteristics, which are attributed to quantum confinement. Following their early application in the electrical industry as light-emitting diode materials, semiconductor nanocrystals have continued to show great potential in clinical diagnosis and biomedical applications. The conventional physical and chemical pathways for QD syntheses typically require harsh conditions and hazardous reagents, and these products encounter non-hydrophilic problems due to organic capping ligands when they enter the physiological environment. The natural reducing abilities of living organisms, especially microbes, are then exploited to prepare QDs from available metal precursors. Low-cost and eco-friendly biosynthesis approaches have the potential for further biomedical applications which benefit from the good biocompatibility of protein-coated QDs. The surface biomass offers many binding sites to modify substances or target ligands, therefore achieving multiple functions through simple and efficient operations. Biosynthetic QDs could function as bioimaging and biolabeling agents because of their luminescence properties similar to those of chemical QDs. In addition, extensive research has been carried out on the antibacterial activity, metal ion detection and bioremediation. As a result, this review details the advanced progress of biomedical applications of biosynthesized QDs and illustrates these principles as clearly as possible.

Keywords: Quantum dot, biosynthesis, biocompatibility, biomedical application, photoelectrochemical, bioimaging, microorganism.

[1]
Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.R.; Tomlinson, I.D. Biocompatible quantum dots for biological applications. Chem. Biol., 2011, 18(1), 10-24.
[http://dx.doi.org/10.1016/j.chembiol.2010.11.013] [PMID: 21276935]
[2]
Reshma, V.G.; Mohanan, P.V. Quantum dots: applications and safety consequences. J. Lumin., 2019, 205, 287-298.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.015]
[3]
Brichkin, S.B.; Razumov, V.F. Colloidal quantum dots: synthesis, properties and applications. Russ. Chem. Rev., 2016, 85(12), 1297-1312.
[http://dx.doi.org/10.1070/RCR4656]
[4]
Dameron, C.T.; Reese, R.N.; Mehra, R.K.; Kortan, A.R.; Carroll, P.J.; Steigerwald, M.L.; Brus, L.E.; Winge, D.R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338(6216), 596-597.
[http://dx.doi.org/10.1038/338596a0]
[5]
Zhou, J.; Yang, Y.; Zhang, C.Y. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev., 2015, 115(21), 11669-11717.
[http://dx.doi.org/10.1021/acs.chemrev.5b00049] [PMID: 26446443]
[6]
Cui, R.; Liu, H.H.; Xie, H.Y.; Zhang, Z.L.; Yang, Y.R.; Pang, D.W.; Xie, Z.X.; Chen, B.B.; Hu, B.; Shen, P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater., 2009, 19(15), 2359-2364.
[http://dx.doi.org/10.1002/adfm.200801492]
[7]
Li, Y.; Cui, R.; Zhang, P.; Chen, B-B.; Tian, Z-Q.; Li, L.; Hu, B.; Pang, D-W.; Xie, Z-X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano, 2013, 7(3), 2240-2248.
[http://dx.doi.org/10.1021/nn305346a] [PMID: 23398777]
[8]
Tian, L-J.; Li, W-W.; Zhu, T-T.; Chen, J-J.; Wang, W-K.; An, P-F.; Zhang, L.; Dong, J-C.; Guan, Y.; Liu, D-F.; Zhou, N-Q.; Liu, G.; Tian, Y-C.; Yu, H-Q. Directed biofabrication of nanoparticles through regulating extracellular electron transfer. J. Am. Chem. Soc., 2017, 139(35), 12149-12152.
[http://dx.doi.org/10.1021/jacs.7b07460] [PMID: 28825808]
[9]
Dameron, C.T.; Winge, D.R. Peptide-mediated formation of quantum semiconductors. Trends Biotechnol., 1990, 8(1), 3-6.
[http://dx.doi.org/10.1016/0167-7799(90)90122-E] [PMID: 1366570]
[10]
Zhang, Y.N.; Yang, L.L.; Tu, J.W.; Cui, R.; Pang, D.W. Live-cell synthesis of ZnSe quantum dots in Staphylococcus aureus. Chem. J. Chin. Univ., 2018, 39(6), 1158-1163.
[11]
Marusak, K.E.; Feng, Y.; Eben, C.F.; Payne, S.T.; Cao, Y.; You, L.; Zauscher, S. Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Advances, 2016, 6(80), 76158-76166.
[http://dx.doi.org/10.1039/C6RA13835G] [PMID: 28435671]
[12]
Wu, S.M.; Su, Y.L.; Liang, R.R.; Ai, X.X.; Qian, J.; Wang, C.; Chen, J.Q.; Yan, Z.Y. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae. Rsc Adv., 2015, 5(96), 79184-79191.
[http://dx.doi.org/10.1039/C5RA13011E]
[13]
Borovaya, M.; Pirko, Y.; Krupodorova, T.; Naumenko, A.; Blume, Y.; Yemets, A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.). P. Kumm. Biotechnol. Biotec. Eq, 2015, 29(6), 1156-1163.
[http://dx.doi.org/10.1080/13102818.2015.1064264]
[14]
Zhang, Z.W.; Chen, J.; Yang, Q.L.; Lan, K.; Yan, Z.Y.; Chen, J.Q. Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib. Sens. Actuators B Chem., 2018, 263, 625-633.
[http://dx.doi.org/10.1016/j.snb.2018.02.169]
[15]
Ouyang, W.Z.; Sun, J. Biosynthesis of silver sulfide quantum dots in wheat endosperm cells. Mater. Lett., 2016, 164, 397-400.
[http://dx.doi.org/10.1016/j.matlet.2015.11.040]
[16]
Green, M.; Haigh, S.J.; Lewis, E.A.; Sandiford, L.; Burkitt-Gray, M.; Fleck, R.; Vizcay-Barrena, G.; Jensen, L.; Mirzai, H.; Curry, R.J.; Dailey, L.A. Erratum: the biosynthesis of infrared-emitting quantum dots in Allium fistulosum. Sci. Rep., 2016, 6, 22497.
[http://dx.doi.org/10.1038/srep22497] [PMID: 26940776]
[17]
Rao, M.D.; Pennathur, G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull., 2017, 85, 64-73.
[http://dx.doi.org/10.1016/j.materresbull.2016.08.049]
[18]
Stürzenbaum, S.R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.S.; Taniguchi, S.; Dailey, L.A.; Ahmad Khanbeigi, R.; Rosca, E.V.; Thanou, M.; Suhling, K.; Zayats, A.V.; Green, M. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol., 2013, 8(1), 57-60.
[http://dx.doi.org/10.1038/nnano.2012.232] [PMID: 23263722]
[19]
Talaeeshoar, F.; Delavari, H.H.; Poursalehi, R. Can earthworms biosynthesize highly luminescent quantum dots? Luminescence, 2018, 33(5), 850-854.
[http://dx.doi.org/10.1002/bio.3481] [PMID: 29687574]
[20]
Tan, L.; Wan, A.; Li, H. Synthesis of near-infrared quantum dots in cultured cancer cells. ACS Appl. Mater. Interfaces, 2014, 6(1), 18-23.
[http://dx.doi.org/10.1021/am404534v] [PMID: 24344828]
[21]
Nguyen, V.; Cai, Q.; Grimes, C.A. Towards efficient visible-light active photocatalysts: CdS/Au sensitized TiO2 nanotube arrays. J. Colloid Interface Sci., 2016, 483, 287-294.
[http://dx.doi.org/10.1016/j.jcis.2016.08.042] [PMID: 27565960]
[22]
Wang, L.; Chen, S.; Ding, Y.; Zhu, Q.; Zhang, N.; Yu, S. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: for toxicity against brain cancer cell lines. J. Photochem. Photobiol. B, 2018, 178, 424-427.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.007] [PMID: 29207279]
[23]
Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl., 2014, 2014347167
[http://dx.doi.org/10.1155/2014/347167] [PMID: 24860280]
[24]
Shukla, M.; Kumari, S.; Shukla, S.; Shukla, R.K. Potent antibacterial activity of nano CdO synthesized via microemulsion scheme. J. Mater. Environ. Sci., 2012, 3(4), 678-685.
[25]
Kumar, S.A.; Ansary, A.A.; Ahmad, A.; Khan, M.I. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 2007, 3(2), 190-194.
[http://dx.doi.org/10.1166/jbn.2007.027]
[26]
Syed, A.; Ahmad, A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 106, 41-47.
[http://dx.doi.org/10.1016/j.saa.2013.01.002] [PMID: 23357677]
[27]
Jacob, J.M.; Balakrishnan, R.M.; Kumar, U.B. Biosynthesis of lead selenide quantum rods in marine Aspergillus terreus. Mater. Lett., 2014, 124, 279-281.
[http://dx.doi.org/10.1016/j.matlet.2014.03.106]
[28]
Jacob, J.M.; Mohan, B.R.; Gowda, K.M.A. Insights into the optical and anti-bacterial properties of biogenic PbSe quantum rods. J. Saudi Chem. Soc., 2016, 20(4), 480-485.
[http://dx.doi.org/10.1016/j.jscs.2014.10.008]
[29]
Uddandarao, P.; Mohan, B.R. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus. Mater. Sci. Eng. B-Adv., 2016, 207, 26-32.
[http://dx.doi.org/10.1016/j.mseb.2016.01.013]
[30]
Moeez, S.; Siddiqui, E.A.; Khan, S.; Ahmad, A. Size reduction of bulk alumina for mass production of fluorescent nanoalumina by fungus Humicola sp. J. Cluster Sci., 2017, 28(4), 1981-1993.
[http://dx.doi.org/10.1007/s10876-017-1195-z]
[31]
Khan, S.A.; Ahmad, A. Phase, size and shape transformation by fungal biotransformation of bulk TiO2. Chem. Eng. J., 2013, 230, 367-371.
[http://dx.doi.org/10.1016/j.cej.2013.06.091]
[32]
Silva, A.; Martinez-Gallegos, S.; Rosano-Ortega, G.; Schabes-Retchkiman, P.; Vega-Lebrun, C.; Albiter, V. Nanotoxicity for E. coli and characterization of silver quantum dots produced by biosynthesis with Eichhornia crassipes. J. Nanostr., 2017, 7(1), 1-12.
[http://dx.doi.org/10.22052/JNS.2017.01.001]
[33]
Thekkae Padil, V.V.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, 8, 889-898.
[http://dx.doi.org/10.2147/ijn.s40599] [PMID: 23467397]
[34]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[35]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[36]
Singh, A.K.; Pal, P.; Gupta, V.; Yadav, T.P.; Gupta, V.; Singh, S.P. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using &ITEclipta alba&IT. Mater. Chem. Phys., 2018, 203, 40-48.
[http://dx.doi.org/10.1016/j.matchemphys.2017.09.049]
[37]
Zeng, Z.; Yu, D.; He, Z.; Liu, J.; Xiao, F.X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T.T.Y. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci. Rep., 2016, 6, 20142.
[http://dx.doi.org/10.1038/srep20142] [PMID: 26832603]
[38]
Onodera, A.; Nishiumi, F.; Kakiguchi, K.; Tanaka, A.; Tanabe, N.; Honma, A.; Yayama, K.; Yoshioka, Y.; Nakahira, K.; Yonemura, S.; Yanagihara, I.; Tsutsumi, Y.; Kawai, Y. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol. Rep., 2015, 2, 574-579.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.004] [PMID: 28962392]
[39]
Lutsenko, S.; Bhattacharjee, A.; Hubbard, A.L. Copper handling machinery of the brain. Metallomics, 2010, 2(9), 596-608.
[http://dx.doi.org/10.1039/c0mt00006j] [PMID: 21072351]
[40]
Scheinberg, I.H.; Sternlieb, I. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr., 1996, 63(5), 842S-845S.
[http://dx.doi.org/10.1093/ajcn/63.5.842] [PMID: 8615372]
[41]
Shkinev, V.M.; Gomolitskii, V.N.; Spivakov, B.Y.; Geckeler, K.E.; Bayer, E. Determination of trace heavy metals in waters by atomic-absorption spectrometry after preconcentration by liquid-phase polymer-based retention. Talanta, 1989, 36(8), 861-863.
[http://dx.doi.org/10.1016/0039-9140(89)80168-7] [PMID: 18964820]
[42]
Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta, 2015, 172, 7-11.
[http://dx.doi.org/10.1016/j.electacta.2015.01.026]
[43]
Uddandarao, P.; Balakrishnan, R.M. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 200-207.
[http://dx.doi.org/10.1016/j.saa.2016.12.021] [PMID: 28040569]
[44]
Priyanka, U.; Gowda, A.K.M.; Elisha, M.G.; Teja, S.B.; Nitish, N.; Mohan, R.B. Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeter. Biodegr., 2017, 119, 78-86.
[http://dx.doi.org/10.1016/j.ibiod.2016.10.009]
[45]
Jacob, J.M.; Sharma, S.; Balakrishnan, R.M. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. J. Hazard. Mater., 2017, 324(A), 54-61.
[http://dx.doi.org/10.1016/j.jhazmat.2015.12.056] [PMID: 26849922]
[46]
Cam, M.; Hisil, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem., 2010, 123(3), 878-885.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.011]
[47]
Kaviya, S.; Kabila, S.; Jayasree, K.V. Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions. Mater. Res. Bull., 2017, 95, 163-168.
[http://dx.doi.org/10.1016/j.materresbull.2017.07.025]
[48]
Kaviya, S. Size dependent ratiometric detection of Pb (II) ions in aqueous solution by light emitting biogenic CdS NPs. J. Lumin., 2018, 195, 209-215.
[http://dx.doi.org/10.1016/j.jlumin.2017.11.031]
[49]
Isarov, A.V.; Chrysochoos, J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) ions. Langmuir, 1997, 13(12), 3142-3149.
[http://dx.doi.org/10.1021/la960985r]
[50]
Thermal ablation with High Intensity Focused Du, Q.-Q.; Li, Z.-Q.; Wu, S.-M. A sensitive and simple method for detecting Cu2+ in plasma using fluorescent Bacillus amylo-liquefaciens containing intracellularly biosynthesized CdSe quantum dots. Enzyme Microb. Technol., 2018, 119, 37-44.
[http://dx.doi.org/10.1016/j.enzmictec.2018.08.009] [PMID: 30243385]
[51]
Yan, Z-Y.; Du, Q-Q.; Wan, D-Y.; Lv, H.; Cao, Z.R.; Wu, S.M. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water. Enzyme Microb. Technol., 2017, 107, 41-48.
[http://dx.doi.org/10.1016/j.enzmictec.2017.08.001] [PMID: 28899485]
[52]
Cui, Y-H.; Li, L-L.; Tian, L-J.; Zhou, N-Q.; Liu, D-F.; Lam, P.K.S.; Yu, H-Q. Synthesis of CdS1-XSeX quantum dots in a protozoa Tetrahymena pyriformis. Appl. Microbiol. Biotechnol., 2019, 103(2), 973-980.
[http://dx.doi.org/10.1007/s00253-018-9499-y] [PMID: 30417309]
[53]
Eisen, J.A.; Coyne, R.S.; Wu, M.; Wu, D.; Thiagarajan, M.; Wortman, J.R.; Badger, J.H.; Ren, Q.; Amedeo, P.; Jones, K.M.; Tallon, L.J.; Delcher, A.L.; Salzberg, S.L.; Silva, J.C.; Haas, B.J.; Majoros, W.H.; Farzad, M.; Carlton, J.M.; Smith, R.K. Jr.; Garg, J.; Pearlman, R.E.; Karrer, K.M.; Sun, L.; Manning, G.; Elde, N.C.; Turkewitz, A.P.; Asai, D.J.; Wilkes, D.E.; Wang, Y.; Cai, H.; Collins, K.; Stewart, B.A.; Lee, S.R.; Wilamowska, K.; Weinberg, Z.; Ruzzo, W.L.; Wloga, D.; Gaertig, J.; Frankel, J.; Tsao, C.C.; Gorovsky, M.A.; Keeling, P.J.; Waller, R.F.; Patron, N.J.; Cherry, J.M.; Stover, N.A.; Krieger, C.J.; del Toro, C.; Ryder, H.F.; Williamson, S.C.; Barbeau, R.A.; Hamilton, E.P.; Orias, E. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol., 2006, 4(9)e286
[http://dx.doi.org/10.1371/journal.pbio.0040286] [PMID: 16933976]
[54]
Lou, Y.B.; Zhao, Y.X.; Chen, J.X.; Zhu, J.J. Metal ions optical sensing by semiconductor quantum dots. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(4), 595-613.
[http://dx.doi.org/10.1039/C3TC31937G]
[55]
Nancharaiah, Y.V.; Lens, P.N.L. Selenium biomineralization for biotechnological applications. Trends Biotechnol., 2015, 33(6), 323-330.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.004] [PMID: 25908504]
[56]
Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E. Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol. J., 2003, 20(6), 587-602.
[http://dx.doi.org/10.1080/713851163]
[57]
Pearce, C.I.; Coker, V.S.; Charnock, J.M.; Pattrick, R.A.D.; Mosselmans, J.F.W.; Law, N.; Beveridge, T.J.; Lloyd, J.R. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology, 2008, 19(15)155603
[http://dx.doi.org/10.1088/0957-4484/19/15/155603] [PMID: 21825617]
[58]
Fellowes, J.W.; Pattrick, R.A.D.; Lloyd, J.R.; Charnock, J.M.; Coker, V.S.; Mosselmans, J.F.W.; Weng, T.C.; Pearce, C.I. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology, 2013, 24(14)145603
[http://dx.doi.org/10.1088/0957-4484/24/14/145603] [PMID: 23508116]
[59]
Mal, J.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresour. Technol., 2016, 206, 1-8.
[http://dx.doi.org/10.1016/j.biortech.2016.01.064] [PMID: 26836844]
[60]
Mal, J.; Nancharaiah, Y.V.; Bera, S.; Maheshwari, N.; van Hullebusch, E.D.; Lens, P.N.L. Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environ. Sci. Nano, 2017, 4(4), 824-833.
[http://dx.doi.org/10.1039/C6EN00623J]
[61]
Ayano, H.; Miyake, M.; Terasawa, K.; Kuroda, M.; Soda, S.; Sakaguchi, T.; Ike, M. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J. Biosci. Bioeng., 2014, 117(5), 576-581.
[http://dx.doi.org/10.1016/j.jbiosc.2013.10.010] [PMID: 24216457]
[62]
Ayano, H.; Kuroda, M.; Soda, S.; Ike, M. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. J. Biosci. Bioeng., 2015, 119(4), 440-445.
[http://dx.doi.org/10.1016/j.jbiosc.2014.09.021] [PMID: 25454693]
[63]
Gallardo, C.; Monrás, J.P.; Plaza, D.O.; Collao, B.; Saona, L.A.; Durán-Toro, V.; Venegas, F.A.; Soto, C.; Ulloa, G.; Vásquez, C.C.; Bravo, D.; Pérez-Donoso, J.M. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J. Biotechnol., 2014, 187, 108-115.
[http://dx.doi.org/10.1016/j.jbiotec.2014.07.017] [PMID: 25064158]
[64]
Plaza, D.O.; Gallardo, C.; Straub, Y.D.; Bravo, D.; Pérez-Donoso, J.M. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb. Cell Fact., 2016, 15(1), 76.
[http://dx.doi.org/10.1186/s12934-016-0477-8] [PMID: 27154202]
[65]
Ulloa, G.; Quezada, C.P.; Araneda, M.; Escobar, B.; Fuentes, E.; Álvarez, S.A.; Castro, M.; Bruna, N.; Espinoza-González, R.; Bravo, D.; Pérez-Donoso, J.M. Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance. Front. Microbiol., 2018, 9, 234.
[http://dx.doi.org/10.3389/fmicb.2018.00234] [PMID: 29515535]
[66]
Bruna, N.; Collao, B.; Tello, A.; Caravantes, P.; Díaz-Silva, N.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Flores, M.; Espinoza-Gonzalez, R.; Bravo, D.; Pérez-Donoso, J.M. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci. Rep., 2019, 9(1), 1953.
[http://dx.doi.org/10.1038/s41598-018-38330-8] [PMID: 30760793]
[67]
Glatstein, D.A.; Bruna, N.; Gallardo-Benavente, C.; Bravo, D.; Carro Perez, M.E.; Francisca, F.M.; Perez-Donoso, J.M. Arsenic and cadmium bioremediation by antarctic bacteria capable of biosynthesizing CdS fluorescent nanoparticles. J. Environ. Eng., 2018, 144(3)04017107
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001293]
[68]
Xu, S.Z.; Luo, X.S.; Xing, Y.H.; Liu, S.; Huang, Q.Y.; Chen, W.L. Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech, 2019, 9(4), 120.
[http://dx.doi.org/10.1007/s13205-019-1649-0] [PMID: 30854280]
[69]
Bakhshi, M.; Hosseini, M.R. Synthesis of CdS nanoparticles from cadmium sulfate solutions using the extracellular polymeric substances of B. licheniformis as stabilizing agent. Enzyme Microb. Technol., 2016, 95, 209-216.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.011] [PMID: 27866617]
[70]
Murray, A.J.; Roussel, J.; Rolley, J.; Woodhall, F.; Mikheenko, I.P.; Johnson, D.B.; Gomez-Bolivar, J.; Merroun, M.L.; Macaskie, L.E. Biosynthesis of zinc sulfide quantum dots using waste off-gas from a metal bioremediation process. Rsc Adv, 2017, 7(35), 21484-21491.
[http://dx.doi.org/10.1039/C6RA17236A]
[71]
Sandoval-Cardenas, I.; Gomez-Ramirez, M.; Rojas-Avelizapa, N.G. Use of a sulfur waste for biosynthesis of cadmium sulfide quantum clots with Fusarium oxysporum F. sp. lycopersici. Mater. Sci. Semicond. Process., 2017, 63, 33-39.
[http://dx.doi.org/10.1016/j.mssp.2017.01.017]
[72]
Nancharaiah, Y.V.; Lens, P.N.L. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev., 2015, 79(1), 61-80.
[http://dx.doi.org/10.1128/MMBR.00037-14] [PMID: 25631289]
[73]
Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30(7), 953-971.
[http://dx.doi.org/10.1016/j.envint.2004.02.001] [PMID: 15196844]
[74]
Reddy, P.A.K.; Reddy, P.V.L.; Kwon, E.; Kim, K.H.; Akter, T.; Kalagara, S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int., 2016, 91, 94-103.
[http://dx.doi.org/10.1016/j.envint.2016.02.012] [PMID: 26915711]
[75]
Bajorowicz, B.; Kobylański, M.P.; Gołąbiewska, A.; Nadolna, J.; Zaleska-Medynska, A.; Malankowska, A. Quantum dot-decorated semiconductor micro- and nanoparticles: a review of their synthesis, characterization and application in photocatalysis. Adv. Colloid Interface Sci., 2018, 256, 352-372.
[http://dx.doi.org/10.1016/j.cis.2018.02.003] [PMID: 29544654]
[76]
Jain, N.; Bhargava, A.; Panwar, J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J., 2014, 243, 549-555.
[http://dx.doi.org/10.1016/j.cej.2013.11.085]
[77]
Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 2010, 177(1-3), 70-80.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.047] [PMID: 20044207]
[78]
Jacob, J.M.; Rajan, R.; Aji, M.; Kurup, G.G.; Pugazhendhi, A. Bio-inspired ZnS quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase. Ceram. Int., 2019, 45(4), 4857-4862.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.182]
[79]
Wang, G.L.; Xu, J.J.; Chen, H.Y. Progress in the studies of photoetectrochemical sensors. Sci. China Ser. B. Chem., 2009, 52(11), 1789-1800.
[http://dx.doi.org/10.1007/s11426-009-0271-0]
[80]
Wright, M.; Uddin, A. Organic-inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells, 2012, 107, 87-111.
[http://dx.doi.org/10.1016/j.solmat.2012.07.006]
[81]
Feng, Y.Y.; Ngaboyamahina, E.; Marusak, K.E.; Cao, Y.X.L.; You, L.C.; Glass, J.T.; Zauscher, S. Hybrid (Organic/Inorganic) electrodes from bacterially precipitated CdS for PEC/storage applications. J. Phys. Chem. C, 2017, 121(7), 3734-3743.
[http://dx.doi.org/10.1021/acs.jpcc.6b11387]
[82]
Yang, Z.Q.; Wang, Y.; Zhang, D. A novel signal-on photoelectrochemical sensing platform based on biosynthesis of CdS quantum dots sensitizing ZnO nanorod arrays. Sens. Actuators B Chem., 2018, 261, 515-521.
[http://dx.doi.org/10.1016/j.snb.2018.01.190]
[83]
Yan, Z-Y.; Ai, X-X.; Su, Y-L.; Liu, X-Y.; Shan, X-H.; Wu, S-M. Intracellular biosynthesis of fluorescent CdSe quantum dots in Bacillus subtilis: a strategy to construct signaling bacterial probes for visually detecting interaction between Bacillus subtilis and Staphylococcus aureus. Microsc. Microanal., 2016, 22(1), 13-21.
[http://dx.doi.org/10.1017/S1431927615015548] [PMID: 26687198]
[84]
Xiong, L-H.; Cui, R.; Zhang, Z-L.; Yu, X.; Xie, Z.; Shi, Y-B.; Pang, D-W. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano, 2014, 8(5), 5116-5124.
[http://dx.doi.org/10.1021/nn501174g] [PMID: 24779675]
[85]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763-775.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
[86]
Bao, H-F.; Hao, N.; Yang, Y-X.; Zhao, D-Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res., 2010, 3(7), 481-489.
[http://dx.doi.org/10.1007/s12274-010-0008-6]
[87]
Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res., 2008, 41(1), 120-129.
[http://dx.doi.org/10.1021/ar7000815] [PMID: 17655275]
[88]
Bao, H.; Lu, Z.; Cui, X.; Qiao, Y.; Guo, J.; Anderson, J.M.; Li, C.M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater., 2010, 6(9), 3534-3541.
[http://dx.doi.org/10.1016/j.actbio.2010.03.030] [PMID: 20350621]
[89]
Pawar, V.; Kumar, A.R.; Zinjarde, S.; Gosavi, S. Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes. J. Nanosci. Nanotechnol., 2013, 13(6), 3826-3831.
[http://dx.doi.org/10.1166/jnn.2013.7215] [PMID: 23862414]
[90]
Mareeswari, P.; Brijitta, J.; Harikrishna Etti, S.; Meganathan, C.; Kaliaraj, G.S. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots. Enzyme Microb. Technol., 2016, 95, 225-229.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.016] [PMID: 27866619]
[91]
Stürzenbaum, S.R.; Winters, C.; Galay, M.; Morgan, A.J.; Kille, P. Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J. Biol. Chem., 2001, 276(36), 34013-34018.
[http://dx.doi.org/10.1074/jbc.M103605200] [PMID: 11418603]
[92]
Stürzenbaum, S.R.; Georgiev, O.; Morgan, A.J.; Kille, P. Cadmium detoxification in earthworms: from genes to cells. Environ. Sci. Technol., 2004, 38(23), 6283-6289.
[http://dx.doi.org/10.1021/es049822c] [PMID: 15597883]
[93]
Tian, L.J.; Zhou, N.Q.; Liu, X.W.; Liu, J.H.; Zhang, X.; Huang, H.; Zhu, T.T.; Li, L.L.; Huang, Q.; Li, W.W.; Liu, Y.Z.; Yu, H.Q. A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochem. Eng. J., 2017, 124, 130-137.
[http://dx.doi.org/10.1016/j.bej.2017.05.011]
[94]
Zhang, L.W.; Monteiro-Riviere, N.A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci., 2009, 110(1), 138-155.
[http://dx.doi.org/10.1093/toxsci/kfp087] [PMID: 19414515]
[95]
Yan, Z-Y.; Qian, J.; Gu, Y-Q.; Su, Y-L.; Ai, X-X.; Wu, S-M. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells. Mater. Res. Express, 2014, 1(1)015401
[http://dx.doi.org/10.1088/2053-1591/1/1/015401]
[96]
Srivastava, P.; Kowshik, M. Fluorescent lead(IV) sulfide nanoparticles synthesized by Idiomarina sp. strain PR58-8 for bioimaging applications. Appl. Environ. Microbiol., 2017, 83(7), e03091-e03016.
[http://dx.doi.org/10.1128/AEM.03091-16] [PMID: 28115387]
[97]
Mukherjee, A.; Shim, Y.; Myong Song, J. Quantum dot as probe for disease diagnosis and monitoring. Biotechnol. J., 2016, 11(1), 31-42.
[http://dx.doi.org/10.1002/biot.201500219] [PMID: 26709963]
[98]
Bradburne, C.E.; Delehanty, J.B.; Boeneman Gemmill, K.; Mei, B.C.; Mattoussi, H.; Susumu, K.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug. Chem., 2013, 24(9), 1570-1583.
[http://dx.doi.org/10.1021/bc4001917] [PMID: 23879393]
[99]
Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol., 2016, 11(5), 479-486.
[http://dx.doi.org/10.1038/nnano.2015.338] [PMID: 26925827]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy