Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

3,5-Bis(trifluoromethyl) Phenylammonium triflate(BFPAT) as a Novel Organocatalyst for the Efficient Synthesis of 2,3-dihydroquinazolin-4(1H)-one Derivatives

Author(s): Mandana Alipour, Zinatossadat Hossaini, Samad Khaksar* and Faramarz Rostami-Charati

Volume 17, Issue 1, 2020

Page: [40 - 45] Pages: 6

DOI: 10.2174/1570179417666191218115126

Price: $65

Abstract

Aims and Objectives: A one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives by threecomponent cyclo-condensation of isatoic anhydride, aldehydes and amine or ammonium acetate has been developed using 3,5-Bis(trifluoromethyl) phenylammonium triflate (BFPAT) as a new organocatalyst.

Materials and Methods: All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points.

Results: A wide variety of structurally different aldehydes reacted easily and rapidly to result in the relating 2,3-dihydroquinazolin-4(1H)-ones in good to excellent yield.

Conclusion: We have demonstrated an extremely effective and new process for synthesizing 2,3- dihydroquinazolin-4(1H)-ones employing BFPAT as a novel organocatalyst in one-pot fashion.

Keywords: Organocatalyst, green chemistry, quinazoline, multicomponent, heterocyclic, antitumor, anti-diabetes.

Graphical Abstract
[1]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem.Int. Ed. Engl.,, 2004, 43(39), 5138-5175.Availble at.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[2]
Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev.,, 2007, 107(12), 5713-5743.Availble at.
[http://dx.doi.org/10.1021/cr068373r.] [PMID: 18072808]
[3]
Peng, F.; Shao, Z. Advances in asymmetric organocatalytic reactions catalyzed by chiral primary amines. J. Mol. Catal. Chem.,, 2008, 285, 1-13.Availble at.
[http://dx.doi.org/10.1016/j.molcata.2007.12.027.]
[4]
Dondoni, A.; Massi, A. Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed. Engl.,, 2008, 47(25), 4638-4660.Availble at.
[http://dx.doi.org/10.1002/anie.200704684.] [PMID: 18421733]
[5]
Renzi, P.; Bella, M. Non-asymmetric organocatalysis. Chem. Commun.(Camb.),, 2012, 48(55), 6881-6896.Availble at.
[http://dx.doi.org/10.1039/c2cc31599h.] [PMID: 22662324]
[6]
Funatomi, T.; Wakasugi, K.; Misaki, T.; Tanabe, Y. Pentafluorophenylammonium triflate (PFPAT): an efficient, practical, and cost-effective catalyst for esterification, thioesterification, transesterification, and macrolactone formation. Green Chem.,, 2006, 8, 1022-1027.Availble at.
[http://dx.doi.org/10.1039/b609181b.]
[7]
Iida, A.; Osada, J.; Nagase, R.; Misaki, T.; Tanabe, Y. Mild and efficient pentafluorophenylammonium triflate (PFPAT)-catalyzed C-acylations of enol silyl ethers or ketene silyl (Thio)acetals with acid chlorides. Org. Lett.,, 2007, 9(10), 1859-1862.Availble at.
[http://dx.doi.org/10.1021/ol070191b.] [PMID: 17429977]
[8]
Khaksar, S.; Ostad, S.M. Pentafluorophenylammonium triflate as an fficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem.,, 2011, 132, 937-939.Availble at.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.011.]
[9]
Ghashang, M.; Mansoor, S.S.; Aswin, K. Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno[2,3- d]pyrimidinone derivatives and their antimicrobial activity. J. Adv. Res.,, 2014, 5(2), 209-218.Availble at.
[http://dx.doi.org/10.1016/j.jare.2013.03.003.] [PMID: 25685489]
[10]
Montazeri, N.; Pourshamsian, K.; Yosefiyan, S.; Momeni, S.S. Pentafluorophenylammonium triflate-CuCl 2: A mild, efficient and reusable heterogeneous catalyst system for facile synthesis of 4 (3H)-quinazolinones under solvent-free conditions. J. Chem. Sci.,, 2012, 124, 883-887.Availble at.
[http://dx.doi.org/10.1007/s12039-012-0260-2]
[11]
Khaksar, S.; Behzadi, N. Pentafluorophenylammonium triflate (PFPAT): An efficient, practical, and cost-effective catalyst for one-pot condensation of β- naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds. Comb. Chem.High Throughput Screen.,, 2012, 15(10), 845-848.Availble at.
[http://dx.doi.org/10.2174/138620712803901153.] [PMID: 22963336]
[12]
Abdelraheem, E.M.M.; Khaksar, S.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Shaabani, S.; Dömling, A. Two-Step macrocycle synthesis by classicalugi reaction. J. Org. Chem.,, 2018, 83(3), 1441-1447.Availble at.
[http://dx.doi.org/10.1021/acs.joc.7b02984.] [PMID: 29327924]
[13]
Khaksar, S.; Gholami, M. An eco-benign and highly efficient access to dihydro-1H-indeno [1, 2-b] pyridines in 2, 2, 2-trifluoroethanol. J. Mol. Liq.,, 2014, 196, 159-162.Availble at.
[http://dx.doi.org/10.1016/j.molliq.2014.03.030.]
[14]
Khaksar, S.; Radpeyma, H. Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water. C. R. Chim.,, 2014, 17, 1023-1027.Availble at.
[http://dx.doi.org/10.1016/j.crci.2013.11.009.]
[15]
Khaksar, S.; Talesh, S.M. Three-component one-pot synthesis of 2, 3- dihydroquinazolin-4 (1H)-one derivatives in 2, 2, 2-trifluoroethanol. C. R.Chim.,, 2012, 15, 779-783.Availble at.
[http://dx.doi.org/10.1016/j.crci.2012.05.019.]
[16]
Khaksar, S.; Gholami, M. Pentafluorophenylammonium triflate as a suitable and effective metal-free catalyst for the synthesis of quinazoline derivatives via one-pot multicomponent method. Res. Chem. Intermed.,, 2015, 41, 3709-3718.Availble at.
[http://dx.doi.org/10.1007/s11164-013-1483-7.]
[17]
Li, Q.; Mitscher, L.A.; Shen, L.L. The 2-pyridone antibacterial agents: Bacterial topoisomerase inhibitors. Med. Res. Rev,, 2000, 20(4), 231-293.Availble at.
[http://dx.doi.org/10.1002/1098-1128(200007)20:4 ‹231::AIDMED1›3.0.CO;2-N.] [PMID: 10861727]
[18]
Chinigo, G.M.; Paige, M.; Grindrod, S.; Hamel, E.; Dakshanamurthy, S.; Chruszcz, M.; Minor, W.; Brown, M.L. Asymmetric synthesis of 2,3-dihydro-2-arylquinazolin-4-ones: Methodology and application to a potent fluorescent tubulin inhibitor with anticancer activity. J. Med. Chem.,, 2008, 51(15), 4620-4631.Availble at.
[http://dx.doi.org/10.1021/jm800271c.] [PMID: 18610995]
[19]
Cox, R.J.; O’Hagan, D. Synthesis of isotopically labelled 3-amino-2-phenylpropionic acid and its role as a precursor in the biosynthesis of tenellin and tropic acid. J. Chem. Soc., Perkin Trans. 1,, 1991, 2537-2540.Availble at.
[http://dx.doi.org/10.1039/p19910002537.]
[20]
Hasvold, L.A.; Wang, W.; Gwaltney, S.L., II; Rockway, T.W.; Nelson, L.T.; Mantei, R.A.; Fakhoury, S.A.; Sullivan, G.M.; Li, Q.; Lin, N-H.; Wang, L.; Zhang, H.; Cohen, J.; Gu, W.Z.; Marsh, K.; Bauch, J.; Rosenberg, S.; Sham, H.L. Pyridone-containing farnesyltransferase inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett.,, 2003, 13(22), 4001-4005.Availble at.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.058.] [PMID: 14592494]
[21]
Archana, ; Srivastava, V.K.; Kumar, A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4 3H-ones as potential anticonvulsant agents Eur. J. Med. Chem.,, 2002, 37(11), 873-882.Availble at.
[http://dx.doi.org/10.1016/S0223-5234(02)01389-2.] [PMID: 12446046]
[22]
El-Sabbagh, O.I.; Ibrahim, S.M.; Baraka, M.M.; Kothayer, H. Synthesis of new 2,3-dihydroquinazolin-4(1H)-one derivatives for analgesic and antiinflammatory evaluation. Arch. Pharm. (Weinheim).,, 2010, 343(5), 274-281.Availble at.
[http://dx.doi.org/10.1002/ardp.200900220.] [PMID: 20232372]
[23]
Ram, V.J. Farhanullah, ; Tripathi, B.K.; Srivastava, A.K. Synthesis and antihyperglycemic activity of suitably functionalized 3H-quinazolin-4-ones. Bioorg. Med. Chem.,, 2003, 11(11), 2439-2444.Availble at.
[http://dx.doi.org/10.1016/S0968-0896(03)00142-1.] [PMID: 12735990]
[24]
Rudolph, J.; Esler, W.P.; O’connor, S.; Coish, P.D.; Wickens, P.L.; Brands, M.; Bierer, D.E.; Bloomquist, B.T.; Bondar, G.; Chen, L.; Chuang, C.Y.; Claus, T.H.; Fathi, Z.; Fu, W.; Khire, U.R.; Kristie, J.A.; Liu, X.G.; Lowe, D.B.; McClure, A.C.; Michels, M.; Ortiz, A.A.; Ramsden, P.D.; Schoenleber, R.W.; Shelekhin, T.E.; Vakalopoulos, A.; Tang, W.; Wang, L.; Yi, L.; Gardell, S.J.; Livingston, J.N.; Sweet, L.J.; Bullock, W.H. Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity. J. Med. Chem.,, 2007, 50(21), 5202-5216.Availble at.
[http://dx.doi.org/10.1021/jm070071.] [PMID: 17887659]
[25]
Wolfe, J.F.; Rathman, T.L.; Sleevi, M.C.; Campbell, J.A.; Greenwood, T.D. Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl- 4(3H)-quinazolinones. J. Med. Chem.,, 1990, 33(1), 161-166.Availble at.
[http://dx.doi.org/10.1021/jm00163a027.] [PMID: 2296016]
[26]
Hour, M-J.; Huang, L-J.; Kuo, S-C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K-H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl- 4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem.,, 2000, 43(23), 4479-4487.Availble at.
[http://dx.doi.org/10.1021/jm000151c.] [PMID: 11087572]
[27]
Waisser, K.; Gregor, J.; Dostál, H.; Kuneš, J.; Kubicová, L.; Klimesová, V.; Kaustová, J. Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3- benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones. Farmaco,, 2001, 56(10), 803-807.Availble at.
[http://dx.doi.org/10.1016/S0014-827X(01)01134-X.] [PMID: 11718275]
[28]
Kuneš, J.; Bažant, J.; Pour, M.; Waisser, K.; Slosárek, M.; Janota, J. Quinazoline derivatives with antitubercular activity. Farmaco,, 2000, 55(11-12), 725-729.Availble at.
[http://dx.doi.org/10.1016/S0014-827X(00)00100-2.] [PMID: 11204949]
[29]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; van Kooten, M.; Dediu, M.; Findlay, B.; Tu, D.; Johnston, D.; Bezjak, A.; Clark, G.; Santabárbara, P.; Seymour, L. Erlotinib in previously treated nonsmall- cell lung cancer. N. Engl. J. Med.,, 2005, 353(2), 123-132.Availble at.
[http://dx.doi.org/10.1056/NEJMoa050753.] [PMID: 16014882]
[30]
Tsao, M-S.; Sakurada, A.; Cutz, J-C.; Zhu, C-Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; da Cunha Santos, G.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K.; Pater, J.; Shepherd, F.A. Erlotinib in lung cancer-molecular and clinical predictors of outcome. N. Engl. J. Med.,, 2005, 353(2), 133-144.Availble at.
[http://dx.doi.org/10.1056/NEJMoa050736.] [PMID: 16014883]
[31]
Maleki, A.; Aghaei, M.; Hafizi-Atabak, H.R.; Ferdowsi, M. Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem.,, 2017, 37, 260-266.Availble at.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.022.] [PMID: 28427632]
[32]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A novel method for the one-pot three-component synthesis of 2, 3-dihydroquinazolin-4 (1H)- ones. Synlett,, 2005, 2005, 1155-1157.Availble at.
[http://dx.doi.org/10.1055/s-2005-865200.]
[33]
Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A.A. Efficient synthesis of mono-and disubstituted 2, 3- dihydroquinazolin-4 (1H)-ones using KAl (SO4) 2• 12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett.,, 2005, 46, 6123-6126.Availble at.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.157.]
[34]
Narasimhulu, M.; Lee, Y.R. Ethylenediamine diacetate-catalyzed threecomponent reaction for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and their spirooxindole derivatives. Tetrahedron, , 2011, 67, 9627-9634.Availble at.
[http://dx.doi.org/10.1016/j.tet.2011.08.018.]
[35]
Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Lett.,, 2008, 49, 3814-3818.Availble at.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.127.]
[36]
Ghorbani-Choghamarani, A.; Taghipour, T. Green and One-Pot Threecomponent synthesis of 2, 3-Dihydroquinazolin-4 (1H)-ones promoted by citric acid as recoverable catalyst in water. ChemInform,, 2012, 43Availble at.
[http://dx.doi.org/10.1002/chin.201250164.]
[37]
Niknam, K.; Jafarpour, N.; Niknam, E. Silica-bonded N-propylsulfamic acid as a recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4 (1H)- ones. Chin. Chem. Lett.,, 2011, 22, 69-72.Availble at.
[http://dx.doi.org/10.1016/j.cclet.2010.09.013.]
[38]
Niknam, K.; Mohammadizadeh, M.R.; Mirzaee, S. Silica-bonded S-sulfonic acid as a recyclable catalyst for synthesis of 2, 3-Dihydroquinazolin‐4 (1H)-ones. Chin. J. Chem.,, 2011, 29, 1417-1422.Availble at.
[http://dx.doi.org/10.1002/cjoc.201180261.]
[39]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J.J. Strontium chloride-catalyzed one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in protic media. Chin. Chem. Lett.,, 2011, 22, 1423-1426.Availble at.
[http://dx.doi.org/10.1016/j.cclet.2011.06.002.]
[40]
Rostamizadeh, S.; Amani, A.M.; Mahdavinia, G.H.; Sepehrian, H.; Ebrahimi, S. Synthesis of some novel 2-aryl-substituted 2, 3- dihydroquinazolin-4 (1H)-ones under solvent-free conditions using MCM- 41-SO3H as a highly efficient sulfonic acid. Synthesis,, 2010, 2010, 1356-1360.Availble at.
[http://dx.doi.org/10.1055/s-0029-1218676.]
[41]
Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO nanoparticles catalyzed simple and efficient synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones under ultrasound irradiation in aqueous ethanol under ultrasound irradiation in aqueous ethanol. Tetrahedron,, 2014, 70, 5274-5282.Availble at.
[http://dx.doi.org/10.1016/j.tet.2014.05.059.]
[42]
Chen, B-H.; Li, J-T.; Chen, G-F. Efficient synthesis of 2,3-disubstituted-2,3- dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Ultrason. Sonochem.,, 2015, 23, 59-65.Availble at.
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.024.] [PMID: 25224856]
[43]
Shaterian, H.R.; Aghakhanizadeh, M. Brønsted acidic ionic liquids catalyze the preparation of 2, 3-dihydroquinazolin-4 (1H)-one derivatives. Res. Chem. Intermed.,, 2014, 40, 1655-1668.Availble at.
[http://dx.doi.org/10.1007/s11164-013-1071-x.]
[44]
Salehi, P.; Dabiri, M.; Baghbanzadeh, M.; Bahramnejad, M. One-Pot, Three-Component Synthesis of 2, 3-Dihydro-4 (1 H)-quinazolinones by Montmorillonite K-10 as an Efficient and Reusable Catalyst. Synth.Commun.,, 2006, 36, 2287-2292.Availble at.
[http://dx.doi.org/10.1080/00397910600639752.]
[45]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic liquid promoted eco-friendly and efficient synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Monatshefte für Chemie-Chemical Monthly,, 2007, 138, 1191-1194.Availble at.
[http://dx.doi.org/10.1007/s00706-007-0635-0.]
[46]
Zhang, Z-H.; Lü, H-Y.; Yang, S-H.; Gao, J-W. Synthesis of 2,3- dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe(3)O(4) nanoparticles in water. J. Comb. Chem.,, 2010, 12(5), 643-646.Availble at.
[http://dx.doi.org/10.1021/cc100047j.] [PMID: 20684507]
[47]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M.A.; Agheb, M.; Heydari, S. Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in water and under solvent-free conditions. Catal. Commun.,, 2008, 9, 785-788.Availble at.
[http://dx.doi.org/10.1016/j.catcom.2007.08.019.]
[48]
Takacs, A.; Fodor, A.; Nemeth, J.; Hell, Z. Zeolite-Catalyzed method for the preparation of 2, 3-Dihydroquinazolin-4 (1H)-ones. Synth. Commun., 2014, 44, 2269-2275.Availble at .
[http://dx.doi.org/10.1080/00397911.2014.894525.]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy