Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Vascular Inflammation in Hypertension: Targeting Lipid Mediators Unbalance and Nitrosative Stress

Author(s): Alexandre S. Bruno, Patricia das Dores Lopes, Karla C.M. de Oliveira, Anizia K. de Oliveira and Stefany B. de Assis Cau*

Volume 17, Issue 1, 2021

Published on: 20 December, 2019

Page: [35 - 46] Pages: 12

DOI: 10.2174/1573402116666191220122332

Price: $65

Abstract

Arterial hypertension is a worldwide public health threat. High Blood Pressure (BP) is commonly associated with endothelial dysfunction, nitric oxide synthases (NOS) unbalance and high peripheral vascular resistance. In addition to those, inflammation has also been designated as one of the major components of BP increase and organ damage in hypertension. This minireview discusses vascular inflammatory triggers of high BP and aims to fill the existing gaps of antiinflammatory therapy of hypertension. Among the reasons discussed, enhanced prostaglandins rather than resolvins lipid mediators, immune cell infiltration and oxidative/nitrosative stress are pivotal players of BP increase within the inflammatory hypothesis. To address these inflammatory targets, this review also proposes new concepts in hypertension treatment with non-steroidal antiinflammatory drugs (NSAIDs), nitric oxide-releasing NSAIDs (NO-NSAIDs) and specialized proresolving mediators (SPM). In this context, the failure of NSAIDs in hypertension treatment seems to be associated with the reduction of endogenous NO bioavailability, which is not necessarily an effect of all drug members of this pharmacological class. For this reason, NO-releasing NSAIDs seem to be safer and more specific therapy to treat vascular inflammation in hypertension than regular NSAIDs.

Keywords: Hypertension, vascular inflammation, cyclooxygenases, NF-κB, iNOS, NSAIDs, NO-NSAIDs.

Graphical Abstract
[1]
Harrison DG. The mosaic theory revisited: Common molecular mechanisms coordinating diverse organ and cellular events in hypertension. J Am Soc Hypertens 2013; 7(1): 68-74.
[http://dx.doi.org/10.1016/j.jash.2012.11.007] [PMID: 23321405]
[2]
Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS. Hypertension: A new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019; 176(12): 2028-48.
[http://dx.doi.org/10.1111/bph.14436] [PMID: 29969833]
[3]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[4]
Virdis A, Dell’Agnello U, Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas 2014; 78(3): 179-83.
[http://dx.doi.org/10.1016/j.maturitas.2014.04.012] [PMID: 24846805]
[5]
Tanase DM, Gosav EM, Radu S, et al. Arterial hypertension and interleukins: Potential therapeutic target or future diagnostic marker? Int J Hypertens 2019; 20193159283
[http://dx.doi.org/10.1155/2019/3159283] [PMID: 31186952]
[6]
Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res 2017; 119: 404-11.
[http://dx.doi.org/10.1016/j.phrs.2017.02.026] [PMID: 28279813]
[7]
Jiménez MC, Rexrode KM, Glynn RJ, Ridker PM, Gaziano JM, Sesso HD. Association between high-sensitivity C-reactive protein and total stroke by hypertensive status among men. J Am Heart Assoc 2015; 4(9)e002073
[http://dx.doi.org/10.1161/JAHA.115.002073] [PMID: 26391131]
[8]
Jhuang YH, Kao TW, Peng TC, et al. Neutrophil to lymphocyte ratio as predictor for incident hypertension: A 9-year cohort study in Taiwan. Hypertens Res 2019; 42(8): 1209-14.
[http://dx.doi.org/10.1038/s41440-019-0245-3] [PMID: 30850753]
[9]
Srinivasagopalane B, Andrew Rajarathinam S, Balasubramaiyan T. Clinical pertinence of neutrophil-to- lymphocyte ratio among hypertensives with different grades and duration of hypertension - an insight. Clin Exp Hypertens 2019; 41(4): 394-9.
[http://dx.doi.org/10.1080/10641963.2018.1510942] [PMID: 30183451]
[10]
Sonmez A, Dogru T, Yilmaz MI, et al. Soluble CD40 ligand levels in patients with hypertension. Clin Exp Hypertens 2005; 27(8): 629-34.
[http://dx.doi.org/10.1080/10641960500298673] [PMID: 16303639]
[11]
Guzel M, Dogru MT, Simsek V, et al. Influence of circadian blood pressure alterations on serum SCUBE-1 and soluble CD40 ligand levels in patients with essential hypertension. Am J Cardiovasc Dis 2019; 9(4): 42-8.
[PMID: 31516762]
[12]
Yuan M, Ohishi M, Wang L, et al. Association between serum levels of soluble CD40/CD40 ligand and organ damage in hypertensive patients. Clin Exp Pharmacol Physiol 2010; 37(8): 848-51.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05394.x] [PMID: 20456428]
[13]
Radner H, Lesperance T, Accortt NA, Solomon DH. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res (Hoboken) 2017; 69(10): 1510-8.
[http://dx.doi.org/10.1002/acr.23171] [PMID: 27998029]
[14]
Ikdahl E, Wibetoe G, Rollefstad S, et al. Guideline recommended treatment to targets of cardiovascular risk is inadequate in patients with inflammatory joint diseases. Int J Cardiol 2019; 274: 311-8.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.111] [PMID: 30007486]
[15]
Taylor EB, Ryan MJ. Immunosuppression With mycophenolate mofetil attenuates hypertension in an experimental model of autoimmune disease. J Am Heart Assoc 2017; 6(3)e005394
[http://dx.doi.org/10.1161/JAHA.116.005394] [PMID: 28242635]
[16]
Mathis KW, Wallace K, Flynn ER, Maric-Bilkan C, LaMarca B, Ryan MJ. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension 2014; 64(4): 792-800.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04006] [PMID: 25024282]
[17]
Yoshida S, Takeuchi T, Kotani T, et al. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J Hum Hypertens 2014; 28(3): 165-9.
[http://dx.doi.org/10.1038/jhh.2013.80] [PMID: 24005958]
[18]
Mortimer I, Bissell LA, Hensor EMA, et al. Improvement in cardiovascular biomarkers sustained at 4 years following an initial treat-to-target strategy in early rheumatoid arthritis. Rheumatology (Oxford) 2019; 58(9): 1684-6.
[http://dx.doi.org/10.1093/rheumatology/kez114] [PMID: 31329965]
[19]
McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res 2015; 116(6): 1022-33.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303697] [PMID: 25767287]
[20]
Franz KM, Kagan JC. Innate immune receptors as competitive determinants of cell fate. Mol Cell 2017; 66(6): 750-60.
[http://dx.doi.org/10.1016/j.molcel.2017.05.009] [PMID: 28622520]
[21]
Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: The vascular health triad. Age (Dordr) 2013; 35(3): 705-18.
[http://dx.doi.org/10.1007/s11357-012-9402-1] [PMID: 22453933]
[22]
Wenzel P, Knorr M, Kossmann S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 2011; 124(12): 1370-81.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.034470] [PMID: 21875910]
[23]
Bomfim GF, Santos RAD, Oliveira MA, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond) 2012; 122(11): 535-43.
[http://dx.doi.org/10.1042/CS20110523] [PMID: 22233532]
[24]
McCarthy CG, Wenceslau CF, Goulopoulou S, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res 2015; 107(1): 119-30.
[http://dx.doi.org/10.1093/cvr/cvv137] [PMID: 25910936]
[25]
Bruder-Nascimento T, Ferreira NS, Zanotto CZ, et al. NLRP3 inflammasome mediates aldosterone-induced vascular damage. Circulation 2016; 134(23): 1866-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024369] [PMID: 27803035]
[26]
Idris-Khodja N, Mian MO, Paradis P, Schiffrin EL. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J 2014; 35(19): 1238-44.
[http://dx.doi.org/10.1093/eurheartj/ehu119] [PMID: 24685711]
[27]
Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007; 204(10): 2449-60.
[http://dx.doi.org/10.1084/jem.20070657] [PMID: 17875676]
[28]
Chan CT, Sobey CG, Lieu M, et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 2015; 66(5): 1023-33.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05779] [PMID: 26351030]
[29]
Higaki A, Caillon A, Paradis P, Schiffrin EL. Innate and innate-like immune system in hypertension and vascular injury. Curr Hypertens Rep 2019; 21(1): 4.
[http://dx.doi.org/10.1007/s11906-019-0907-1] [PMID: 30659373]
[30]
Kossmann S, Lagrange J, Jäckel S, et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9(375)eaah4923
[http://dx.doi.org/10.1126/scitranslmed.aah4923] [PMID: 28148841]
[31]
de Moraes R, Tibirica E. Early functional and structural microvascular changes in hypertension related to aging. Curr Hypertens Rev 2017; 13(1): 24-32.
[http://dx.doi.org/10.2174/1573402113666170413095508] [PMID: 28412915]
[32]
Fishbein MC, Fishbein GA. Arteriosclerosis: Facts and fancy. Cardiovasc Pathol 2015; 24(6): 335-42.
[http://dx.doi.org/10.1016/j.carpath.2015.07.007] [PMID: 26365806]
[33]
Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014; 1842(11): 2106-19.
[http://dx.doi.org/10.1016/j.bbadis.2014.07.008] [PMID: 25045854]
[34]
Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT. Mitochondrial requirement for endothelial responses to cyclic strain: Implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 2004; 287(3): L486-96.
[http://dx.doi.org/10.1152/ajplung.00389.2003] [PMID: 15090367]
[35]
Lemarié CA, Tharaux PL, Esposito B, Tedgui A, Lehoux S. Transforming growth factor-alpha mediates nuclear factor kappaB activation in strained arteries. Circ Res 2006; 99(4): 434-41.
[http://dx.doi.org/10.1161/01.RES.0000237388.89261.47] [PMID: 16857964]
[36]
Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 2014; 21: 3.
[http://dx.doi.org/10.1186/1423-0127-21-3] [PMID: 24410814]
[37]
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2018; 114(4): 529-39.
[http://dx.doi.org/10.1093/cvr/cvy023] [PMID: 29394331]
[38]
Niazi ZR, Silva GC, Ribeiro TP, et al. EPA: DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: Role of NADPH oxidase- and COX-derived oxidative stress. Hypertens Res 2017; 40(12): 966-75.
[http://dx.doi.org/10.1038/hr.2017.72] [PMID: 28878301]
[39]
Virdis A, Bacca A, Colucci R, et al. Endothelial dysfunction in small arteries of essential hypertensive patients: Role of cyclooxygenase-2 in oxidative stress generation. Hypertension 2013; 62(2): 337-44.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00995] [PMID: 23734008]
[40]
Avendaño MS, Martínez-Revelles S, Aguado A, et al. Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension. Br J Pharmacol 2016; 173(9): 1541-55.
[http://dx.doi.org/10.1111/bph.13457] [PMID: 26856544]
[41]
Virdis A, Colucci R, Fornai M, et al. Cyclooxygenase-1 is involved in endothelial dysfunction of mesenteric small arteries from angiotensin II-infused mice. Hypertension 2007; 49(3): 679-86.
[http://dx.doi.org/10.1161/01.HYP.0000253085.56217.11] [PMID: 17145980]
[42]
Maas SL, Soehnlein O, Viola JR. Organ-specific mechanisms of transendothelial neutrophil migration in the lung, liver, kidney, and aorta. Front Immunol 2018; 9: 2739.
[http://dx.doi.org/10.3389/fimmu.2018.02739] [PMID: 30538702]
[43]
Wilcox CS, Wang C, Wang D. Endothelin-1-induced microvascular ROS and contractility in angiotensin-II-infused mice depend on COX and TP receptors. Antioxidants 2019; 8(6)E193
[http://dx.doi.org/10.3390/antiox8060193] [PMID: 31234522]
[44]
Tang EH, Leung FP, Huang Y, et al. Calcium and reactive oxygen species increase in endothelial cells in response to releasers of endothelium-derived contracting factor. Br J Pharmacol 2007; 151(1): 15-23.
[http://dx.doi.org/10.1038/sj.bjp.0707190] [PMID: 17351662]
[45]
Félétou M, Verbeuren TJ, Vanhoutte PM. Endothelium-dependent contractions in SHR: A tale of prostanoid TP and IP receptors. Br J Pharmacol 2009; 156(4): 563-74.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00060.x] [PMID: 19154435]
[46]
Loperena R, Harrison DG. Oxidative stress and hypertensive diseases. Med Clin North Am 2017; 101(1): 169-93.
[http://dx.doi.org/10.1016/j.mcna.2016.08.004] [PMID: 27884227]
[47]
Alvarez Y, Briones AM, Hernanz R, Pérez-Girón JV, Alonso MJ, Salaices M. Role of NADPH oxidase and iNOS in vasoconstrictor responses of vessels from hypertensive and normotensive rats. Br J Pharmacol 2008; 153(5): 926-35.
[http://dx.doi.org/10.1038/sj.bjp.0707575] [PMID: 17994107]
[48]
Cau SB, Guimaraes DA, Rizzi E, et al. Pyrrolidine dithiocarbamate down-regulates vascular matrix metalloproteinases and ameliorates vascular dysfunction and remodelling in renovascular hypertension. Br J Pharmacol 2011; 164(2): 372-81.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01360.x] [PMID: 21434884]
[49]
Smith CJ, Santhanam L, Bruning RS, Stanhewicz A, Berkowitz DE, Holowatz LA. Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension 2011; 58(5): 935-42.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.178129] [PMID: 21931069]
[50]
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Inducible nitric oxide synthase as a possible target in hypertension. Curr Drug Targets 2014; 15(2): 164-74.
[http://dx.doi.org/10.2174/13894501113146660227] [PMID: 24102471]
[51]
Kar S, Bhandar B, Kavdia M. Impact of SOD in eNOS uncoupling: A two-edged sword between hydrogen peroxide and peroxynitrite. Free Radic Res 2012; 46(12): 1496-513.
[http://dx.doi.org/10.3109/10715762.2012.731052] [PMID: 22998079]
[52]
Salvemini D, Kim SF, Mollace V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: Relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 2013; 304(7): R473-87.
[http://dx.doi.org/10.1152/ajpregu.00355.2012] [PMID: 23389111]
[53]
Sorokin A. Nitric oxide synthase and cyclooxygenase pathways: A complex interplay in cellular signaling. Curr Med Chem 2016; 23(24): 2559-78.
[http://dx.doi.org/10.2174/0929867323666160729105312] [PMID: 27480213]
[54]
Viappiani S, Nicolescu AC, Holt A, et al. Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 2009; 77(5): 826-34.
[http://dx.doi.org/10.1016/j.bcp.2008.11.004] [PMID: 19046943]
[55]
Cau SB, Tostes RC. Inducible nitric oxide synthase inhibition as a target for the treatment of vascular dysfunction in hypertension. Hypertension 2012; 59(3)e21
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.189407] [PMID: 22252393]
[56]
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: The renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144: 279-91.
[http://dx.doi.org/10.1016/j.phrs.2019.04.029] [PMID: 31039397]
[57]
de Gaetano M, McEvoy C, Andrews D, et al. Specialized pro-resolving lipid mediators: Modulation of diabetes-associated cardio-, reno-, and retino-vascular complications. Front Pharmacol 2018; 9: 1488.
[http://dx.doi.org/10.3389/fphar.2018.01488] [PMID: 30618774]
[58]
Sansbury BE, Spite M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ Res 2016; 119(1): 113-30.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307308] [PMID: 27340271]
[59]
Akagi D, Chen M, Toy R, Chatterjee A, Conte MS. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. FASEB J 2015; 29(6): 2504-13.
[http://dx.doi.org/10.1096/fj.14-265363] [PMID: 25777995]
[60]
Jannaway M, Torrens C, Warner JA, Sampson AP. Resolvin E1, resolvin D1 and resolvin D2 inhibit constriction of rat thoracic aorta and human pulmonary artery induced by the thromboxane mimetic U46619. Br J Pharmacol 2018; 175(7): 1100-8.
[http://dx.doi.org/10.1111/bph.14151] [PMID: 29352769]
[61]
Maloberti A, Meani P, Vallerio P, et al. Annexin A5 in treated hypertensive patients and its association with target organ damage. J Hypertens 2017; 35(1): 154-61.
[http://dx.doi.org/10.1097/HJH.0000000000001143] [PMID: 27906841]
[62]
Yu D, Xu Z, Yin X, et al. Inverse relationship between serum lipoxin a4 level and the risk of metabolic syndrome in a middle-aged Chinese population. PLoS One 2015; 10(11)e0142848
[http://dx.doi.org/10.1371/journal.pone.0142848] [PMID: 26565966]
[63]
Chen L, Yang G, Zhang J, et al. Time-dependent hypotensive effect of aspirin in mice. Arterioscler Thromb Vasc Biol 2018; 38(12): 2819-26.
[http://dx.doi.org/10.1161/ATVBAHA.118.311296] [PMID: 30571171]
[64]
Welch WJ, Patel K, Modlinger P, et al. Roles of vasoconstrictor prostaglandins, COX-1 and -2, and AT1, AT2, and TP receptors in a rat model of early 2K,1C hypertension. Am J Physiol Heart Circ Physiol 2007; 293(5): H2644-9.
[http://dx.doi.org/10.1152/ajpheart.00748.2007] [PMID: 17766473]
[65]
Pope JE, Anderson JJ, Felson DT. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch Intern Med 1993; 153(4): 477-84.
[http://dx.doi.org/10.1001/archinte.1993.00410040045007] [PMID: 8435027]
[66]
Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol 2010; 159(6): 1236-46.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00611.x] [PMID: 20128814]
[67]
Ray WA, Varas-Lorenzo C, Chung CP, et al. Cardiovascular risks of nonsteroidal antiinflammatory drugs in patients after hospitalization for serious coronary heart disease. Circ Cardiovasc Qual Outcomes 2009; 2(3): 155-63.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.108.805689] [PMID: 20031832]
[68]
Gunter BR, Butler KA, Wallace RL, Smith SM, Harirforoosh S. Non-steroidal anti-inflammatory drug-induced cardiovascular adverse events: A meta-analysis. J Clin Pharm Ther 2017; 42(1): 27-38.
[http://dx.doi.org/10.1111/jcpt.12484] [PMID: 28019014]
[69]
Aljadhey H, Tu W, Hansen RA, Blalock SJ, Brater DC, Murray MD. Comparative effects of non-steroidal anti-inflammatory drugs (NSAIDs) on blood pressure in patients with hypertension. BMC Cardiovasc Disord 2012; 12: 93.
[http://dx.doi.org/10.1186/1471-2261-12-93] [PMID: 23092442]
[70]
Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2018; 130(1): 55-71.
[http://dx.doi.org/10.1080/00325481.2018.1412799] [PMID: 29202670]
[71]
Hsu CC, Wang H, Hsu YH, et al. Use of nonsteroidal anti-inflammatory drugs and risk of chronic kidney disease in subjects with hypertension: Nationwide longitudinal cohort study. Hypertension 2015; 66(3): 524-33.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.05105] [PMID: 26169048]
[72]
Bavry AA, Khaliq A, Gong Y, Handberg EM, Cooper-Dehoff RM, Pepine CJ. Harmful effects of NSAIDs among patients with hypertension and coronary artery disease. Am J Med 2011; 124(7): 614-20.
[http://dx.doi.org/10.1016/j.amjmed.2011.02.025] [PMID: 21596367]
[73]
Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 2019; 176(8): 1038-50.
[http://dx.doi.org/10.1111/bph.14167] [PMID: 29468666]
[74]
Khan S, Andrews KL, Chin-Dusting JPF. Cyclo-Oxygenase (COX) inhibitors and cardiovascular risk: Are non-steroidal anti-inflammatory drugs really anti-inflammatory? Int J Mol Sci 2019; 20(17)E4262
[http://dx.doi.org/10.3390/ijms20174262] [PMID: 31480335]
[75]
Kirkby NS, Lundberg MH, Harrington LS, et al. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system. Proc Natl Acad Sci USA 2012; 109(43): 17597-602.
[http://dx.doi.org/10.1073/pnas.1209192109] [PMID: 23045674]
[76]
Chugh PK, Gupta M, Agarwal M, Tekur U. Etoricoxib attenuates effect of antihypertensives in a rodent model of DOCA-salt induced hypertension. Clin Exp Hypertens 2013; 35(8): 601-6.
[http://dx.doi.org/10.3109/10641963.2013.776567] [PMID: 23489008]
[77]
Boshra V, El Wakeel GA, Nader MA. Effect of celecoxib on the antihypertensive effect of losartan in a rat model of renovascular hypertension. Can J Physiol Pharmacol 2011; 89(2): 103-7.
[http://dx.doi.org/10.1139/Y10-112] [PMID: 21326341]
[78]
Pialoux V, Poulin MJ, Hemmelgarn BR, et al. Cyclooxygenase-2 inhibition limits angiotensin II-induced DNA oxidation and protein nitration in humans. Front Physiol 2017; 8: 138.
[http://dx.doi.org/10.3389/fphys.2017.00138] [PMID: 28344559]
[79]
Ahmetaj-Shala B, Kirkby NS, Knowles R, et al. Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine: novel explanation of cardiovascular side effects associated with anti-inflammatory drugs. Circulation 2015; 131(7): 633-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011591] [PMID: 25492024]
[80]
Moss MB, Brunini TM, Soares De Moura R, et al. Diminished L-arginine bioavailability in hypertension. Clin Sci (Lond) 2004; 107(4): 391-7.
[http://dx.doi.org/10.1042/CS20030412] [PMID: 15182236]
[81]
Borhade N, Pathan AR, Halder S, et al. NO-NSAIDs. Part 3: Nitric oxide-releasing prodrugs of non-steroidal anti-inflammatory drugs. Chem Pharm Bull (Tokyo) 2012; 60(4): 465-81.
[http://dx.doi.org/10.1248/cpb.60.465] [PMID: 22466730]
[82]
Muscará MN, McKnight W, Soldato PD, Wallace JL. Effect of a nitric oxide-releasing naproxen derivative on hypertension and gastric damage induced by chronic nitric oxide inhibition in the rat. Life Sci 1998; 62(15): PL235-40.
[http://dx.doi.org/10.1016/S0024-3205(98)00072-1] [PMID: 9566780]
[83]
Muscará MN, McKnight W, Lovren F, Triggle CR, Cirino G, Wallace JL. Antihypertensive properties of a nitric oxide-releasing naproxen derivative in two-kidney, one-clip rats. Am J Physiol Heart Circ Physiol 2000; 279(2): H528-35.
[http://dx.doi.org/10.1152/ajpheart.2000.279.2.H528] [PMID: 10924050]
[84]
Martelli A, Testai L, Anzini M, et al. The novel anti-inflammatory agent VA694, endowed with both NO-releasing and COX2-selective inhibiting properties, exhibits NO-mediated positive effects on blood pressure, coronary flow and endothelium in an experimental model of hypertension and endothelial dysfunction. Pharmacol Res 2013; 78: 1-9.
[http://dx.doi.org/10.1016/j.phrs.2013.09.008] [PMID: 24083950]
[85]
de Paula TD, Silva BR, Grando MD, Pernomian L, do Prado AF, Bendhack LM. Relaxation induced by the nitric oxide donor and cyclooxygenase inhibitor NCX2121 in renal hypertensive rat aortas. Eur J Pharm Sci 2017; 107: 45-53.
[http://dx.doi.org/10.1016/j.ejps.2017.06.007] [PMID: 28603034]
[86]
Baerwald C, Verdecchia P, Duquesroix B, Frayssinet H, Ferreira T. Efficacy, safety, and effects on blood pressure of naproxcinod 750 mg twice daily compared with placebo and naproxen 500 mg twice daily in patients with osteoarthritis of the hip: A randomized, double-blind, parallel-group, multicenter study. Arthritis Rheum 2010; 62(12): 3635-44.
[http://dx.doi.org/10.1002/art.27694] [PMID: 20722026]
[87]
Townsend R, Bittar N, Rosen J, et al. Blood pressure effects of naproxcinod in hypertensive patients. J Clin Hypertens (Greenwich) 2011; 13(5): 376-84.
[http://dx.doi.org/10.1111/j.1751-7176.2010.00419.x] [PMID: 21545399]
[88]
Xiao L, Dong JH, Jin S, et al. Hydrogen sulfide improves endothelial dysfunction via downregulating BMP4/COX-2 pathway in rats with hypertension. Oxid Med Cell Longev 2016; 20168128957
[http://dx.doi.org/10.1155/2016/8128957] [PMID: 27642495]
[89]
Magierowski M, Magierowska K, Surmiak M, et al. The effect of hydrogen sulfide-releasing naproxen (ATB-346) versus naproxen on formation of stress-induced gastric lesions, the regulation of systemic inflammation, hypoxia and alterations in gastric microcirculation. J Physiol Pharmacol 2017; 68(5): 749-56.
[PMID: 29375050]
[90]
Bahar T, Sedat A. The use of nitric oxide synthase inhibitors in inflammatory diseases: A novel class of anti-inflammatory agents. Curr Med Chem Anti Inflamm Anti Allergy Agents 2004; 3(3): 271-301.
[http://dx.doi.org/10.2174/1568014043355294]
[91]
Hong HJ, Loh SH, Yen MH. Suppression of the development of hypertension by the inhibitor of inducible nitric oxide synthase. Br J Pharmacol 2000; 131(3): 631-7.
[http://dx.doi.org/10.1038/sj.bjp.0703603] [PMID: 11015317]
[92]
Wang X, Chang T, Jiang B, Desai K, Wu L. Attenuation of hypertension development by aminoguanidine in spontaneously hypertensive rats: role of methylglyoxal. Am J Hypertens 2007; 20(6): 629-36.
[http://dx.doi.org/10.1016/j.amjhyper.2006.12.003] [PMID: 17531919]
[93]
da Cunha NV, Lopes FN, Panis C, Cecchini R, Pinge-Filho P, Martins-Pinge MC. iNOS inhibition improves autonomic dysfunction and oxidative status in hypertensive obese rats. Clin Exp Hypertens 2017; 39(1): 50-7.
[http://dx.doi.org/10.1080/10641963.2016.1210628] [PMID: 28055264]
[94]
Hernanz R, Briones AM, Alonso MJ, Vila E, Salaices M. Hypertension alters role of iNOS, COX-2, and oxidative stress in bradykinin relaxation impairment after LPS in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2004; 287(1): H225-34.
[http://dx.doi.org/10.1152/ajpheart.00548.2003] [PMID: 15001439]
[95]
Tian J, Yan Z, Wu Y, et al. Inhibition of iNOS protects endothelial-dependent vasodilation in aged rats. Acta Pharmacol Sin 2010; 31(10): 1324-8.
[http://dx.doi.org/10.1038/aps.2010.111] [PMID: 20835265]
[96]
Craighead DH, Smith CJ, Alexander LM. Blood pressure normalization via pharmacotherapy improves cutaneous microvascular function through NO-dependent and NO-independent mechanisms. Microcirculation 2017; 24(7)
[http://dx.doi.org/10.1111/micc.12382] [PMID: 28510986]
[97]
Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther 2005; 315(1): 51-7.
[http://dx.doi.org/10.1124/jpet.105.088062] [PMID: 15951402]
[98]
Yu XJ, Zhang DM, Jia LL, et al. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 2015; 284(3): 315-22.
[http://dx.doi.org/10.1016/j.taap.2015.02.023] [PMID: 25759242]
[99]
Cau SB, Guimaraes DA, Rizzi E, Ceron CS, Gerlach RF, Tanus-Santos JE. The nuclear factor kappaB inhibitor pyrrolidine dithiocarbamate prevents cardiac remodelling and matrix metalloproteinase-2 up-regulation in renovascular hypertension. Basic Clin Pharmacol Toxicol 2015; 117(4): 234-41.
[PMID: 25816715]
[100]
Qi J, Yu XJ, Shi XL, et al. NF-κB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and Caspase-1. Cardiovasc Toxicol 2016; 16(4): 345-54.
[http://dx.doi.org/10.1007/s12012-015-9344-9] [PMID: 26438340]
[101]
Engler MM, Engler MB, Goodfriend TL, et al. Docosahexaenoic acid is an antihypertensive nutrient that affects aldosterone production in SHR. Proc Soc Exp Biol Med 1999; 221(1): 32-8.
[http://dx.doi.org/10.3181/00379727-221-44381] [PMID: 10320629]
[102]
Morin C, Rousseau E, Blier PU, Fortin S. Effect of docosahexaenoic acid monoacylglyceride on systemic hypertension and cardiovascular dysfunction. Am J Physiol Heart Circ Physiol 2015; 309(1): H93-H102.
[http://dx.doi.org/10.1152/ajpheart.00823.2014] [PMID: 25910811]
[103]
Katakura M, Hashimoto M, Inoue T, et al. Omega-3 fatty acids protect renal functions by increasing docosahexaenoic acid-derived metabolite levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model. Molecules 2014; 19(3): 3247-63.
[http://dx.doi.org/10.3390/molecules19033247] [PMID: 24642910]
[104]
Al Suleimani YM, Al Mahruqi AS. The endogenous lipid N-arachidonoyl glycine is hypotensive and nitric oxide-cGMP-dependent vasorelaxant. Eur J Pharmacol 2017; 794: 209-15.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.040] [PMID: 27890711]
[105]
Clària J, Dalli J, Yacoubian S, Gao F, Serhan CN. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol 2012; 189(5): 2597-605.
[http://dx.doi.org/10.4049/jimmunol.1201272] [PMID: 22844113]
[106]
Ruschitzka F, Borer JS, Krum H, et al. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen Ambulatory Blood Pressure Measurement) Trial. Eur Heart J 2017; 38(44): 3282-92.
[http://dx.doi.org/10.1093/eurheartj/ehx508] [PMID: 29020251]
[107]
Krum H, Swergold G, Curtis SP, et al. Factors associated with blood pressure changes in patients receiving diclofenac or etoricoxib: Results from the MEDAL study. J Hypertens 2009; 27(4): 886-93.
[http://dx.doi.org/10.1097/HJH.0b013e328325d831] [PMID: 19516186]
[108]
Ji AL, Chen WW, Huang WJ. Clinical study on influences of enteric coated aspirin on blood pressure and blood pressure variability. Eur Rev Med Pharmacol Sci 2016; 20(23): 5017-20.
[PMID: 27981528]
[109]
Bonten TN, Snoep JD, Assendelft WJ, et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: A randomized cross-over trial. Hypertension 2015; 65(4): 743-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04980] [PMID: 25691622]
[110]
Chan CC, Reid CM, Aw TJ, Liew D, Haas SJ, Krum H Do. COX-2 inhibitors raise blood pressure more than nonselective NSAIDs and placebo? An updated meta-analysis. J Hypertens 2009; 27(12): 2332-41.
[http://dx.doi.org/10.1097/HJH.0b013e3283310dc9] [PMID: 19887957]
[111]
Schnitzer TJ, Kivitz A, Frayssinet H, Duquesroix B. Efficacy and safety of naproxcinod in the treatment of patients with osteoarthritis of the knee: A 13-week prospective, randomized, multicenter study. Osteoarthritis Cartilage 2010; 18(5): 629-39.
[http://dx.doi.org/10.1016/j.joca.2009.12.013] [PMID: 20202489]
[112]
White WB, Schnitzer TJ, Fleming R, Duquesroix B, Beekman M. Effects of the cyclooxygenase inhibiting nitric oxide donator naproxcinod versus naproxen on systemic blood pressure in patients with osteoarthritis. Am J Cardiol 2009; 104(6): 840-5.
[http://dx.doi.org/10.1016/j.amjcard.2009.05.014] [PMID: 19733721]
[113]
Schnitzer TJ, Hochberg MC, Marrero CE, Duquesroix B, Frayssinet H, Beekman M. Efficacy and safety of naproxcinod in patients with osteoarthritis of the knee: A 53-week prospective randomized multicenter study. Semin Arthritis Rheum 2011; 40(4): 285-97.
[http://dx.doi.org/10.1016/j.semarthrit.2010.06.002] [PMID: 20828790]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy