Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Recognition of Fungal Components by the Host Immune System

Author(s): Laura C. García-Carnero, José A. Martínez-Álvarez*, Luis M. Salazar-García, Nancy E. Lozoya-Pérez, Sandra E. González-Hernández and Alma K. Tamez-Castrellón

Volume 21, Issue 3, 2020

Page: [245 - 264] Pages: 20

DOI: 10.2174/1389203721666191231105546

Price: $65

Abstract

By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.

Keywords: Host-pathogen, chitin, glucans, antigen, immune response, virulence factor.

Graphical Abstract
[1]
Arana, D.M.; Prieto, D.; Román, E.; Nombela, C.; Alonso-Monge, R.; Pla, J. The role of the cell wall in fungal pathogenesis. Microb. Biotechnol., 2009, 2(3), 308-320.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00070.x] [PMID: 21261926]
[2]
Yoshimi, A.; Miyazawa, K.; Abe, K. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. J. Fungi (Basel), 2017, 3(4), 63.
[http://dx.doi.org/10.3390/jof3040063] [PMID: 29371579]
[3]
Klis, F.M.; Boorsma, A.; De Groot, P.W.J. Cell wall construction in Saccharomyces cerevisiae. Yeast, 2006, 23(3), 185-202.
[http://dx.doi.org/10.1002/yea.1349] [PMID: 16498706]
[4]
Lenardon, M.D.; Munro, C.A.; Gow, N.A.R. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol., 2010, 13(4), 416-423.
[http://dx.doi.org/10.1016/j.mib.2010.05.002] [PMID: 20561815]
[5]
Niño-Vega, G.A.; Carrero, L.; San-Blas, G. Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med. Mycol., 2004, 42(1), 51-57.
[http://dx.doi.org/10.1080/1369378031000153811] [PMID: 14982114]
[6]
Shibata, Y.; Metzger, W.J.; Myrvik, Q.N. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J. Immunol., 1997, 159(5), 2462-2467.
[PMID: 9278339]
[7]
Lee, C.G. Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med. J., 2009, 50(1), 22-30.
[http://dx.doi.org/10.3349/ymj.2009.50.1.22] [PMID: 19259344]
[8]
Wagener, J.; Malireddi, R.K.S.; Lenardon, M.D.; Köberle, M.; Vautier, S.; MacCallum, D.M.; Biedermann, T.; Schaller, M.; Netea, M.G.; Kanneganti, T.D.; Brown, G.D.; Brown, A.J.P.; Gow, N.A.R. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog., 2014, 10(4) e1004050
[http://dx.doi.org/10.1371/journal.ppat.1004050] [PMID: 24722226]
[9]
Shibata, Y.; Honda, I.; Justice, J.P.; Van Scott, M.R.; Nakamura, R.M.; Myrvik, Q.N. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infect. Immun., 2001, 69(10), 6123-6130.
[http://dx.doi.org/10.1128/IAI.69.10.6123-6130.2001] [PMID: 11553551]
[10]
Strong, P.; Clark, H.; Reid, K. Intranasal application of chitin microparticles down-regulates symptoms of allergic hypersensitivity to Dermatophagoides pteronyssinus and Aspergillus fumigatus in murine models of allergy. Clin. Exp. Allergy, 2002, 32(12), 1794-1800.
[http://dx.doi.org/10.1046/j.1365-2222.2002.01551.x] [PMID: 12653174]
[11]
Ozdemir, C.; Yazi, D.; Aydogan, M.; Akkoc, T.; Bahceciler, N.N.; Strong, P.; Barlan, I.B. Treatment with chitin microparticles is protective against lung histopathology in a murine asthma model. Clin. Exp. Allergy, 2006, 36(7), 960-968.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02515.x] [PMID: 16839412]
[12]
Van Dyken, S.J.; Garcia, D.; Porter, P.; Huang, X.; Quinlan, P.J.; Blanc, P.D.; Corry, D.B.; Locksley, R.M. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J. Immunol., 2011, 187(5), 2261-2267.
[http://dx.doi.org/10.4049/jimmunol.1100972] [PMID: 21824866]
[13]
Zhu, Z.; Zheng, T.; Homer, R.J.; Kim, Y.K.; Chen, N.Y.; Cohn, L.; Hamid, Q.; Elias, J.A. Acidic Mammalian Chitinase in Asthmatic Th2 Inflammation and IL-13 Pathway Activation Science (80-. )., 2004, 304, 1678-1682.
[14]
Klis, F.M.; de Groot, P.; Hellingwerf, K. Molecular organization of the cell wall of Candida albicans. Med. Mycol., 2001, 39(Suppl. 1), 1-8.
[http://dx.doi.org/10.1080/mmy.39.1.1.8-0] [PMID: 11800263]
[15]
Sherrington, S.L.; Sorsby, E.; Mahtey, N.; Kumwenda, P.; Lenardon, M.D.; Brown, I.; Ballou, E.R.; MacCallum, D.M.; Hall, R.A. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog., 2017, 13(5) e1006403
[http://dx.doi.org/10.1371/journal.ppat.1006403] [PMID: 28542528]
[16]
Mora-Montes, H.M.; Netea, M.G.; Ferwerda, G.; Lenardon, M.D.; Brown, G.D.; Mistry, A.R.; Kullberg, B.J.; O’Callaghan, C.A.; Sheth, C.C.; Odds, F.C.; Brown, A.J.P.; Munro, C.A.; Gow, N.A.R. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect. Immun., 2011, 79(5), 1961-1970.
[http://dx.doi.org/10.1128/IAI.01282-10] [PMID: 21357722]
[17]
Ost, K.S.; Esher, S.K.; Wager, M.L.; Walker, L.; Wagener, J.; Munro, C.; Wormley, F.L.; Andrew, J. Crossm Recognition and Inflammation, 2017, 8, 1-19.
[18]
Wiesner, D.L.; Specht, C.A.; Lee, C.K.; Smith, K.D.; Mukaremera, L.; Lee, S.T.; Lee, C.G.; Elias, J.A.; Nielsen, J.N.; Boulware, D.R.; Bohjanen, P.R.; Jenkins, M.K.; Levitz, S.M.; Nielsen, K. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog., 2015, 11(3) e1004701
[http://dx.doi.org/10.1371/journal.ppat.1004701] [PMID: 25764512]
[19]
Upadhya, R.; Lam, W.C.; Maybruck, B.; Specht, C.A.; Levitz, S.M.; Lodge, J.K. Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans. MBio, 2016, 7(3), 1-14.
[http://dx.doi.org/10.1128/mBio.00547-16] [PMID: 27165801]
[20]
Coltri, K.C.; Casabona-Fortunato, A.S.; Gennari-Cardoso, M.L.; Pinzan, C.F.; Ruas, L.P.; Mariano, V.S.; Martinez, R.; Rosa, J.C.; Panunto-Castelo, A.; Roque-Barreira, M.C. Paracoccin, a GlcNAc-binding lectin from Paracoccidioides brasiliensis, binds to laminin and induces TNF-α production by macrophages. Microbes Infect., 2006, 8(3), 704-713.
[http://dx.doi.org/10.1016/j.micinf.2005.09.008] [PMID: 16476564]
[21]
Becker, K.; Aimanianda, V.; Wang, X.; Gresnigt, M.; Ammerdorffer, A.; Jacobs, C.; Gazendam, R.; Joosten, L.; Netea, M.; Latgé, J.; van de Veerdonka, F. Cytokines in Human PBMCs via the Fc-Gamm Receptor/Syk/PI3K Pathway. MBio, 2016, 7, 1-11.
[http://dx.doi.org/10.1128/mBio.01823-15]
[22]
Aderiye, B.I.; Oluwole, O.A. Antifungal Agents That Target Fungal Cell Wall Components: A Review. Agric. Biol. Sci. J., 2015, 1, 206-216.
[23]
Scorzoni, L. de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front. Microbiol., 2017, 8, 1-23.
[24]
Mazu, K. A. Bricker, B.; Flores-Rozas, H.; Y. Ablordeppey, S The Mechanistic Targets of Antifungal Agents: An Overview, 2016, 16.
[25]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[26]
Edwards, J.A.; Alore, E.A.; Rappleye, C.A. The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot. Cell, 2011, 10(1), 87-97.
[http://dx.doi.org/10.1128/EC.00214-10] [PMID: 21037179]
[27]
Maubon, D.; Park, S.; Tanguy, M.; Huerre, M.; Schmitt, C.; Prévost, M.C.; Perlin, D.S.; Latgé, J.P.; Beauvais, A. AGS3, an α(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol., 2006, 43(5), 366-375.
[http://dx.doi.org/10.1016/j.fgb.2006.01.006] [PMID: 16531086]
[28]
Lara-lemus, R.; Alvarado-vásquez, N.; Zenteno, E.; Gorocica, P. Effect of Histoplasma Capsulatum Glucans on Host Innate Immunity. Rev. Iberoam. Micol., 2014, 31, 76-80.
[http://dx.doi.org/10.1016/j.riam.2013.10.005]
[29]
Snarr, B.D.; Qureshi, S.T.; Sheppard, D.C. Immune Recognition of Fungal Polysaccharides. J. Fungi (Basel), 2017, 3(3), 47.
[http://dx.doi.org/10.3390/jof3030047] [PMID: 29371564]
[30]
Camacho, E.; Niño-Vega, G.A. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm., 2017. 20175313691
[http://dx.doi.org/10.1155/2017/5313691] [PMID: 28553014]
[31]
Hernández-Chávez, M.J.; Pérez-García, L.A.; Niño-Vega, G.A.; Mora-Montes, H.M. Fungal Strategies to Evade the Host Immune Recognition. J. Fungi (Basel), 2017, 3(4), 51.
[http://dx.doi.org/10.3390/jof3040051] [PMID: 29371567]
[32]
Brown, G.D. Trimming Surface Sugars Protects Histoplasma from Immune Attack. MBio, 2016, 7(2), e00553-e16.
[http://dx.doi.org/10.1128/mBio.00553-16] [PMID: 27118584]
[33]
Gorocica, P.; Taylor, M.L.; Alvarado-Vásquez, N.; Pérez-Torres, A.; Lascurain, R.; Zenteno, E. The interaction between Histoplasma capsulatum cell wall carbohydrates and host components: relevance in the immunomodulatory role of histoplasmosis. Mem. Inst. Oswaldo Cruz, 2009, 104(3), 492-496.
[http://dx.doi.org/10.1590/S0074-02762009000300016] [PMID: 19547878]
[34]
Marion, C.L.; Rappleye, C.A.; Engle, J.T.; Goldman, W.E. An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol. Microbiol., 2006, 62(4), 970-983.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05436.x] [PMID: 17038119]
[35]
Rappleye, C.A.; Eissenberg, L.G.; Goldman, W.E. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta -Glucan receptor. PNAS, 2007, 104(4), 1366-1370.
[36]
Chai, L.Y.A.; Vonk, A.G.; Kullberg, B.J.; Verweij, P.E.; Verschueren, I.; van der Meer, J.W.M.; Joosten, L.A.B.; Latgé, J.P.; Netea, M.G. Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect., 2011, 13(2), 151-159.
[http://dx.doi.org/10.1016/j.micinf.2010.10.005] [PMID: 20971208]
[37]
Askew, D.S. Aspergillus fumigatus: virulence genes in a street-smart mold. Curr. Opin. Microbiol., 2008, 11(4), 331-337.
[http://dx.doi.org/10.1016/j.mib.2008.05.009] [PMID: 18579432]
[38]
Reese, A.J.; Yoneda, A.; Breger, J.A.; Beauvais, A.; Liu, H.; Griffith, C.L.; Bose, I.; Kim, M.J.; Skau, C.; Yang, S.; Sefko, J.A.; Osumi, M.; Latge, J.P.; Mylonakis, E.; Doering, T.L. Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol. Microbiol., 2007, 63(5), 1385-1398.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05551.x] [PMID: 17244196]
[39]
Reese, A.J.; Doering, T.L. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol., 2003, 50(4), 1401-1409.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03780.x] [PMID: 14622425]
[40]
Hogan, L.H.; Klein, B.S. Altered expression of surface α-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect. Immun., 1994, 62(8), 3543-3546.
[PMID: 8039925]
[41]
Camilli, G.; Tabouret, G.; Quintin, J. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Front. Immunol., 2018, 9, 673.
[http://dx.doi.org/10.3389/fimmu.2018.00673] [PMID: 29755450]
[42]
Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling Human Fungal Infections. Science (80-. ), 2012, 336, 647.
[43]
Gantner, B.N.; Simmons, R.M.; Underhill, D.M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J., 2005, 24(6), 1277-1286.
[http://dx.doi.org/10.1038/sj.emboj.7600594] [PMID: 15729357]
[44]
Lowman, D.W.; Greene, R.R.; Bearden, D.W.; Kruppa, M.D.; Pottier, M.; Monteiro, M.A.; Soldatov, D.V.; Ensley, H.E.; Cheng, S.C.; Netea, M.G.; Williams, D.L. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J. Biol. Chem., 2014, 289(6), 3432-3443.
[http://dx.doi.org/10.1074/jbc.M113.529131] [PMID: 24344127]
[45]
Uwamahoro, N.; Verma-Gaur, J.; Shen, H.H.; Qu, Y.; Lewis, R.; Lu, J.; Bambery, K.; Masters, S.L.; Vince, J.E.; Naderer, T.; Traven, A. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio, 2014, 5(2), e00003-e00014.
[http://dx.doi.org/10.1128/mBio.00003-14] [PMID: 24667705]
[46]
Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Theelen, B.; van der Vlist, M.; Boekhout, T.; Geijtenbeek, T.B.H. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol., 2012, 13(3), 246-254.
[http://dx.doi.org/10.1038/ni.2222] [PMID: 22267217]
[47]
Ballou, E.R.; Avelar, G.M.; Childers, D.S.; Mackie, J.; Bain, J.M.; Wagener, J.; Kastora, S.L.; Panea, M.D.; Hardison, S.E.; Walker, L.A.; Erwig, L.P.; Munro, C.A.; Gow, N.A.; Brown, G.D.; MacCallum, D.M.; Brown, A.J. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol., 2016, 2, 16238.
[http://dx.doi.org/10.1038/nmicrobiol.2016.238] [PMID: 27941860]
[48]
Carrion, Sde J. Leal, S.M., Jr; Ghannoum, M.A.; Aimanianda, V.; Latgé, J-P.; Pearlman, E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J. Immunol., 2013, 191(5), 2581-2588.
[http://dx.doi.org/10.4049/jimmunol.1300748] [PMID: 23926321]
[49]
Rappleye, C.A.; Eissenberg, L.G.; Goldman, W.E. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc. Natl. Acad. Sci., 2007, 104(4), 1366-1370.
[http://dx.doi.org/10.1073/pnas.0609848104] [PMID: 17227865]
[50]
Cross, C.E.; Bancroft, G.J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun., 1995, 63(7), 2604-2611.
[PMID: 7790075]
[51]
Andriole, V.T. The 1998 Garrod lecture. Current and future antifungal therapy: new targets for antifungal agents. J. Antimicrob. Chemother., 1999, 44(2), 151-162.
[http://dx.doi.org/10.1093/jac/44.2.151] [PMID: 10473222]
[52]
Jayaprakash, N.G.; Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J., 2017, 474(14), 2333-2347.
[http://dx.doi.org/10.1042/BCJ20170111] [PMID: 28673927]
[53]
Lombard, J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biol. Direct, 2016, 11, 36.
[http://dx.doi.org/10.1186/s13062-016-0137-2] [PMID: 27492357]
[54]
Breitling, J.; Aebi, M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2013, 5(8) a013359
[http://dx.doi.org/10.1101/cshperspect.a013359] [PMID: 23751184]
[55]
Ueno, K.; Okawara, A.; Yamagoe, S.; Naka, T.; Umeyama, T.; Utena-Abe, Y.; Tarumoto, N.; Niimi, M.; Ohno, H.; Doe, M.; Fujiwara, N.; Kinjo, Y.; Miyazaki, Y. The mannan of Candida albicans lacking β-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Med. Mycol., 2013, 51(4), 385-395.
[http://dx.doi.org/10.3109/13693786.2012.733892] [PMID: 23101887]
[56]
Netea, M.G.; Brown, G.D.; Kullberg, B.J.; Gow, N.A.R. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol., 2008, 6(1), 67-78.
[http://dx.doi.org/10.1038/nrmicro1815] [PMID: 18079743]
[57]
Cambi, A.; Netea, M.G.; Mora-Montes, H.M.; Gow, N.A.R.; Hato, S.V.; Lowman, D.W.; Kullberg, B.J.; Torensma, R.; Williams, D.L.; Figdor, C.G. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem., 2008, 283(29), 20590-20599.
[http://dx.doi.org/10.1074/jbc.M709334200] [PMID: 18482990]
[58]
Jouault, T.; El Abed-El Behi, M.; Martínez-Esparza, M.; Breuilh, L.; Trinel, P.A.; Chamaillard, M.; Trottein, F.; Poulain, D. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol., 2006, 177(7), 4679-4687.
[http://dx.doi.org/10.4049/jimmunol.177.7.4679] [PMID: 16982907]
[59]
van de Veerdonk, F.L.; Kullberg, B.J.; van der Meer, J.W.; Gow, N.A.; Netea, M.G. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr. Opin. Microbiol., 2008, 11(4), 305-312.
[http://dx.doi.org/10.1016/j.mib.2008.06.002] [PMID: 18602019]
[60]
Lozoya-Pérez, N.E.; Casas-Flores, S.; de Almeida, J.R.F.; Martínez-Álvarez, J.A.; López-Ramírez, L.A.; Jannuzzi, G.P.; Trujillo-Esquivel, E.; Estrada-Mata, E.; Almeida, S.R.; Franco, B.; Lopes-Bezerra, L.M.; Mora-Montes, H.M. Silencing of OCH1 unveils the role of Sporothrix schenckii N-linked glycans during the host-fungus interaction. Infect. Drug Resist., 2018, 12, 67-85.
[http://dx.doi.org/10.2147/IDR.S185037] [PMID: 30643435]
[61]
Ecker, M.; Mrsa, V.; Hagen, I.; Deutzmann, R.; Strahl, S.; Tanner, W. O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep., 2003, 4(6), 628-632.
[http://dx.doi.org/10.1038/sj.embor.embor864] [PMID: 12776183]
[62]
Timpel, C.; Strahl-bolsinger, S.; Ernst, J.F.; Timpel, C.; Strahl-bolsinger, S.; Ziegelbauer, K.; Ernst, J.F. Multiple functions of Pmt1p-mediated protein O -mannosylation in the fungal pathogen candida albicans multiple functions of Pmt1p-mediated protein O -mannosylation in the fungal pathogen Candida Albicans. Cell Biol. Metab, 1998, 273, 20837-20846.
[63]
Babczinski, P.; Tanner, W. Involvement of dolicholmonophosphate in the formation of specific mannosyl-linkages in yeast glycoproteins. Biochem. Biophys. Res. Commun., 1973, 54(3), 1119-1124.
[http://dx.doi.org/10.1016/0006-291X(73)90808-5] [PMID: 4584878]
[64]
Loibl, M.; Strahl, S. Protein O-mannosylation: what we have learned from baker’s yeast. Biochim. Biophys. Acta, 2013, 1833(11), 2438-2446.
[http://dx.doi.org/10.1016/j.bbamcr.2013.02.008] [PMID: 23434682]
[65]
Lommel, M.; Strahl, S. Protein O-mannosylation: conserved from bacteria to humans. Glycobiology, 2009, 19(8), 816-828.
[http://dx.doi.org/10.1093/glycob/cwp066] [PMID: 19429925]
[66]
Netea, M.G.; Gow, N.A.R.; Munro, C.A.; Bates, S.; Collins, C.; Ferwerda, G.; Hobson, R.P.; Bertram, G.; Hughes, H.B.; Jansen, T.; Jacobs, L.; Buurman, E.T.; Gijzen, K.; Williams, D.L.; Torensma, R.; McKinnon, A.; MacCallum, D.M.; Odds, F.C.; Van der Meer, J.W.M.; Brown, A.J.P.; Kullberg, B.J. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest., 2006, 116(6), 1642-1650.
[http://dx.doi.org/10.1172/JCI27114] [PMID: 16710478]
[67]
Martínez-Álvarez, J.A.; Pérez-García, L.A.; Mellado-Mojica, E.; López, M.G.; Martínez-Duncker, I.; Lópes-Bezerra, L.M.; Mora-Montes, H.M. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front. Microbiol., 2017, 8, 843.
[http://dx.doi.org/10.3389/fmicb.2017.00843] [PMID: 28539922]
[68]
Garfoot, A.L.; Goughenour, K.D.; Wüthrich, M.; Rajaram, M.V.S.; Schlesinger, L.S. Crossm O-Mannosylation of Proteins Enables Histoplasma Yeast., 2018, 9, 1-15.
[69]
Wagener, J.; Echtenacher, B.; Rohde, M.; Kotz, A.; Krappmann, S.; Heesemann, J.; Ebel, F. The putative α-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryot. Cell, 2008, 7(10), 1661-1673.
[http://dx.doi.org/10.1128/EC.00221-08] [PMID: 18708564]
[70]
Cherniak, R.; Valafar, H.; Morris, L.C.; Valafar, F. Cryptococcus Neoformans Chemotyping by Quantitative Analysis of 1H NMR Spectra of Glucuronoxylomannans Using a Computer Simulated Artificial Neural Network. Clin. Diagn. Lab. Immunol., 1998, 5, 146-159.
[PMID: 9521136]
[71]
Doering, T.L. How does Cryptococcus get its coat? Trends Microbiol., 2000, 8(12), 547-553.
[http://dx.doi.org/10.1016/S0966-842X(00)01890-4] [PMID: 11115750]
[72]
Dong, Z.M.; Murphy, J.W. Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect. Immun., 1997, 65(2), 557-563.
[PMID: 9009313]
[73]
Shoham, S.; Huang, C.; Chen, J-M.; Golenbock, D.T.; Levitz, S.M. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol., 2001, 166(7), 4620-4626.
[http://dx.doi.org/10.4049/jimmunol.166.7.4620] [PMID: 11254720]
[74]
Pericolini, E.; Gabrielli, E.; Cenci, E.; De Jesus, M.; Bistoni, F.; Casadevall, A.; Vecchiarelli, A. Involvement of glycoreceptors in galactoxylomannan-induced T cell death. J. Immunol., 2009, 182(10), 6003-6010.
[http://dx.doi.org/10.4049/jimmunol.0803833] [PMID: 19414751]
[75]
Vicente, M.F.; Basilio, A.; Cabello, A.; Peláez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect., 2003, 9(1), 15-32.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00489.x] [PMID: 12691539]
[76]
Muszewska, A. Sebastian Piłsyk, U.P. ´nska-L. and J.S.K. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J. Fungi (Basel), 2017, 4, 6.
[http://dx.doi.org/10.3390/jof4010006]
[77]
Karkowska-Kuleta, J.; Kozik, A. Cell wall proteome of pathogenic fungi. Acta Biochim. Pol., 2015, 62(3), 339-351.
[http://dx.doi.org/10.18388/abp.2015_1032] [PMID: 26192771]
[78]
Levitz, S.M.; Specht, C.A. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res., 2006, 6(4), 513-524.
[http://dx.doi.org/10.1111/j.1567-1364.2006.00071.x] [PMID: 16696647]
[79]
de Groot, P.W.J.; Bader, O.; de Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell, 2013, 12(4), 470-481.
[http://dx.doi.org/10.1128/EC.00364-12] [PMID: 23397570]
[80]
Valim, C.X.; Basso, L.R., Jr; dos Reis Almeida, F.B.; Reis, T.F.; Damásio, A.R.; Arruda, L.K.; Martinez, R.; Roque-Barreira, M.C.; Oliver, C.; Jamur, M.C.; Coelho, P.S. Characterization of PbPga1, an antigenic GPI-protein in the pathogenic fungus Paracoccidioides brasiliensis. PLoS One, 2012, 7(9) e44792
[http://dx.doi.org/10.1371/journal.pone.0044792] [PMID: 23024763]
[81]
García-Carnero, L.C.; Pérez-García, L.A.; Martínez-Álvarez, J.A.; Reyes-Martínez, J.E.; Mora-Montes, H.M. Current trends to control fungal pathogens: exploiting our knowledge in the host-pathogen interaction. Infect. Drug Resist., 2018, 11, 903-913.
[http://dx.doi.org/10.2147/IDR.S170337] [PMID: 30013373]
[82]
Evelyn, S.; Levitz, S.M. Fungal Vaccines and Immunotherapy. J. Mycol. Med., 2006, 16, 134-151.
[http://dx.doi.org/10.1016/j.mycmed.2006.06.004]
[83]
Voltersen, V.; Blango, M.G.; Herrmann, S.; Schmidt, F.; Heinekamp, T.; Strassburger, M.; Krüger, T.; Bacher, P.; Lother, J.; Weiss, E.; Hünniger, K.; Liu, H.; Hortschansky, P.; Scheffold, A.; Löffler, J.; Krappmann, S.; Nietzsche, S.; Kurzai, O.; Einsele, H.; Kniemeyer, O.; Filler, S.G.; Reichard, U.; Brakhage, A.A. Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus Aspergillus fumigatus. MBio, 2018, 9(5), 1-18.
[http://dx.doi.org/10.1128/mBio.01557-18] [PMID: 30279286]
[84]
Nisini, R.; Romagnoli, G.; Gomez, M.J.; La Valle, R.; Torosantucci, A.; Mariotti, S.; Teloni, R.; Cassone, A. Antigenic properties and processing requirements of 65-kilodalton mannoprotein, a major antigen target of anti-Candida human T-cell response, as disclosed by specific human T-cell clones. Infect. Immun., 2001, 69(6), 3728-3736.
[http://dx.doi.org/10.1128/IAI.69.6.3728-3736.2001] [PMID: 11349037]
[85]
Delfino, D.; Cianci, L.; Lupis, E.; Celeste, A.; Petrelli, M.L.; Curró, F.; Cusumano, V.; Teti, G. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infect. Immun., 1997, 65(6), 2454-2456.
[PMID: 9169790]
[86]
Dan, J.M.; Kelly, R.M.; Lee, C.K.; Levitz, S.M. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun., 2008, 76(6), 2362-2367.
[http://dx.doi.org/10.1128/IAI.00095-08] [PMID: 18391001]
[87]
Saijo, S.; Ikeda, S.; Yamabe, K.; Kakuta, S.; Ishigame, H.; Akitsu, A.; Fujikado, N.; Kusaka, T.; Kubo, S.; Chung, S.H.; Komatsu, R.; Miura, N.; Adachi, Y.; Ohno, N.; Shibuya, K.; Yamamoto, N.; Kawakami, K.; Yamasaki, S.; Saito, T.; Akira, S.; Iwakura, Y. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity, 2010, 32(5), 681-691.
[http://dx.doi.org/10.1016/j.immuni.2010.05.001] [PMID: 20493731]
[88]
Ifrim, D.C.; Quintin, J.; Courjol, F.; Verschueren, I.; van Krieken, J.H.; Koentgen, F.; Fradin, C.; Gow, N.A.; Joosten, L.A.B.; van der Meer, J.W.; van de Veerdonk, F.; Netea, M.G. The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis. J. Interferon Cytokine Res., 2016, 36(4), 267-276.
[http://dx.doi.org/10.1089/jir.2015.0040] [PMID: 27046240]
[89]
Tronchin, G.; Pihet, M.; Lopes-Bezerra, L.M.; Bouchara, J.P. Adherence mechanisms in human pathogenic fungi. Med. Mycol., 2008, 46(8), 749-772.
[http://dx.doi.org/10.1080/13693780802206435] [PMID: 18651303]
[90]
Verstrepen, K.J.; Klis, F.M. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol., 2006, 60(1), 5-15.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05072.x] [PMID: 16556216]
[91]
Latgé, J-P.; Beauvais, A.; Chamilos, G. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annu. Rev. Microbiol., 2017, 71, 99-116.
[http://dx.doi.org/10.1146/annurev-micro-030117-020406] [PMID: 28701066]
[92]
Lee, M.J.; Liu, H.; Barker, B.M.; Snarr, B.D.; Gravelat, F.N.; Al Abdallah, Q.; Gavino, C.; Baistrocchi, S.R.; Ostapska, H.; Xiao, T.; Ralph, B.; Solis, N.V.; Lehoux, M.; Baptista, S.D.; Thammahong, A.; Cerone, R.P.; Kaminskyj, S.G.W.; Guiot, M.C.; Latgé, J.P.; Fontaine, T.; Vinh, D.C.; Filler, S.G.; Sheppard, D.C. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog., 2015, 11(10) e1005187
[http://dx.doi.org/10.1371/journal.ppat.1005187] [PMID: 26492565]
[93]
Upadhyay, S.K.; Mahajan, L.; Ramjee, S.; Singh, Y.; Basir, S.F.; Madan, T. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J. Med. Microbiol., 2009, 58(Pt 6), 714-722.
[http://dx.doi.org/10.1099/jmm.0.005991-0] [PMID: 19429746]
[94]
Levdansky, E.; Kashi, O.; Sharon, H.; Shadkchan, Y.; Osherov, N. The Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for normal conidial cell wall architecture and interaction with host cells. Eukaryot. Cell, 2010, 9(9), 1403-1415.
[http://dx.doi.org/10.1128/EC.00126-10] [PMID: 20656913]
[95]
Liu, Y.; Filler, S.G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell, 2011, 10(2), 168-173.
[http://dx.doi.org/10.1128/EC.00279-10] [PMID: 21115738]
[96]
Phan, Q.T.; Myers, C.L.; Fu, Y.; Sheppard, D.C.; Yeaman, M.R.; Welch, W.H.; Ibrahim, A.S.; Edwards, J.E., Jr; Filler, S. G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol., 2007, 5(3) e64
[http://dx.doi.org/10.1371/journal.pbio.0050064] [PMID: 17311474]
[97]
Murciano, C.; Moyes, D.L.; Runglall, M.; Tobouti, P.; Islam, A.; Hoyer, L.L.; Naglik, J.R. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One, 2012, 7(3) e33362
[http://dx.doi.org/10.1371/journal.pone.0033362] [PMID: 22428031]
[98]
Luo, G.; Ibrahim, A.S.; Spellberg, B.; Nobile, C.J.; Mitchell, A.P. Fu1, Y. Candida Albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J. Infect. Dis., 2010, 201, 1718-1728.
[99]
Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. J. Proteomics, 2015, 115, 8-22.
[http://dx.doi.org/10.1016/j.jprot.2014.11.013] [PMID: 25434489]
[100]
Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.C.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Costa, R.O.; Camargo, Z.P.; Felipe, M.S.S.; de Souza, W.; Lopes-Bezerra, L.M. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One, 2013, 8(10) e75656
[http://dx.doi.org/10.1371/journal.pone.0075656] [PMID: 24116065]
[101]
Nascimento, R.C.; Espíndola, N.M.; Castro, R.A.; Teixeira, P.A.C.; Loureiro y Penha, C.V.; Lopes-Bezerra, L.M.; Almeida, S.R. Passive immunization with monoclonal antibody against a 70-kDa putative adhesin of Sporothrix schenckii induces protection in murine sporotrichosis. Eur. J. Immunol., 2008, 38(11), 3080-3089.
[http://dx.doi.org/10.1002/eji.200838513] [PMID: 18991286]
[102]
Zhang, M.X.; Brandhorst, T.T.; Kozel, T.R.; Klein, B.S. Role of glucan and surface protein BAD1 in complement activation by Blastomyces dermatitidis yeast. Infect. Immun., 2001, 69(12), 7559-7564.
[http://dx.doi.org/10.1128/IAI.69.12.7559-7564.2001] [PMID: 11705933]
[103]
Finkel-Jimenez, B.; Wüthrich, M.; Brandhorst, T.; Klein, B.S. The WI-1 adhesin blocks phagocyte TNF-α production, imparting pathogenicity on Blastomyces dermatitidis. J. Immunol., 2001, 166(4), 2665-2673.
[http://dx.doi.org/10.4049/jimmunol.166.4.2665] [PMID: 11160330]
[104]
Brandhorst, T.; Wüthrich, M.; Finkel-Jimenez, B.; Klein, B. A C-terminal EGF-like domain governs BAD1 localization to the yeast surface and fungal adherence to phagocytes, but is dispensable in immune modulation and pathogenicity of Blastomyces dermatitidis. Mol. Microbiol., 2003, 48(1), 53-65.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03415.x] [PMID: 12657044]
[105]
Wang, L.; Zhai, B.; Lin, X. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog., 2012, 8(6) e1002765
[http://dx.doi.org/10.1371/journal.ppat.1002765] [PMID: 22737071]
[106]
Hung, C.Y.; Yu, J.J.; Seshan, K.R.; Reichard, U.; Cole, G.T. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory Fungal pathogen. Infect. Immun., 2002, 70(7), 3443-3456.
[http://dx.doi.org/10.1128/IAI.70.7.3443-3456.2002] [PMID: 12065484]
[107]
Bohse, M.L.; Woods, J.P. RNA interference-mediated silencing of the YPS3 gene of Histoplasma capsulatum reveals virulence defects. Infect. Immun., 2007, 75(6), 2811-2817.
[http://dx.doi.org/10.1128/IAI.00304-07] [PMID: 17403872]
[108]
Schurtz, T.; Engle, J.T.; Goldman, W.E.; Sebghati, T.S.; Engle, J.T.; Goldman, W.E. Http://Www.Jstor.Org/Stable/30782502000.
[109]
Buzina, W.; Raggam, R.B.; Paulitsch, A.; Heiling, B.; Marth, E. Characterization and temperature-dependent quantification of heat shock protein 60 of the immunogenic fungus Alternaria alternata. Med. Mycol., 2008, 46(6), 627-630.
[http://dx.doi.org/10.1080/13693780802084915] [PMID: 18608928]
[110]
Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules, 2018, 23(11), 2846.
[http://dx.doi.org/10.3390/molecules23112846] [PMID: 30388847]
[111]
Tiwari, S.; Thakur, R.; Shankar, J. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. Biotechnol. Res. Int., 2015, 2015 132635
[http://dx.doi.org/10.1155/2015/132635] [PMID: 26881084]
[112]
Burnie, J.P.; Carter, T.L.; Hodgetts, S.J.; Matthews, R.C. Fungal heat-shock proteins in human disease. FEMS Microbiol. Rev., 2006, 30(1), 53-88.
[http://dx.doi.org/10.1111/j.1574-6976.2005.00001.x] [PMID: 16438680]
[113]
Deepe, G.S.; Gibbons, R.; Brunner, G.D. A protective domain of heat-shock protein 60 from Histoplasma capsulatum. J. Infect. Dis., 1996, 174(4), 828-834.
[114]
Aimanianda, V.; Bayry, J.; Bozza, S.; Kniemeyer, O.; Perruccio, K.; Elluru, S.R.; Clavaud, C.; Paris, S.; Brakhage, A.A.; Kaveri, S.V.; Romani, L.; Latgé, J.P. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460(7259), 1117-1121.
[http://dx.doi.org/10.1038/nature08264] [PMID: 19713928]
[115]
Heinekamp, T.; Schmidt, H.; Lapp, K.; Pähtz, V.; Shopova, I.; Köster-Eiserfunke, N.; Krüger, T.; Kniemeyer, O.; Brakhage, A.A. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol., 2015, 37(2), 141-152.
[http://dx.doi.org/10.1007/s00281-014-0465-1] [PMID: 25404120]
[116]
Gersuk, G.M.; Underhill, D.M.; Zhu, L.; Marr, K.A. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol., 2006, 176(6), 3717-3724.
[http://dx.doi.org/10.4049/jimmunol.176.6.3717] [PMID: 16517740]
[117]
Bruns, S.; Kniemeyer, O.; Hasenberg, M.; Aimanianda, V.; Nietzsche, S.; Thywissen, A.; Jeron, A.; Latgé, J-P.; Brakhage, A.A.; Gunzer, M. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog., 2010, 6(4) e1000873
[http://dx.doi.org/10.1371/journal.ppat.1000873] [PMID: 20442864]
[118]
Thau, N.; Monod, M.; Crestani, B.; Rolland, C.; Tronchin, G.; Latgé, J.P.; Paris, S. rodletless mutants of Aspergillus fumigatus. Infect. Immun., 1994, 62(10), 4380-4388.
[PMID: 7927699]
[119]
Mandujano-González, V.; Villa-Tanaca, L.; Anducho-Reyes, M.A.; Mercado-Flores, Y. Secreted fungal aspartic proteases: A review. Rev. Iberoam. Micol., 2016, 33(2), 76-82.
[http://dx.doi.org/10.1016/j.riam.2015.10.003] [PMID: 27137097]
[120]
Gropp, K.; Schild, L.; Schindler, S.; Hube, B.; Zipfel, P.F.; Skerka, C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol., 2009, 47(2-3), 465-475.
[http://dx.doi.org/10.1016/j.molimm.2009.08.019] [PMID: 19880183]
[121]
Behnsen, J.; Lessing, F.; Schindler, S.; Wartenberg, D.; Jacobsen, I.D.; Thoen, M.; Zipfel, P.F.; Brakhage, A.A. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect. Immun., 2010, 78(8), 3585-3594.
[http://dx.doi.org/10.1128/IAI.01353-09] [PMID: 20498262]
[122]
Reichard, U.; Eiffert, H.; Rüchel, R. Purification and characterization of an extracellular aspartic proteinase from Aspergillus fumigatus. J. Med. Vet. Mycol., 1994, 32(6), 427-436.
[http://dx.doi.org/10.1080/02681219480000581] [PMID: 7738725]
[123]
Larcher, G.; Cimon, B.; Symoens, F.; Tronchin, G.; Chabasse, D.; Bouchara, J-P.A.A. 33 kDa serine proteinase from Scedosporium apiospermum. Biochem. J., 1996, 315(Pt 1), 119-126.
[http://dx.doi.org/10.1042/bj3150119] [PMID: 8670095]
[124]
Santos, A.L.S.; Bittencourt, V.C.B.; Pinto, M.R.; Silva, B.A.; Barreto-Bergter, E. Biochemical characterization of potential virulence markers in the human fungal pathogen Pseudallescheria boydii. Med. Mycol., 2009, 47(4), 375-386.
[http://dx.doi.org/10.1080/13693780802610305] [PMID: 19235547]
[125]
Silva, B.A.; Pinto, M.R.; Soares, R.M.A.; Barreto-Bergter, E.; Santos, A.L.S. Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Res. Microbiol., 2006, 157(5), 425-432.
[http://dx.doi.org/10.1016/j.resmic.2005.11.010] [PMID: 16487686]
[126]
Chai, L.Y.A.; Netea, M.G.; Vonk, A.G.; Kullberg, B.J. Fungal strategies for overcoming host innate immune response. Med. Mycol., 2009, 47(3), 227-236.
[http://dx.doi.org/10.1080/13693780802209082] [PMID: 18654922]
[127]
Richmond, G.S.; Smith, T.K. Phospholipases A1. Int. J. Mol. Sci., 2011, 12(1), 588-612.
[http://dx.doi.org/10.3390/ijms12010588] [PMID: 21340002]
[128]
Chrisman, C.J.; Albuquerque, P.; Guimaraes, A.J.; Nieves, E.; Casadevall, A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog., 2011, 7(5) e1002047
[http://dx.doi.org/10.1371/journal.ppat.1002047] [PMID: 21637814]
[129]
Cox, G.M.; McDade, H.C.; Chen, S.C.A.; Tucker, S.C.; Gottfredsson, M.; Wright, L.C.; Sorrell, T.C.; Leidich, S.D.; Casadevall, A.; Ghannoum, M.A.; Perfect, J.R. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol., 2001, 39(1), 166-175.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02236.x] [PMID: 11123698]
[130]
Chayakulkeeree, M.; Perfect, J.R. Cryptococcosis. Infect. Dis. Clin. North Am., 2006, 20(3), 507-544. [v-vi].
[http://dx.doi.org/10.1016/j.idc.2006.07.001] [PMID: 16984867]
[131]
Shen, D.K.; Noodeh, A.D.; Kazemi, A.; Grillot, R.; Robson, G.; Brugère, J.F. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol. Lett., 2004, 239(1), 87-93.
[http://dx.doi.org/10.1016/j.femsle.2004.08.019] [PMID: 15451105]
[132]
Li, X.; Gao, M.; Han, X.; Tao, S.; Zheng, D.; Cheng, Y.; Yu, R.; Han, G.; Schmidt, M.; Han, L. Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect. Immun., 2012, 80(1), 429-440.
[http://dx.doi.org/10.1128/IAI.05830-11] [PMID: 22083709]
[133]
Soares, D.A.; de Andrade, R.V.; Silva, S.S.; Bocca, A.L.; Soares Felipe, S.M.; Petrofeza, S. Extracellular Paracoccidioides brasiliensis phospholipase B involvement in alveolar macrophage interaction. BMC Microbiol., 2010, 10, 241.
[http://dx.doi.org/10.1186/1471-2180-10-241] [PMID: 20843362]
[134]
Valentín-Berríos, S.; González-Velázquez, W.; Pérez-Sánchez, L.; González-Méndez, R.; Rodríguez-Del Valle, N. Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein α subunit in Sporothrix schenckii. BMC Microbiol., 2009, 9, 100.
[http://dx.doi.org/10.1186/1471-2180-9-100] [PMID: 19454031]
[135]
Barman, A.; Gohain, D.; Bora, U.; Tamuli, R. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol. Res., 2018, 209, 55-69.
[http://dx.doi.org/10.1016/j.micres.2017.12.012] [PMID: 29580622]
[136]
Garfoot, A.L.; Shen, Q.; Wüthrich, M.; Klein, B.S.; Rappleye, C.A. The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure. MBio, 2016, 7(2), e01388-e15.
[http://dx.doi.org/10.1128/mBio.01388-15] [PMID: 27094334]
[137]
Fu, M.S.; Coelho, C.; De Leon-Rodriguez, C.M.; Rossi, D.C.P.; Camacho, E.; Jung, E.H.; Kulkarni, M.; Casadevall, A. Cryptococcus Neoformans Urease Affects the Outcome of Intracellular Pathogenesis by Modulating Phagolysosomal PH; , 2018, Vol. 14, .
[138]
Johnston, S.A.; May, R.C. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen. Cell. Microbiol., 2013, 15, 403-411.
[139]
Latgé, J.P.; Mouyna, I.; Tekaia, F.; Beauvais, A.; Debeaupuis, J.P.; Nierman, W. Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med. Mycol., 2005, 43(Suppl. 1), S15-S22.
[http://dx.doi.org/10.1080/13693780400029155] [PMID: 16110787]
[140]
Latgé, J.P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol., 2007, 66(2), 279-290.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05872.x] [PMID: 17854405]
[141]
Nosanchuk, J.D.; Casadevall, A. Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiology, 2003, 149(Pt 7), 1945-1951.
[http://dx.doi.org/10.1099/mic.0.26333-0] [PMID: 12855745]
[142]
Jacobson, E.S. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev., 2000, 13(4), 708-717.
[http://dx.doi.org/10.1128/CMR.13.4.708] [PMID: 11023965]
[143]
Butler, M.J.; Gardiner, R.B.; Day, A.W. Fungal melanin detection by the use of copper sulfide-silver. Mycologia, 2005, 97(2), 312-319.
[http://dx.doi.org/10.1080/15572536.2006.11832806] [PMID: 16396338]
[144]
Bell, A.A.; Wheeler, M.H. Biosynthesis and Functions of Fungal Melanins. Annu. Rev. Phytopathol., 1986, 24, 411-451.
[http://dx.doi.org/10.1146/annurev.py.24.090186.002211]
[145]
Romero-Martinez, R.; Wheeler, M.; Guerrero-Plata, A.; Rico, G.; Torres-Guerrero, H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect. Immun., 2000, 68(6), 3696-3703.
[http://dx.doi.org/10.1128/IAI.68.6.3696-3703.2000] [PMID: 10816530]
[146]
Youngchim, S.; Morris-Jones, R.; Hay, R.J.; Hamilton, A.J. Production of melanin by Aspergillus fumigatus. J. Med. Microbiol., 2004, 53(Pt 3), 175-181.
[http://dx.doi.org/10.1099/jmm.0.05421-0] [PMID: 14970241]
[147]
Alviano, C.S.; Farbiarz, S.R.; De Souza, W.; Angluster, J.; Travassos, L.R. Characterization of Fonsecaea pedrosoi melanin. J. Gen. Microbiol., 1991, 137(4), 837-844.
[http://dx.doi.org/10.1099/00221287-137-4-837] [PMID: 1856679]
[148]
della-Cioppa, G.; Garger, S.J.; Sverlow, G.G.; Turpen, T.H.; Grill, L.K. Melanin production in Escherichia coli from a cloned tyrosinase gene. Biotechnology (N. Y.), 1990, 8(7), 634-638.
[PMID: 1367455]
[149]
Wang, Y.; Aisen, P.; Casadevall, A. Melanin and Melanin Ghosts in Cryptococcus. Infect. Immun., 1996, 64, 2420-2424.
[PMID: 8698461]
[150]
da Silva, M.B.; Marques, A.F.; Nosanchuk, J.D.; Casadevall, A.; Travassos, L.R.; Taborda, C.P. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect., 2006, 8(1), 197-205.
[http://dx.doi.org/10.1016/j.micinf.2005.06.018] [PMID: 16213179]
[151]
Nosanchuk, J.D.; Di, S.; Go, B.L.; Cano, L.U.Z.E.; Restrepo, A.; Casadevall, A.; Hamilton, A.J. Detection of melanin-like pigments in the dimorphic fungal pathogen paracoccidioides brasiliensis in vitro and during infection. Infect. Immun., 2001, 69, 5760-5767.
[152]
Morris-Jones, R.; Gomez, B.L.; Diez, S.; Uran, M.; Morris-Jones, S.D.; Casadevall, A.; Nosanchuk, J.D.; Hamilton, A.J. Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect. Immun., 2005, 73(9), 6147-6150.
[http://dx.doi.org/10.1128/IAI.73.9.6147-6150.2005] [PMID: 16113337]
[153]
Nosanchuk, J.D.; Yu, J.J.; Hung, C.Y.; Casadevall, A.; Cole, G.T. Coccidioides posadasii produces melanin in vitro and during infection. Fungal Genet. Biol., 2007, 44(6), 517-520.
[http://dx.doi.org/10.1016/j.fgb.2006.09.006] [PMID: 17074521]
[154]
Zalar, P.; Novak, M.; de Hoog, G.S.; Gunde-Cimerman, N. Dishwashers--a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol., 2011, 115(10), 997-1007.
[http://dx.doi.org/10.1016/j.funbio.2011.04.007] [PMID: 21944212]
[155]
Brush, L.; Money, N.P. Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fungal Genet. Biol., 1999, 28(3), 190-200.
[http://dx.doi.org/10.1006/fgbi.1999.1176] [PMID: 10669584]
[156]
Wang, Y.; Aisen, P.; Casadevall, A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun., 1995, 63(8), 3131-3136.
[PMID: 7622240]
[157]
Nosanchuk, J.D.; Rosas, A.L.; Casadevall, A. The Antibody Response to Fungal Melanin in Mice. Med. Mycol., 2015, 53, 295-301.
[158]
Ray, R.M.; Desai, J.D. Effect of melanin on enzymatic hydrolysis of cellulosic waste. Biotechnol. Bioeng., 1984, 26(7), 699-701.
[http://dx.doi.org/10.1002/bit.260260711] [PMID: 18553434]
[159]
Rosas, Á.L.; Nosanchuk, J.D.; Casadevall, A. Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect. Immun., 2001, 69(5), 3410-3412.
[http://dx.doi.org/10.1128/IAI.69.5.3410-3412.2001] [PMID: 11292764]
[160]
Wang, Y.; Casadevall, A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect. Immun., 1994, 62(7), 3004-3007.
[PMID: 8005689]
[161]
Nosanchuk, J.D.; Gómez, B.L.; Youngchim, S.; Díez, S.; Aisen, P.; Zancopé-Oliveira, R.M.; Restrepo, A.; Casadevall, A.; Hamilton, A.J. Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect. Immun., 2002, 70(9), 5124-5131.
[http://dx.doi.org/10.1128/IAI.70.9.5124-5131.2002] [PMID: 12183562]
[162]
Nosanchuk, J.D.; van Duin, D.; Mandal, P.; Aisen, P.; Legendre, A.M.; Casadevall, A. Blastomyces dermatitidis produces melanin in vitro and during infection. FEMS Microbiol. Lett., 2004, 239(1), 187-193.
[http://dx.doi.org/10.1016/j.femsle.2004.08.040] [PMID: 15451118]
[163]
Rosas, Á.L.; MacGill, R.S.; Nosanchuk, J.D.; Kozel, T.R. Casadevall, a. Activation of the Alternative Pathway of Complement by Human Peripheral Nerve Myelin. Clin. Diagn. Lab. Immunol., 2002, 9, 144-148.
[PMID: 11777844]
[164]
Mohagheghpour, N.; Waleh, N.; Garger, S.J.; Dousman, L.; Grill, L.K.; Tusé, D. Synthetic melanin suppresses production of proinflammatory cytokines. Cell. Immunol., 2000, 199(1), 25-36.
[http://dx.doi.org/10.1006/cimm.1999.1599] [PMID: 10675272]
[165]
Mednick, A.J.; Nosanchuk, J.D.; Casadevall, A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect. Immun., 2005, 73(4), 2012-2019.
[http://dx.doi.org/10.1128/IAI.73.4.2012-2019.2005] [PMID: 15784542]
[166]
Hoag, K.A.; Street, N.E.; Huffnagle, G.B.; Lipscomb, M.F. Early cytokine production in pulmonary Cryptococcus neoformans infections distinguishes susceptible and resistant mice. Am. J. Respir. Cell Mol. Biol., 1995, 13(4), 487-495.
[http://dx.doi.org/10.1165/ajrcmb.13.4.7546779] [PMID: 7546779]
[167]
Montijn, R.C.; Van Wolven, P.; De Hoog, S.; Klis, F.M. β-Glucosylated proteins in the cell wall of the black yeast Exophiala (Wangiella) dermatitidis. Microbiology, 1997, 143(Pt 5), 1673-1680.
[http://dx.doi.org/10.1099/00221287-143-5-1673] [PMID: 9168616]
[168]
Kuo, M.J.; Alexander, M. Inhibition of the lysis of fungi by melanins. J. Bacteriol., 1967, 94(3), 624-629.
[PMID: 6035264]
[169]
Schnitzler, N.; Peltroche-Llacsahuanga, H.; Bestier, N.; Zündorf, J.; Lütticken, R.; Haase, G. Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing by human neutrophils. Infect. Immun., 1999, 67(1), 94-101.
[PMID: 9864201]
[170]
Jahn, B.; Koch, A.; Schmidt, A.; Wanner, G.; Gehringer, H.; Bhakdi, S.; Brakhage, A.A. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun., 1997, 65(12), 5110-5117.
[PMID: 9393803]
[171]
Mario, D.A.N.; Santos, R.C.V.; Denardi, L.B.; Vaucher, R. de A.; Santurio, J.M.; Alves, S.H. Interference of melanin in the susceptibility profile of Sporothrix species to amphotericin B. Rev. Iberoam. Micol., 2016, 33(1), 21-25.
[http://dx.doi.org/10.1016/j.riam.2015.03.001] [PMID: 26194334]
[172]
Carzaniga, R.; Fiocco, D.; Bowyer, P.; O’Connell, R.J. Localization of melanin in conidia of Alternaria alternata using phage display antibodies. Mol. Plant Microbe Interact., 2002, 15(3), 216-224.
[http://dx.doi.org/10.1094/MPMI.2002.15.3.216] [PMID: 11952124]
[173]
Pal, A.K.; Gajjar, D.U.; Vasavada, A.R. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med. Mycol., 2014, 52(1), 10-18.
[PMID: 23998343]
[174]
San-Blas, G.; Guanipa, O.; Moreno, B.; Pekerar, S.; San-Blas, F. Cladosporium carrionii and Hormoconis resinae (C. resinae): cell wall and melanin studies. Curr. Microbiol., 1996, 32(1), 11-16.
[http://dx.doi.org/10.1007/s002849900003] [PMID: 8555941]
[175]
Taborda, C.P.; da Silva, M.B.; Nosanchuk, J.D.; Travassos, L.R. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia, 2008, 165(4-5), 331-339.
[http://dx.doi.org/10.1007/s11046-007-9061-4] [PMID: 18777637]
[176]
Kirchhoff, L.; Olsowski, M.; Rath, P-M.; Steinmann, J. Exophiala Dermatitidis: Key Issues of an Opportunistic Fungal Pathogen. Virulence, 2019, 10(1), 984-998.
[177]
Walker, C.A.; Gómez, B.L.; Mora-Montes, H.M.; Mackenzie, K.S.; Munro, C.A.; Brown, A.J.P.; Gow, N.A.R.; Kibbler, C.C.; Odds, F.C. Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot. Cell, 2010, 9(9), 1329-1342.
[http://dx.doi.org/10.1128/EC.00051-10] [PMID: 20543065]
[178]
Hong, Y.; Zhao, J.; Guo, L.; Kim, S.C.; Deng, X.; Wang, G.; Zhang, G.; Li, M.; Wang, X. Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res., 2016, 62, 55-74.
[http://dx.doi.org/10.1016/j.plipres.2016.01.002] [PMID: 26783886]
[179]
Domer, J.E.; Hamilton, J.G. The readily extracted lipids of Histoplasma capsulatum and Blastomyces dermatitidis. Biochim. Biophys. Acta, 1971, 231(3), 465-478.
[http://dx.doi.org/10.1016/0005-2760(71)90114-7] [PMID: 5089693]
[180]
Vargas, G.; Rocha, J.D.B.; Oliveira, D.L.; Albuquerque, P.C.; Frases, S.; Santos, S.S.; Nosanchuk, J.D.; Gomes, A.M.O.; Medeiros, L.C.A.S.; Miranda, K.; Sobreira, T.J.P.; Nakayasu, E.S.; Arigi, E.A.; Casadevall, A.; Guimaraes, A.J.; Rodrigues, M.L.; Freire-de-Lima, C.G.; Almeida, I.C.; Nimrichter, L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell. Microbiol., 2015, 17(3), 389-407.
[http://dx.doi.org/10.1111/cmi.12374] [PMID: 25287304]
[181]
Baltazar, L.M.; Zamith-Miranda, D.; Burnet, M.C.; Choi, H.; Nimrichter, L.; Nakayasu, E.S.; Nosanchuk, J.D. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci. Rep., 2018, 8(1), 8065.
[http://dx.doi.org/10.1038/s41598-018-25665-5] [PMID: 29795301]
[182]
Ikeda, M.A.K.; de Almeida, J.R.F.; Jannuzzi, G.P.; Cronemberger-Andrade, A.; Torrecilhas, A.C.T.; Moretti, N.S.; da Cunha, J.P.C.; de Almeida, S.R.; Ferreira, K.S. Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Front. Microbiol., 2018, 9, 2286.
[http://dx.doi.org/10.3389/fmicb.2018.02286] [PMID: 30333803]
[183]
Albuquerque, P.C.; Nakayasu, E.S.; Rodrigues, M.L.; Frases, S.; Casadevall, A.; Zancope-Oliveira, R.M.; Almeida, I.C.; Nosanchuk, J.D. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol., 2008, 10(8), 1695-1710.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01160.x] [PMID: 18419773]
[184]
Oliveira, D.L.; Freire-de-Lima, C.G.; Nosanchuk, J.D.; Casadevall, A.; Rodrigues, M.L.; Nimrichter, L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect. Immun., 2010, 78(4), 1601-1609.
[http://dx.doi.org/10.1128/IAI.01171-09] [PMID: 20145096]
[185]
Alves, L.R.; Sanchez, D.A.; Zamith-miranda, D.; Goldenberg, S.; Puccia, R.; Nosanchuk, D. Extracellular vesicle-mediated RNA release in Histoplasma Capsulatum Lysangela. mSpehre, 2019, 4, e00176-19.
[186]
Rodrigues, M.L.; Nimrichter, L.; Oliveira, D.L.; Frases, S.; Miranda, K.; Zaragoza, O.; Alvarez, M.; Nakouzi, A.; Feldmesser, M.; Casadevall, A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell, 2007, 6(1), 48-59.
[http://dx.doi.org/10.1128/EC.00318-06] [PMID: 17114598]
[187]
Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell, 2008, 7(1), 58-67.
[http://dx.doi.org/10.1128/EC.00370-07] [PMID: 18039940]
[188]
Eisenman, H.C.; Frases, S.; Nicola, A.M.; Rodrigues, M.L.; Casadevall, A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology, 2009, 155(Pt 12), 3860-3867.
[http://dx.doi.org/10.1099/mic.0.032854-0] [PMID: 19729402]
[189]
Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813), 740-745.
[http://dx.doi.org/10.1038/35047123] [PMID: 11130078]
[190]
Pohar, J.; Krajnik, A.K.; Jerala, R.; Bencina, M. Minimal sequence requirements for oligodeoxyribonucleotides activating human TLR9. J. Immunol., 2015, 194, 3901-3908.
[http://dx.doi.org/10.4049/jimmunol.1402755]
[191]
Kasperkovitz, P.V.; Khan, N.S.; Tam, J.M.; Mansour, M.K.; Davids, P.J.; Vyas, J.M. Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect. Immun., 2011, 79(12), 4858-4867.
[http://dx.doi.org/10.1128/IAI.05626-11] [PMID: 21947771]
[192]
Souza, M.C.; Corrêa, M.; Almeida, S.R.; Lopes, J.D.; Camargo, Z.P. Immunostimulatory DNA from Paracoccidioides brasiliensis acts as T-helper 1 promoter in susceptible mice. Scand. J. Immunol., 2001, 54(4), 348-356.
[http://dx.doi.org/10.1046/j.1365-3083.2001.00937.x] [PMID: 11555401]
[193]
Nakamura, K.; Miyazato, A.; Xiao, G.; Hatta, M.; Inden, K.; Aoyagi, T.; Shiratori, K.; Takeda, K.; Akira, S.; Saijo, S.; Iwakura, Y.; Adachi, Y.; Ohno, N.; Suzuki, K.; Fujita, J.; Kaku, M.; Kawakami, K. Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J. Immunol., 2008, 180(6), 4067-4074.
[http://dx.doi.org/10.4049/jimmunol.180.6.4067] [PMID: 18322216]
[194]
Miyazato, A.; Nakamura, K.; Yamamoto, N.; Mora-Montes, H.M.; Tanaka, M.; Abe, Y.; Tanno, D.; Inden, K.; Gang, X.; Ishii, K.; Takeda, K.; Akira, S.; Saijo, S.; Iwakura, Y.; Adachi, Y.; Ohno, N.; Mitsutake, K.; Gow, N.A.; Kaku, M.; Kawakami, K. Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans. Infect. Immun., 2009, 77(7), 3056-3064.
[http://dx.doi.org/10.1128/IAI.00840-08] [PMID: 19433551]
[195]
Bellocchio, S.; Montagnoli, C.; Bozza, S.; Gaziano, R.; Rossi, G.; Mambula, S.S.; Vecchi, A.; Mantovani, A.; Levitz, S.M.; Romani, L. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol., 2004, 172(5), 3059-3069.
[http://dx.doi.org/10.4049/jimmunol.172.5.3059] [PMID: 14978111]
[196]
Ramirez-Ortiz, Z.G.; Specht, C.A.; Wang, J.P.; Lee, C.K.; Bartholomeu, D.C.; Gazzinelli, R.T.; Levitz, S.M. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect. Immun., 2008, 76(5), 2123-2129.
[http://dx.doi.org/10.1128/IAI.00047-08] [PMID: 18332208]
[197]
Biondo, C.; Malara, A.; Costa, A.; Signorino, G.; Cardile, F.; Midiri, A.; Galbo, R.; Papasergi, S.; Domina, M.; Pugliese, M.; Teti, G.; Mancuso, G.; Beninati, C. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur. J. Immunol., 2012, 42(10), 2632-2643.
[http://dx.doi.org/10.1002/eji.201242532] [PMID: 22777843]
[198]
Di Mambro, T.; Guerriero, I.; Aurisicchio, L.; Magnani, M.; Marra, E. The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses? Front. Pharmacol., 2019, 10, 80.
[http://dx.doi.org/10.3389/fphar.2019.00080] [PMID: 30804788]
[199]
Evans, R.J.; Pline, K.; Loynes, C.A.; Needs, S.; Aldrovandi, M.; Tiefenbach, J.; Bielska, E.; Rubino, R.E.; Nicol, C.J.; May, R.C.; Krause, H.M.; O’Donnell, V.B.; Renshaw, S.A.; Johnston, S.A. 15-Keto-Prostaglandin E 2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus Neoformans growth during infection. PLoS Pathogen., 2019, 15(3)e1007597
[200]
Rogiers, O.; Frising, U.C.; Kucharíková, S.; Jabra-Rizk, M.A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans Hyphae. MBio, 2019, 10(1), 10.
[http://dx.doi.org/10.1128/mBio.02221-18] [PMID: 30622184]
[201]
Kasper, L.; König, A.; Koenig, P.A.; Gresnigt, M.S.; Westman, J.; Drummond, R.A.; Lionakis, M.S.; Groß, O.; Ruland, J.; Naglik, J.R.; Hube, B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun., 2018, 9(1), 4260.
[http://dx.doi.org/10.1038/s41467-018-06607-1] [PMID: 30323213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy